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Abstract

We revisit the question of stability of holographic superfluids with finite superfluid
velocity. Our method is based on applying the Landau criterion to the Quasinormal
Mode (QNM) spectrum. In particular we study the QNMs related to the Goldstone
modes of spontaneous symmetry breaking with linear and quadratic dispersions. In
the linear case we show that the sound velocity becomes negative for large enough
superfluid velocity and that the imaginary part of the quasinormal frequency moves to
the upper half plane. Since the instability is strongest at finite wavelength, we take this
as an indication for the existence of an inhomogeneous or striped condensed phase for
large superfluid velocity. In the quadratic case the instability is present for arbitrarily
small superfluid velocity.
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1 Introduction

The characteristic property of a superfluid is its ability to flow totally frictionless through
thin capillaries. It is useful to think of a superfluid as a two component liquid. One com-
ponent is the ground state with a macroscopic occupation number and the other is the
normal component, subject to friction and viscosity. At very low temperatures the normal
component can be described as the gas of elementary quasi particle excitations above the
macroscopically occupied ground state. A famous argument due to Landau [1, 2, 3] sets a
limit to the flow velocity that the condensate can obtain. The essence of the argument is
as follows. At zero temperature the energy of a quasiparticle excitation of momentum ~p is
ε(~p) in the rest frame of the condensate. If we imagine a situation in which the condensate
moves with constant velocity ~v the energy cost in creating a quasiparticle is

ε′(~p) = ε(~p) + ~v · ~p . (1)

In particular if ~p is anti-parallel to the flow velocity ~v this energy is diminished and eventually
goes to zero. If ε′ < 0 it is energetically favorable for the system to create elementary
excitations and populate states with this effective negative energy. Since the superfluid
velocity ~v is kept constant this means that eventually the condensate gets completely depleted
and the superflow stops. It follows that there is a critical flow velocity above which the
superfluid ceases to exist. The famous Landau criterion for the existence of superflow is
therefore

vmax = min
ε(p)

p
, (2)

where the minimum over all elementary excitation branches has to be taken. It is known
for example for superfluid helium that the low temperature normal component can be well
described as a gas of phonons and rotons and that the critical velocity is not determined by
the minimum of the phonon and roton dispersion relation but rather by the excitation of
vortices, resulting in a much lower critical velocity.

At higher temperatures there is always a normal component present and therefore the
energy of an excitation of a superfluid with superflow can not be obtained by a (Galilean)
boost as in equation (1). It is however still true that the energy will depend on the superfluid
velocity and that it can become negative if the superfluid velocity is too large. At finite
temperature the criterion is therefore that the superflow is stable as long as the energy of
all quasiparticle excitations is positive. If in a superfluid the only low energy excitations are
the phonons that criterion is basically the statement that the superflow dependent sound
velocity is positive for all directions.

The AdS/CFT correspondence has proven to be a very useful tool for studying quantum
field theories at strong coupling. In particular, since we can study Bose and Fermi systems
at finite temperature and chemical potential using holography, there are many condensed
matter physics applications of the duality (for a review, see [4, 5, 6]).

One of the most important achievements of AdS/CMT in the last years is the construction
of geometries dual to superfluids [7, 8, 9]. The order parameter can be either a scalar, a vector
or a spin-2 tensor (we talk of s-, p-[10, 11] and d-wave superfluidity [12, 13], respectively).
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In [14, 15] an s-wave superfluid in 2+1 dimensions with superflow was constructed and
it was pointed out that there is indeed a critical velocity above which the superfluid state
ceases to exist. The phase diagram obtained in these works was based on comparing the
free energy of the superflow with the free energy of the normal phase. It turned out that
the phase transition from the superfluid phase to the normal phase was either first or second
order depending on the temperature. Remarkably enough, in 3+1 dimensions there is some
range of masses of the condensate for which the phase transition is always of second order
type [16]. Another way of establishing the phase diagram has been used in [17]. There the
supercurrent was fixed and it was argued that the phase transition is always first order.

The physical significance of the comparison of the free energies of the state with super-
flow and the normal state is not totally clear, since for all temperatures below the critical
temperature the normal state is unstable towards condensation to the superfluid state with-
out superflow. Indeed the superflow by itself is a metastable state only [3] as emphasized
already in [14]. We will propose a different method of characterizing the phase diagram more
directly related to the stability criterion (2).

The purpose of this paper is thus to revisit the question of the realization of the stability
criterion (2) in holographic superfluids. The simplest holographic models of superfluids are
obtained in the so called decoupling limit. In this limit one discards the fluctuations of
the metric and keeps only the dynamics of a charged scalar field and a gauge field in an
asymptotically AdS black hole. The excitation spectrum of a holographic field theory at
finite temperature and density is given by the spectrum of quasinormal modes (QNMs)
[18, 19, 20, 21]. The QNMs of the simplest holographic superfluid with a spontaneously
broken U(1) symmetry have been obtained in [22]. Recently this model has been generalized
to a case with U(2) symmetry [23]1, giving rise to the holographic dual of a multi-component
fluid [25]. The spectrum of the U(2) model turned out to contain a copy of the usual QNM
spectrum of the U(1) model but also a novel feature, the appearance of a type II Goldstone
boson.

It is of course a standard fare that the breaking of a continuous symmetry leads to the
appearance of ungapped states, the Goldstone bosons. This is also respected by holographic
field theories. The Goldstone bosons appear as special ungapped QNMs. It is less well-known
that Goldstone bosons do not necessarily have linear dispersion relation even in relativistic
field theories. Depending on whether their dispersion relation is proportional to an odd or
even power of the momentum they are called of type I or of type II (see [26] for a review).
The appearance of type II Goldstone bosons is also related to another fact, namely that the
number of Goldstone bosons does not equal the number of broken generators [27, 28, 29]2.
In fact in the holographic model the U(2) symmetry gets broken to U(1) and consequently
there are three broken symmetry generators but only two holographic Goldstone bosons were
found. One of them could be identified with the usual sound mode with linear dispersion
relation

ω(k) = vsk + (b− iΓ)k2 , (3)

where vs is the speed of sound, b a correction quadratic in momentum and Γ the sound

1This holographic model has also been introduced in [24].
2Further recent results on type II Goldstone bosons can be found in [30, 31, 32, 33]. In a holographic

context type II Goldstone bosons have been also found previously in [34].
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attenuation constant. The type II Goldstone boson on the other hand was found to have
dispersion relation

ω(k) = (B − iC)k2 , (4)

with no linear part. All the constants appearing in these dispersion relations are of course
temperature dependent and obey vs(Tc) = 0, b(Tc) = B(Tc) and C(Tc) = Γ(Tc).

We will investigate the stability of the superflow via a QNM analysis of the U(2) model.
This automatically will give new and valuable information about the usual U(1) holographic
superfluid since a subsector of the linear fluctuations in the U(2) model is isomorphic to it.

In section two we will follow [14, 15] and reproduce the phase diagram based on the
comparison of the free energy of the superflow with the normal phase. Then we will study the
QNM spectrum with the superflow. In particular we will calculate the direction dependent
speed of sound. We will indeed find that as the superfluid velocity is increased the speed
of sound in opposite direction to the superflow is diminished and eventually vanishes at
a critical velocity vc. Increasing the superfluid velocity even further this sound velocity
becomes negative and this has to be interpreted as the appearance of a negative energy state
in the spectrum. In principle that would be enough to argue for instability but at basically
no price the QNM analysis can give us an even clearer sign of instability. It is well-known
that the imaginary part of the QNMs have to lie all in the lower half plane. If they fail to
do so an exponentially growing mode with amplitude φ ∝ exp(Γt) appears in the spectrum.
It is not necessary for this mode to have zero momentum. In fact we will see that if we
increase the superfluid velocity beyond the critical value the imaginary part of the sound
mode quasinormal frequency moves into the upper half plane. And it does so attaining a
maximum for non-zero momentum. We will see that this behavior is necessary to connect
the phase diagram continuously to the normal phase. Then moving slightly aside we will
study the conductivities with superflow. This has been done before but only in the transverse
sector and here we present results for the longitudinal sector.

Finally we will briefly investigate the fate of the type II Goldstone mode in the U(2)
model. We will study both the gauged and the ungauged model of [23]. Landau’s crite-

rion suggests that these setups do not sustain any finite superflow since min ε(p)
p

= 0 for
quadratic dispersion relations. Again we can not only look at the real part but also at the
imaginary part. We will indeed find poles in the upper half plane for non-zero momenta for
all temperatures and superfluid velocities for the gauged and the ungauged model 3.

Let us also mention some shortcomings of our analysis. We always work in the so-called
decoupling limit in which the metric fluctuations are suppressed. Therefore we do not see the
pattern of first and second (and fourth) sound typical for superfluids. In the decoupling limit
only the fourth sound, the fluctuations of the condensate, survive. Another shortcoming is
that we can apply the Landau criterion only to the QNMs. As in superfluid Helium there
exist most likely other excitations, such as vortices, that might modify the value of the
critical velocity. The question of if and how solitons of holographic superfluids determine
the critical superfluid velocity has been investigated in [38].

3Models with one U(1) gauge field and two complex scalars similar to our ungauged model were studied
before in [35] and recently in [36] (see also [37]). There the two scalars had however different masses and
this should prevent the appearance of the ungapped type II Goldstone mode.
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It is interesting to compare our results to the direction dependence of the sound velocities
in a weakly coupled model like the one recently studied in [39].

2 The U(2) superfluid with superflow

Consider the bulk Lagrangian for a complex scalar field in the fundamental representation
of a U(2) gauge symmetry [23, 24]

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
(
−1

4
F µνcF c

µν −m2ψ†ψ − (Dµψ)†Dµψ

)
, (5)

where

ψ =
√

2

(
λ
Ψ

)
, Aµ = AcµTc , Dµ = ∂µ − iAµ , (6)

where we include the
√

2 in the definition of the scalar field to agree with the equations of
[14]. Following [8] we choose the mass of the scalar field to be m2 = −2/L2. We take the
generators of U(2) to be

T0 =
1

2
I , Ti =

1

2
σi . (7)

Since we will work in the probe approximation we do not include the metric in the dynam-
ical degrees of freedom but simply consider (5) in the background metric of the Schwarzschild-
AdS black brane

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2) ,

f(r) =
r2

L2
− M

r
. (8)

The horizon is located at rH = M1/3L2/3 and its Hawing temperature is T = 3rH/4πL
2. By

suitable rescalings we can set L = rH = 1 and work with dimensionless coordinates.
In order to find background solutions corresponding to a condensate with non-vanishing

superfluid velocity we proceed as follows. First note that the scalar field λ(r) can be set
to zero by a U(2) gauge transformation. For the scalar Ψ we demand then that the non-
normalizable mode vanishes. By a residual U(1) gauge transformation we can also take Ψ
to be real.

Now we need to define what we mean by the superflow. Let us discuss this for a moment
from a field theory perspective. In a multi-component superfluid with U(2) symmetry we
can in principle construct the four (super) currents

Jµa = Φ†Ta∇µΦ− (∇µΦ)† TaΦ , (9)

where ∇µ = ∂µ − iAµaTa is the covariant derivative and Φ is the condensate wave function
which transforms as a doublet under U(2). If the condensate is such that one of the spatial
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currents does not vanish we can speak of a state with non-vanishing superflow. By a gauge
transformation we can always assume the condensate to take some standard form, e.g. Φ =
(0, φ)T and represent the non-vanishing superflow in terms of constant gauge fields. Since
we are interested in the case where we break the U(2) symmetry spontaneously to U(1) we
will only allow a non-zero gauge field in the overall U(1) corresponding to the generator T0.
Furthermore by an SO(2) rotation we can take the gauge field to point into the x direction.

From (9) it is easy to see that such a superflow has non-vanishing currents J
(0)
x and J

(3)
x . In

order to find solutions with non-trivial charge we also need to introduce a chemical potential.
Again in order to preserve the full U(2) symmetry we also allow a chemical potential only
for the overall U(1) charge.

Returning now to Holography these considerations determine the ansatz for the gauge
fields to be of the form

A(0) = A
(0)
t (r)dt+ A(0)

x (r)dx , A(3) = A
(3)
t (r)dt+ A(3)

x (r)dx . (10)

While we introduce sources only for A(0) the fact that also the current J
(3)
µ is nonvanishing

demands that A(3) 6= 0. The physical interpretation for this fact is that the system forces the
appearance of a charge density ρ(3) 6= 0 (as noticed already in [23]) and a current J

(3)
x in the

vacuum with superflow. This is in turn closely related to the presence of type II Goldstone
bosons in the spectrum [40].

amounts

At this point it is important to note that the above identification is only valid in the
superfluid phase, that is, whenever Ψ 6= 0. A constant background value of the gauge field
Ax in the normal phase is not physically meaningful since there is no notion of superflow.

For the reasons outlined above we choose the asymptotic boundary conditions for the
gauge fields to be

A
(0)
t (r →∞) = 2µ̄ , A

(3)
t (r →∞) = 0 ,

A(0)
x (r →∞) = 2S̄x , A(3)

x (r →∞) = 0 , (11)

where µ̄ is to be identified with the chemical potential of the dual theory and S̄x is related
to the superflow velocity. We have included a factor of two in the definitions of µ̄ and S̄x
for the following reason. The background field equations can be recast in the form of those
derived from the U(1) model in [14, 15] by using the field redefinitions

A0 =
1

2
(A

(0)
t − A

(3)
t ) , ξ =

1

2
(A

(0)
t + A

(3)
t ) ,

Ax =
1

2
(A(0)

x − A(3)
x ) , ς =

1

2
(A(0)

x + A(3)
x ) , (12)
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for which the background equations now read

Ψ′′ +

(
f ′

f
+

2

r

)
Ψ′ +

(
A2

0

f 2
− A2

x

r2f
− m2

f

)
Ψ = 0 , (13)

A′′0 +
2

r
A′0 −

2Ψ2

f
A0 = 0 , (14)

A′′x +
f ′

f
A′x − Ax

2Ψ2

f
= 0 , (15)

ξ′′ +
2

r
ξ′ = 0 , (16)

ς ′′ +
f ′

f
ς ′ = 0 . (17)

It can be checked that we recover the usual U(1) system describing the U(1) holographic
superconductor in the presence of superfluid velocity (see for instance [16]). The chemical
potential µ̄ is therefore the chemical potential for the field A0 which plays the role of the
temporal component of the (single) gauge field, and Ax plays the role of the spatial compo-
nent of the single gauge field of [14, 15, 16]. This explicitly shows that the background of
the U(2) model is identical to that of the U(1) superconductor, even for a nonzero superfluid
velocity.

An immediate consequence of the fact that the background equations are those of the
U(1) holographic superfluid is that, at first sight, the U(2) system seems to be able to
accommodate a superflow. However, as already argued, this is in direct contradiction with
the Landau criterion of superfluidity [3] due to the presence of a type II Goldstone in the
spectrum. Of course, having found solutions to the equations of motion does not yet say
anything about the stability. In fact as we will explicitly see the type II Goldstone will turn
into an unstable mode and therefore make the whole U(2) solution with superflow unstable.

Equations (13)-(15) are non-linear and have to be solved using numerical methods. Notice
that (16) and (17) are decoupled. They correspond to the preserved U(1) symmetry after
having broken spontaneously U(2) → U(1). The asymptotic behavior of the fields close to
the conformal boundary is

A0 = µ̄− ρ̄

r
+ . . . ,

Ax = S̄x −
J̄x
r

+ . . . , (18)

Ψ =
ψ1

r
+
ψ2

r2
+ . . . .

The asymptotic quantities are related to the physical ones by

µ̄ =
3

4πT
µ , ρ̄ =

9

16π2T 2
ρ ,

S̄x =
3

4πT
Sx , J̄x =

9

16π2T 2
Jx , (19)

ψ1 =
3

4πT
〈O1〉 , ψ2 =

9

16π2T 2
〈O2〉 .
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We are working in the grand canonical ensemble, then we fix the chemical potential µ.
The temperature is defined by T/µ ∝ 1/µ̄. For studying the evolution of the condensate
as a function of the superfluid velocity, the natural way to proceed is to work with Sx/µ as
our free parameter together with temperature. Notice that both asymptotic modes of the
scalar field are actually normalizable [41]. From now on we will stick to the O2 theory, for
which ψ1 = 0 and 〈O2〉 is the vev of a scalar operator of mass dimension two in the dual
field theory. Notice that the fields ξ and ζ corresponding to the unbroken U(1) are given by

ξ = µ̄− ρ̄/r ,
ζ = S̄x , (20)

even with non-vanishing condensate.

The values of the condensate as a function of temperature and superfluid velocity shown
in Figure 1 reproduce the previous results of [14, 15]. In the plot and in the rest of the paper
the temperature is measured with respect to the critical temperature of the phase transition
with no superfluid velocity, i.e. Tc ≈ 0.0587µ.
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Figure 1: The condensate for different values of the superfluid velocity, ranging from Sx

µ
=

0.005 (right) to Sx

µ
= 0.530 (left).

2.1 Free Energy

In this section we compute the free energy of the condensed phase and compare it to the
free energy of the unbroken phase as done in [14, 15]. After appropriate renormalization of
the Euclidean on-shell action and using the boundary conditions (18), the free energy density
reads

F = −TSren = −µ̄ρ̄+ S̄xJ̄x +

∫ ∞
1

dr

(
2r2A2

0

f
− 2A2

x

)
Ψ2 . (21)
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In the normal phase Ψ = 0, regularity at the horizon forces the Ax gauge field to have a trivial
profile along the radial direction in the bulk and therefore not to contribute to the free energy,
i.e. J̄x = 0. This is in accordance with the fact that in absence of a scalar condensate it is
not possible to switch on a superfluid velocity anymore. Switching on the spatial component
of the gauge field in the normal phase describes a pure gauge transformation that does
not affect the free energy of the system. In the broken phase instead, different superfluid
velocities are physically distinguishable. It is important to emphasize that one is actually
comparing the normal phase at vanishing superfluid velocity with the superconducting phase
at different values of the superfluid velocity, and that the normal phase is unstable towards
condensation without superflow for any T < Tc. Therefore, the physical relevance of this
comparison is not completely clear. We will see later on that actually the Landau criterion
establishes a different transition temperature for the superfluid phase. Nevertheless the free
energy gives a natural first approach to characterize the phase diagram of the system. We
would like to remark that the superflow phase is just a metastable phase, since the true
background is the static condensed phase which allways has lower free energy [3], [14].
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Figure 2: Free energy of the condensed (solid line) and normal (dashed line) phases for
Sx

µ
= 0.5 (left) and Sx

µ
= 0.05 (right). The small plots show the behavior of the condensate.

The open circle corresponds to the critical temperature T̃ whereas the filled circle corresponds
to the spinodal point (max. overheating).

In Figure 2 the free energy of both the normal and condensate phase is plotted for different
values of Sx

µ
. The different behavior for large and small values of the superfluid velocity is

apparent. For large superfluid velocity the transition is first order as can be seen from the left
panel in Figure 2, indicated by the open circle. Coming from low temperatures the system
can still be overheated into a metastable state until the point of spinodal decomposition
where the order parameter susceptibility ∂〈O〉/∂µ diverges, indicated by the filled circle.

For low superfluid velocities the normal phase free energy and the condensate free energy
match smoothly at a second order phase transition. The resulting phase space is contained
in Figure 6 and reproduces the previous analysis in [14, 15].

The phase transition found from considerations of the free energy is however only appar-
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ent. We will call the temperature at which the free energies of the condensate phase with
superflow and the free energy of the normal phase coincide T̃ from now on. The temperature
at which the (second order) phase transition occurs without superflow we will denote by Tc.
As we will show now the superflow becomes unstable at temperatures below T̃ as implied by
the Landau criterion applied to the sound mode. This temperature we will denote by T ∗.

3 Landau criterion for the U(1) sector

In this section we analyze the QNM spectrum of the (0)− (3) sector, which is identical to
the original U(1) holographic superconductor in the presence of superfluid velocity [14, 15].
We focus on the behavior of the lowest QNM, the type I Goldstone boson, with special
emphasis on the velocity and the attenuation constant and their dependence on the superfluid
velocity and on the angle of propagation with respect to the flow.

To study the QNM spectrum we consider linearized perturbations around the background
of the fields of the form δφI = δφI(r) exp[−i(ω t− |k|x cos(γ)− |k| y sin(γ)]. Specifically we
consider the fluctuations

δΨ̂T = (η(r), σ(r)) ,

δA(0) = a
(0)
t (r)dt+ a(0)

x (r)dx+ a(0)
y (r)dy , (22)

δA(3) = a
(3)
t (r)dt+ a(3)

x (r)dx+ a(3)
y (r)dy ,

where in the case of the gauge fluctuations we will work with the linear combinations already
defined by (12), i.e. a

(−)
µ ≡ 1

2
(a

(0)
µ − a(3)

µ ) and a
(+)
µ ≡ 1

2
(a

(0)
µ + a

(3)
µ ). The linearized equations

are rather complicated and we list them in Appendix A. The numerical techniques used to
obtain the hydrodynamic modes in coupled systems are well known. We will not elaborate
on them here, referring the interested reader to [22] and [42].

In Figures 3 and 4 we represent the velocity and the attenuation of the type I Goldstone
mode. Its dispersion relation is given by (3) at low momentum, except now the speed of
sound vs and the attenuation constant Γ depend on the angle γ 4. Figure 3 shows the angle
dependent variation of the sound velocity and damping constant for a fixed temperature and
varying values of the superfluid velocity. Figure 4 shows the same at fixed superfluid velocity
but with varying temperature. As one would expect for small Sx/µ and low enough tem-
perature the velocity and damping constant are almost isotropic. As the superfluid velocity
is increased or the temperature is increased the plot becomes more and more asymmetric.
The anisotropy of the system is such that we see an enhancement of the sound velocity and
a reduction of the damping in the direction of the superflow.

The most interesting feature of the system is found however in the opposite direction to
the superfluid velocity. As one can see in both plots, at γ = π the reduction in the sound
velocity is strongest and eventually both the attenuation constant and the sound velocity
vanish simultaneously. It is important to stress that this happens below the temperature
T̃ . If one continues increasing the temperature (or equivalently increasing the superfluid

4The small real constant b does not play a role here since for small enough momentum the linear part
proportional to vs dominates.
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Figure 3: Sound velocity and damping for T = 0.7Tc and several superfluid velocities from
Sx/µ = 0 (blue) to Sx/µ = 0.325 (green). The radius represents the absolute value of the
sound velocity (left) and attenuation constant (right) as a function of the angle γ between
the momentum and the superfluid velocity.
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Figure 4: Sound velocity (left) and attenuation constant (right) for Sx/µ = 0.2 as a function
of the angle γ and for a range of temperatures from T = 0.85Tc (red) to T = 0.57Tc (blue).

velocity at fixed temperature) one finds that the real part of the frequency becomes negative
and that its imaginary part crosses to the upper half plane, as depicted in Figure 5. This
signals the appearance of a tachyonic mode. T ∗ is the temperature where both the instability
appears and the speed of sound becomes negative. This temperature actually signals the
end of the superfluid phase according to the Landau criterion, and therefore we interpret it
as the physical phase transition temperature.

In Figure 6 (left) we present the phase diagram resulting from the QNM analysis. To
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Figure 5: Real (left) and imaginary (right) parts of the frequency of the lowest hydrodynamic
mode (type I Goldstone mode) versus momentum at Sx/µ = 0.1 and γ = π for different
temperatures from T = T̃ = 0.970Tc (red) to T = 0.905Tc (blue). The instability appears
at T ∗ = 0.935Tc.

illustrate the situation, on the right plot we show the behavior of the relevant QNM5 at three
different points of the phase diagram6 (points labelled 1, 2, 3 on the left plot). At T̃ < T < Tc
in the unbroken phase (line 3N), the mode that was responsible for the transition to the
homogeneous superfluid phase without superfluid velocity is shifted and becomes unstable
at finite momentum. This behavior reflects the fact that the system is unstable for T ≤ Tc,
the mode being shifted in momentum due to the constant nonzero value of Ax. At T = T̃
(lines 2N,S) the lowest mode becomes unstable at k = 0. It is at this point that the free
energy of the homogeneous superfluid phase equals that of the normal phase. Hence, the free
energy analysis, which only captures the k = 0 dynamics, predicts a phase transition at this
temperature. For the particular superfluid velocity in the plot the phase transition is second
order. Finally, the fate of the QNM for T ∗ < T < T̃ is shown in lines 1N (for the normal
phase) and 1S (for the homogeneous superflow phase). One can see that the Goldstone mode
in the superfluid phase is unstable for a finite range in momentum. Only at T ∗ this mode
becomes stable again as shown in Figure 5. It is at this temperature that the homogeneous
superflow phase becomes stable according to the Landau criterion since the sound velocity
becomes positive (moreover the imaginary part of the QNM dispersion relation lies entirely
in the lower half plane).

Therefore the QNM results indicate that a phase transition occurs at a lower temperature
T ∗ < T̃ . Similarly, if we imagine the system at fixed temperature and start rising the
superfluid velocity, both vs and Γ will vanish at some value of Sx/µ, which we claim is
indeed the critical velocity vc of the superfluid, in the sense of the Landau criterion.

As a very interesting fact, notice that the imaginary part of the mode exhibiting the

5In the unbroken phase this is just the lowest scalar QNM, while in the broken phase it is the sound mode
at fixed Sx/µ.

6An analogous discussion and phase space was found at weak coupling in [43] after the appearance of the
first version of this paper.

12



11 22 33

0.2 0.4 0.6 0.8 1.0 1.2

T

TC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sx

Μ

T*

Tc

S-wave

T
�

Normal Phase 1N1N

2N ,S2N ,S

3N3N

1S1S

0.5 1.0 1.5 2.0
ÈkÈ

-0.10

-0.05

0.00

0.05

0.10
Im Ω

Figure 6: (Left) Phase diagram after the study of the QNMs . The grey dashed line corre-
sponds to T̃ , the apparent transition temperature found by direct analysis of the free energy.
At a certain point (disk) the transition in free energy changes from 2nd order (dotted) to 1st
order (dash-dotted). The black solid line corresponds to the critical temperature in absence
of superfluid velocity. The black dashed line signals the physical phase transition at T ∗, the
temperature at which the local instability appears. Points 1, 2 and 3 indicate the values of
temperature and velocity used in the plot on the right. (Right) Imaginary part of the lowest
QNM for different temperatures at fixed Sx/µ = 0.2 and γ = π. Dashed lines were obtained
in the normal phase whereas solid lines were calculated in the superfluid phase.

instability has a maximum at finite momentum as well. The fact that the instability appears
at finite momentum suggests that there might exist a new (meta)stable intermediate phase
above T ∗ with a spatially modulated condensate. Examples of such instabilities towards
spatial modulation have been discussed before in [44, 45, 46].

It is important to remark that, as shown in Figure 6 (right), for temperatures T ∗ < T < T̃
the mode responsible for the transition to the (shifted) homogeneous stationary phase (line
1N) and the new unstable mode (line 1S) show maxima at different momenta. We take this
as an indication for existence of a new metastable in- homogeneous phase. The wave number
of the modulation in this phase should be determined by the maximum of the line 1S.

Recall that the Landau criterion is formulated uniquely in terms of <(ω). At a given
temperature the critical velocity corresponds to the superfluid velocity at which vs = 0, or
equivalently to the value of Sx/µ where <(ω) becomes negative (see Figure 5). That the
criterion is a statement about <(ω) reflects the fact that it holds also at zero temperature.
At finite temperature the dispersion relation of the gapless mode gets itself altered due to
both the superfluid velocity and the temperature [3, 39], implying that generically the critical
value of Sx/µ at fixed temperature does not correspond to the velocity of sound at the same
temperature and vanishing superfluid velocity.

An extra comment is in order here regarding the phase of the system for Tc > T > T̃ .
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The fact that in the unbroken phase the lowest QNM is unstable in this regime (see line
3N in Figure 6) of course indicates that the normal phase is unstable. Let us comment on
this. Since the condensate vanishes in the normal phase, there exists no physical notion of
superfluid velocity in this phase; different choices of Ax are just different frame choices. In
particular, a constant Ax simply acts as a shift in momentum in the unbroken phase, as can
be seen from the fact that the maximum of the QNM is centered at a momentum equal to the
value of the gauge field at the conformal boundary. Therefore the normal phase is unstable for
any temperature lower than the critical temperature Tc towards the formation of a superfluid
without superflow. On the other hand, we know that the homogeneous condensate solution
with finite velocity does not exist in this region, and moreover it is unstable for T > T ∗. We
see two possibilities for the completion of the phase diagram in this region. First, the system
could simply fall down to the true ground state, which is the condensate with no superflow.
At finite Sx/µ this is still a solution which minimizes the energy albeit with a condensate

that is not real anymore but rather has a space dependent phase such that ~∇Φ = 0. This is
simply the gauge transformed homogeneous ground state without superflow. On the other
hand, the fact that we found an instability at finite momentum in the temperature range
T ∗ < T < T̃ could indicate that there is a spatially modulated (metastable) phase even in
the range T ∗ < T < Tc, namely a striped superfluid. Due to the smooth appearance of the
unstable mode we expect the transition at T ∗ to that phase to be 2nd order, although this
should be studied in detail by constructing the correct inhomogeneous background. The
explicit construction of this phase goes however substantially beyond the purpose of this
paper and we leave this question open for further investigation.

3.1 Longitudinal conductivities in the U(1) sector

In this section we compute the conductivities in the (0) − (3) sector in the presence
of superfluid velocity. As far as we are aware, only the transverse conductivities have been
computed so far (see for instance [16, 17]). In contrast, here we will focus on the longitudinal
conductivities. These are calculated, via the Kubo formula

σ =
i

ω
〈JxJx〉 , (23)

from the two point function

GIJ = lim
Λ→∞

(
AIMFMkJ (Λ)′

)
, (24)

where the matrix A can be read off from the on-shell action. F is the matrix valued bulk-
to-boundary propagator normalized to the unit matrix at the boundary. Since we are only
interested in the entry of the matrix corresponding to 〈JxJx〉 and the matrix A is diagonal,

we just need one element, i.e. Axx = −f(r)
2

. In order to construct the bulk-to-boundary
propagator one needs a complete set of linearly independent solutions for the perturbations
of the scalar and gauge fields. This implies solving the system of equations given in Appendix
A at zero momentum. The method follows closely the one detailed in [42]. Notice that there
is a surviving coupling between the gauge fields and the scalar perturbations mediated by Ax.
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Figure 7: Plots of the Real (left) and Imaginary (right) parts of the conductivity for fixed
Sx/µ = 0.05. Different lines correspond to different temperatures from T = 0.99Tc(red) to
T = 0.38Tc (blue).

This makes the computation of the conductivities more involved than in the case without
superflow.

Our results show little deviation from what was found at zero superflow. The most
interesting new feature is a low frequency peak which appears due to the coupling between
the gauge and the scalar sectors induced by the superfluid velocity. In Figures 7 and 8 we
present the results for different values of Sx/µ. As expected the behavior for small superfluid
velocity far from the critical temperature is the same as the one obtained in [8]. Close to
T ∗ a bump is generated in the real part of the conductivity at ω ≈ 0. This indicates the
existence of a mode with very small imaginary gap. The mode responsible for this behavior
is the pseudo-diffusive mode described in [22]. Due to the conserved U(1) symmetry of the
unbroken phase, there exists a diffusive (gapless) mode in the QNM spectrum of the theory.
Once the symmetry is spontaneously broken, this mode develops a purely imaginary gap
that increases as we lower the temperature. Therefore, for high enough temperatures below
the phase transition, the gap of the pseudo-diffusive mode at k = 0 is very small and this
implies the appearance of a peak at small frequencies in the conductivity as we can see in
the figures. If we lower the temperature, the bump starts disappearing simply because the
gap of the pseudo-diffusive mode becomes larger. Although this mode was already present
in the analysis of the conductivities without superflow, it is only in our present case that
it affects the conductivity, due to the coupling at zero momentum between the gauge and
scalar sectors mediated by the field Ax. The size of the peak is proportional to the size of
that coupling, i.e. it grows with Sx/µ.
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Figure 8: Real (left) and imaginary (right) parts of the conductivity for fixed Sx/µ = 0.4.
Different lines correspond to different temperatures in the range T = 0.35Tc (blue) - 0.65Tc
(red).

4 Landau criterion for holographic Type II Goldstone

bosons

In the previous section we studied the lowest lying QNM contained in the (0) − (3) or
U(1) sector of the theory for various values of the superfluid velocity and arbitrary angle
between the momentum and the direction of the superflow. In this section we extend the
analysis to the (1) − (2) sector, which is particular of the U(2) model of [23] and contains
a type II Goldstone boson in the spectrum, whose dispersion relation is given by (4) in the
hydrodynamic limit.

The equations describing the system can be found in Appendix B. In this case we choose
the momentum to lie always in the direction opposite to the superflow, because as we will
see this mode is always unstable. Along with the scalar perturbations prescribed by (22) we
have to consider the following gauge perturbations in the (1)− (2) sector

A(1) = a
(1)
t (t, r, x)dt+ a(1)

x (t, r, x)dx ,

A(2) = a
(2)
t (t, r, x)dt+ a(2)

x (t, r, x)dx . (25)

Again we use the determinant method of [42] to find the QNMs in this sector. Our
results are summarized in Figure 9, where the dispersion relation for the lowest QNM mode
is shown at a particular superfluid velocity. We checked that the result is qualitatively the
same for arbitrary Sx/µ.

The type II Goldstone mode becomes unstable for arbitrarily small superfluid velocities
and temperatures below T̃ . However, an important difference arises with respect to the U(1)
sector. The tachyonic mode does not become stable at any temperature below T̃ , contrary
to the situation in the (0) − (3) sector, there is no analogous of T ∗ in this sector. This
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behavior can be easily interpreted as a reflection of the Landau criterion of superfluidity in
our holographic setup: according to (2), the critical velocity is zero in any system featuring
type II Goldstone bosons, hence for any T < T̃ the superfluid phase is not stable at any
finite superfluid velocity. In addition notice that the maximum in the imaginary part occurs
at higher values of the momentum as we lower the temperature. In fact as we can see from
the figure, lowering the temperature below T̃ the maximum in =(ω) first increases but then
starts to decrease again as the temperature is lowered. At the same time it moves out to
ever larger values of the momentum.
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Figure 9: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM of the (1) − (2) sector in the gauged model for fixed Sx/µ = 0.15 and a range of
temperatures from T = T̃ = 0.95Tc (red) to T = 0.45Tc (blue) and momentum anti-parallel
to the superfluid velocity.

Note that plots analogous to Figures 3 and 4 do not make any sense in the U(2) model,
since the (1)− (2) sector is unstable at any temperature we have been able to check.

4.1 Ungauged model

In [23] an ungauged model was defined in which there were no dynamical SU(2) gauge
fields in the bulk. This model has a global SU(2) symmetry and a local U(1) symmetry.
The dual field theory does therefore not possess the generators of the SU(2) symmetry in its
operator spectrum. Nevertheless, as shown in [23] a somewhat unexpected type II Goldstone
mode is present in the QNM spectrum of the model.

The ungauged model is basically given by the same action (5) once we keep only the
overall U(1) gauge field. Actually it corresponds to the simple U(1) model with two scalar
fields with degenerate mass and therefore has an accidental SU(2) global symmetry.

The background solution is again that of the U(1) superfluid, hence the superflow solu-
tion can be accommodated also in the ungauged model. The difference is that the type II
Goldstone mode appears now in the fluctuations of the upper component of the scalar field
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Figure 10: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM in the (1) − (2) sector of the ungauged model for fixed Sx/µ = 0.25 and a range of
temperatures from T = T̃ = 0.853Tc (red) to T = 0.306Tc (blue). Momentum is taken
anti-parallel to the superfluid velocity.

η, whose equation of motion reads

fη′′ +

(
f ′ +

2f

r

)
η′ +

(
(ω + A0)2

f
− (k − Ax)2

r2
−m2

)
η = 0 , (26)

and is completely decoupled of all other field fluctuations. As noticed in [23] the change of
the background due to the condensate is enough to trigger the appearance of the type II
Goldstone.

It is remarkable that in the ungauged model the type II Goldstone mode is still unstable at
any temperature below T̃ for any value of the superfluid velocity. Notice that not including
conserved currents for the SU(2) symmetry, the model does not satisfy all theorems on
existence of Goldstone bosons [23]. However, the Landau criterion of stability is still valid.

The ungauged model presents a qualitative difference with respect to the gauged model.
The value of the momentum at the maximum now decreases as we lower the temperature.
This is shown in Figure 10, where the dispersion relation of the type II Goldstone at fixed
superfluid velocity and for a long range of temperatures is plotted. For arbitrary values of
the superfluid velocity we obtained analogous results. increasing the value of the maximum
momentum.

5 Conclusions

We have analyzed the holographic realization of the Landau criterion of superfluidity.
The study was motivated by the appearance of type II Goldstone bosons in the model (5).
The quadratic nature of the dispersion relation of the type II Goldstone mode should be
responsible for driving the system out of the superfluid phase for arbitrarily small superfluid
velocity.
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Taking advantage of the fact that the usual U(1) holographic s-wave superconductor is
contained in (5), we have revisited the Landau criterion for holographic type I Goldstone
modes. When addressing the question of the stability of the condensate at finite superfluid
velocity the analysis of the free energy does not give the correct answer. The QNM spectrum
contains a tachyonic mode at finite momentum for temperatures T ∗ < T < T̃ . As defined T̃
is the temperature at which free energies of the normal and condensate phase coincide. In
contrast, T ∗ is the temperature where the tachyonic instability arises. Hence, the homoge-
neous superfluid is stable only for T < T ∗, see Figure 6. The results for the sound velocity
as a function of the angle γ between the propagation direction and the superfluid velocity,
depicted in Figures 3 and 4, are perfectly consistent with this statement: at T = T ∗ and
γ = π the velocity of sound vanishes. This condition can be seen to be equivalent to the
Landau criterion and signals the existence of a critical velocity above which the superfluid
is not stable anymore. —p— velocity

Since the maximum of the imaginary part of the unstable mode has non-vanishing wave
number it is natural to suggest that there might be another, spatially modulated phase for
T > T ∗. The nature or this inhomogeneous phase is however unknown and we leave its
explicit construction of even the question of its very existence for future research.

We have also computed the longitudinal conductivities for various superfluid velocities.
As far as we know, they have not been computed before. We see a peak at ω = 0, due
to the coupling with the spatial component of the gauge field Ax. The peak decreases as
we lower the temperature until it gets completely suppressed (Figure 7). We believe that
this enhancement of the DC conductivity is caused by the gap of the pseudo-diffusive mode
[22, 23] which in the presence of superfluid velocity is formed due to the coupling between
the gauge and scalar sectors that takes place even at k = 0.

Moving to the (1) − (2) sector, we worked out the impact of the superflow on the type
II Goldstone mode. We found that the Landau criterion is effective for arbitrarily small
superfluid velocity as depicted in Figure 9. The tachyon persists for the whole range of
temperatures and (finite) superfluid velocities we have been able to analyze. Hence, we
conclude that the critical superfluid velocity for this sector vanishes, in complete accordance
with the Landau criterion applied to modes with dispersion relation ω ∝ k2. An analogous
result holds for the type II Goldstone mode in the ungauged model.

Acknowledgements

We have profited a lot from discussions with V. Giraldo and A. Schmitt. A. J. would
like to thank Ioannis Papadimitriou for useful discussions. L.M. wants to thank the Imperial
College London for their hospitality during his research visit, specially J. P. Gauntlett, C.
Pantelidou and G. De Nadai Sowrey. This work has been supported by MEC and FEDER
grant FPA2012-32828, Consolider Ingenio Programme CPAN (CSD2007-00042), Comunidad
de Madrid HEP-HACOS S2009/ESP-1473 and MINECO Centro de excelencia Severo Ochoa
Program under grant SEV-2012-0249. I. A. is supported by the Israel Science Foundation
under grants no. 392/09 and 495/11. L.M. has been supported by FPI-fellowship BES-2010-
041571. A. J. is supported by FPU fellowship AP2010-5686. D. A. thanks the FRont Of
pro-Galician Scientists for unconditional support.

19



A Fluctuation equations in the (0)− (3) sector

The fluctuations in the U(1) theory or the (0)− (3) sector contain the zeroth and third
color sectors of the gauge field and the lower component of the scalar field σ = ρ + iδ. The
equations of motion for an arbitrary direction of the momentum then read

0 =fρ′′ +

(
f ′ +

2f

r

)
ρ′ +

(
ω2

f
+
A2

0

f
− A2

x

r2
− |k|

2

r2
−m2

)
ρ+

2iωA0

f
δ + 2a

(−)
t Ψ

A0

f

− 2
a

(−)
x

r2
ΨAx + |k| cos(γ)

2i

r2
Axδ , (27)

0 =fδ′′ +

(
f ′ +

2f

r

)
δ′ +

(
ω2

f
+
A2

0

f
− A2

x

r2
− |k|

2

r2
−m2

)
δ − 2iωA0

f
ρ− iΨωa

(−)
t

f

− |k| cos(γ)
2i

r2
Axρ− |k| cos(γ)

i

r2
Ψa(−)

x − |k| sin(γ)
i

r2
Ψa(−)

y , (28)

0 =fa
′′(−)
t +

2f

r
a
′(−)
t −

(
|k|2

r2
+ 2Ψ2

)
a

(−)
t − ω|k|

r2
cos(γ)a(−)

x − ω|k|
r2

sin(γ)a(−)
y

− 4ΨA0ρ− 2iωΨδ , (29)

0 =fa′′(−)
x + f ′a′(−)

x +

(
ω2

f
− 2Ψ2

)
a(−)
x +

ω|k|
f

cos(γ)a
(−)
t + 2i|k| cos(γ)Ψδ

− 4ΨρAx −
|k|2 sin2(γ)

r2
a(−)
x +

|k|2 cos(γ) sin(γ)

r2
a(−)
y , (30)

0 =fa′′(−)
y + f ′a′(−)

y +

(
ω2

f
− 2Ψ2

)
a(−)
y +

ω|k|
f

sin(γ)a
(−)
t + 2i|k| sin(γ)Ψδ

− |k|
2 cos2(γ)

r2
a(−)
y +

|k|2 cos(γ) sin(γ)

r2
a(−)
x , (31)

and the constraint

0 =
iω

f
a
′(−)
t +

i|k|
r2

cos(γ)a′(−)
x +

i|k|
r2

sin(γ)a′(−)
y + 2Ψ′δ − 2Ψδ′ , (32)

where we have used kx = |k| cos(γ), ky = |k| sin(γ) . The general pure gauge solution in this
sector is

δ = iλΨ; ρ = 0; a
(−)
t = λω; a(−)

x = −λ|k| cos(γ); a(−)
y = −λ|k| sin(γ) , (33)

where λ is an arbitrary constant.

B Fluctuation equations in the (1)− (2) sector

The perturbations in the (1) − (2) sector of the U(2) theory include the fluctuations of
the upper component of the scalar field, η = α+ iβ, along with that sector of the gauge field.
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For momentum in the opposite direction of the superflow, the equations of motion read

0 = fa′′(1)
x + f ′a′(1)

x +

ω2

f
−Ψ2 +

(
A

(3)
t

)2

f

 a(1)
x − 2i

A
(3)
t ω

f
a(2)
x + iω

A
(3)
x

f
a

(2)
t

− A
(3)
t A

(3)
x

f
a

(1)
t − 2A(0)

x Ψα + 2ikΨβ − ikA
(3)
t

f
a

(2)
t +

ωk

f
a

(1)
t , (34)

0 = fa′′(2)
x + f ′a′(2)

x +

ω2

f
−Ψ2 +

(
A

(3)
t

)2

f

 a(2)
x + 2i

A
(3)
t ω

f
a(1)
x − iω

A
(3)
x

f
a

(1)
t

− A
(3)
t A

(3)
x

f
a

(2)
t + 2ΨA(0)

x β + 2ikΨα +
ikA

(3)
t

f
a

(1)
t +

ωk

f
a

(2)
t , (35)

0 = fa
′′(1)
t +

2f

r
a
′(1)
t −


(
A

(3)
x

)2

r2
+ Ψ2 +

k2

r2

 a
(1)
t +

A
(3)
t A

(3)
x

r2
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x − iω

A
(3)
x

r2
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ikA
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t

r2
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(3)
x
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a
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ωk
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a(1)
x , (36)

0 = fa
′′(2)
t +

2f

r
a
′(2)
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A

(3)
x

)2

r2
+ Ψ2 +

k2

r2

 a
(2)
t +

A
(3)
t A

(3)
x

r2
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A
(3)
x

r2
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x
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ωk
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t Ψβ , (37)

0 = fα′′ +
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f ′ +

2f
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(0)
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α
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(
iω

(
A

(0)
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(3)
t

f

)
+
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r2

(
A(0)
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x
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A
(0)
t Ψ
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Ψ
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(0)
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a(2)
x , (38)

0 = fβ′′ +
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f ′ +

2f
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)
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ω2

f
+
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(0)
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)2
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(0)
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(
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t
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subject to the constraints

0 = 2f (Ψβ′ −Ψ′β) + a
(2)
t A

′(3)
t − a

′(2)
t A

(3)
t +

f

r2

(
A(3)
x a′(2)

x − a(2)
x A′(3)

x

)
− iωa′(1)

t −
ikf

r2
a′(1)
x ,

(40)

0 = 2f (Ψα′ −Ψ′α) + a
′(1)
t A

(3)
t − a

(1)
t A

′(3)
t +

f

r2

(
a(1)
x A′(3)

x − A(3)
x a′(1)

x

)
− iωa′(2)

t −
ikf

r2
a′(2)
x ,

(41)

There are two pure gauge solutions in this sector,

α = 0 , β = iλ1Ψ/2 , a
(1)
t = λ1ω , a

(2)
t = iλ1A

(3)
t , a(1)

x = −λ1k , a(2)
x = iλ1A

(3)
x ,
(42)

α = iλ2Ψ/2 , β = 0 , a
(1)
t = −iλ2A

(3)
t , a

(2)
t = λ2ω , a(1)

x = −iλ2A
(3)
x , a(2)

x = −λ2k ,
(43)

where λ1 and λ2 are arbitrary constants.
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[28] T. Schäfer, D. Son, M. A. Stephanov, D. Toublan, and J. Verbaarschot, “Kaon
condensation and Goldstone’s theorem,” Phys.Lett. B522 (2001) 67–75,
arXiv:hep-ph/0108210 [hep-ph].

[29] H. Watanabe and H. Murayama, “Redundancies in Nambu-Goldstone Bosons,”
Phys.Rev.Lett. 110 (2013) 181601, arXiv:1302.4800 [cond-mat.other].

[30] A. Kapustin, “Remarks on nonrelativistic Goldstone bosons,” arXiv:1207.0457

[hep-ph].

[31] H. Watanabe, T. Brauner, and H. Murayama, “Massive Nambu-Goldstone Bosons,”
Phys.Rev.Lett. 111 (2013) 021601, arXiv:1303.1527 [hep-th].

[32] A. Nicolis and F. Piazza, “A relativistic non-relativistic Goldstone theorem: gapped
Goldstones at finite charge density,” Phys.Rev.Lett. 110 (2013) 011602,
arXiv:1204.1570 [hep-th].

[33] A. Nicolis, R. Penco, F. Piazza, and R. A. Rosen, “More on gapped Goldstones at
finite density: More gapped Goldstones,” arXiv:1306.1240 [hep-th].

[34] V. G. Filev, C. V. Johnson, and J. P. Shock, “Universal Holographic Chiral Dynamics
in an External Magnetic Field,” JHEP 0908 (2009) 013, arXiv:0903.5345 [hep-th].

[35] P. Basu, J. He, A. Mukherjee, M. Rozali, and H.-H. Shieh, “Competing Holographic
Orders,” JHEP 1010 (2010) 092, arXiv:1007.3480 [hep-th].

[36] R.-G. Cai, L. Li, L.-F. Li, and Y.-Q. Wang, “Competition and Coexistence of Order
Parameters in Holographic Multi-Band Superconductors,” arXiv:1307.2768

[hep-th].

[37] D. Musso, “Competition/Enhancement of Two Probe Order Parameters in the
Unbalanced Holographic Superconductor,” JHEP 1306 (2013) 083, arXiv:1302.7205
[hep-th].

[38] V. Keranen, E. Keski-Vakkuri, S. Nowling, and K. Yogendran, “Solitons as Probes of
the Structure of Holographic Superfluids,” New J.Phys. 13 (2011) 065003,
arXiv:1012.0190 [hep-th].

24



[39] M. G. Alford, S. K. Mallavarapu, A. Schmitt, and S. Stetina, “From a complex scalar
field to the two-fluid picture of superfluidity,” arXiv:1212.0670 [hep-ph].

[40] H. Watanabe and T. Brauner, “On the number of Nambu-Goldstone bosons and its
relation to charge densities,” Phys.Rev. D84 (2011) 125013, arXiv:1109.6327
[hep-ph].

[41] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,”
Nucl.Phys. B556 (1999) 89–114, arXiv:hep-th/9905104 [hep-th].

[42] M. Kaminski, K. Landsteiner, J. Mas, J. P. Shock, and J. Tarrio, “Holographic
Operator Mixing and Quasinormal Modes on the Brane,” JHEP 1002 (2010) 021,
arXiv:0911.3610 [hep-th].

[43] M. G. Alford, S. K. Mallavarapu, A. Schmitt, and S. Stetina, “Role reversal in first
and second sound in a relativistic superfluid,” arXiv:1310.5953 [hep-ph].

[44] S. Nakamura, H. Ooguri, and C.-S. Park, “Gravity Dual of Spatially Modulated
Phase,” Phys.Rev. D81 (2010) 044018, arXiv:0911.0679 [hep-th].

[45] A. Donos and J. P. Gauntlett, “Holographic striped phases,” JHEP 1108 (2011) 140,
arXiv:1106.2004 [hep-th].

[46] C. B. Bayona, K. Peeters, and M. Zamaklar, “A Non-homogeneous ground state of the
low-temperature Sakai-Sugimoto model,” JHEP 1106 (2011) 092, arXiv:1104.2291
[hep-th].

25


