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Research highlights 

 We study the volcanites of Garamilla Formation in western Nordpatagonian 

Massif.  

 It is composed by three units with andesitic, dacitic and rhyolitic compositions. 

  Radiometric dating indicates Early Jurassic time for development of the volcanic 

system. 

 Field evidences show a half graben and trapdoor structure related to eruption. 

 It is comparable with equivalent units in the Neuquén Basin and Nordpatagonian 

Massif. 

*Highlights (for review)
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Abstract 

By means of facial, stratigraphic, petrographic, geochemical and 

geochronological studies we characterize the Garamilla Formation, cropping out 

in the western Nordpatagonian Massif. 

The studies of these volcanic rocks reveal an Early Jurassic volcanic episode 

formed by three volcanic units that change from normal calc-alkaline to high-K 

calc-alkaline series. Other geochemical features reveal a progressive change 

from an initial subduction-related volcanism to one intraplate-related volcanism. 

This volcanic episode is temporally and geochemically equivalent to those 

volcanic units located in half-grabens in several areas of the Neuquén Basin. 

The volcanic units were erupted into different structural designs. A portion of its 

depocenter was interpreted as a transtensional half-graben, whereas the other 

exhibits a trapdoor structure. The lineament trends that bound the volcanic 

system were also recognized in western Nordpatagonian Massif, and were 

assigned to the Gondwanide Orogeny. 

 

 

 

 

 

 

 

Key words: Volcanism, Early Jurassic, Garamilla Formation, Western 

Nordpatagonian Massif, Argentina. 
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1. Introduction 

The Early Mesozoic tectonic history of the southern South America region is 

closely linked to the rupture and separation of the Gondwana Supercontinent, 

which began in the Triassic with the formation of intracontinental rifts. Later, in 

the Lower Jurassic, the western margin of South America was affected by the 

development of subduction systems. As a result, oblique batholiths (Pankhurst 

et al., 1992; Rapela and Pankhurst, 1992;Rapela et al., 2005) appear in the 

western margin of Patagonia, due to convergent conditions during the Early 

Jurassic. Therefore, the major crustal extension in the Andean margin was 

related to a trench roll-back, which would be responsible for the associated 

subduction extension that characterizes most of this period (Mpodozis and 

Ramos, 2008). 

The extra-Andean Mesozoic volcanism in Patagonia is related to large-scale 

half-grabens, mainly oriented NNW–SSE as suggested by Gust et al. (1985), 

Homovc et al. (1996) and Feraud et al. (1999). 

Specifically, the western Nordpatagonian Massif was subject to major 

extensional stress, related to the break-up of Gondwana during Triassic times, 

with the development of continental rifts. 

During the Early Jurassic, ENE–WSW oriented extensional conditions prevailed 

in this area, promoting the development of extensive volcanism and the opening 

of the marine Neuquén Basin located immediately west of the Nordpatagonian 

Massif. In the eastern Nordpatagonian Massif, the Jurassic volcanic pile is 

composed of extensive ignimbrite deposits of the Marifil Complex, which are 

chemically, petrologically and isotopically uniform. The overall activity persisted 

over some 20 Ma. Pankhurst and Rapela (1995) suggest that rifting and break-
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up of the Gondwana supercontinent produced extensive melting of the lower 

crustal, necessary for the development of this huge magmatism. 

In the western Nordpatagonian Massif, the Jurassic units outcrop between 

Piedra del Aguila, Comallo, and the La Esperanza localities, and are 

represented by volcanic and subvolcanic rocks. Due to the absence of detailed 

mapping, profiling, radiometric dating, and geochemical data, these rocks were 

compared with apparently similar volcanic sequence outcrops more than 200 

km south. Therefore they were assigned to the Garamilla Formation by Cucchi 

et al. (1998). 

For the first time, this paper documents facies characteristics, stratigraphy and 

the geochemistry of the volcanic and subvolcanic sequences erupted in a key 

area represented by the boundary between the western Nordpatagonian Massif 

and the Neuquén Basin. The study focuses on analysis of the volcanic rocks 

outcropping in the area east of the Limay River between 69°47´–70° 00´ W and 

40° 04´–40° 10´ S. This paper also reports geochronological studies, which 

allow comparison with coeval sequences recognized in the Neuquén Basin and 

the eastern Nordpatagonian Massif. In addition, we aim to better understand the 

geochemical and petrologic evolution of the volcanism, its tectonic setting and 

the interrelationship between volcanism and the regional lineaments. Ultimately, 

we attempt to correlate equivalent volcanic events of the central area of the 

Neuquén Basin and central Nordpatagonian Massif. 

 

2. Local geology 

The study area is located in the western sector of the Nordpatagonian Massif 

that mostly occupies northern Patagonia (Fig.1) where three tectonomagmatic 
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cycles can be recognized. The older one belongs to the Pampean Orogeny 

(Vendian-Middle Cambrian) and is represented by low-degree micaceous 

schists, quartzites and phyllites of the Cushamen Formation (Volkheimer, 

1964). However, new dating of detrital zircons in equivalent rocks outcropping in 

the area of Río Chico by Hervé et al. (2008) demonstrated a Carboniferous age 

for this metasedimentary sequence. 

The low-degree metamorphic rocks were intruded by tonalite, granodiorite and 

granite of the Mamil Choique Formation (Volkheimer, 1964; Sesana, 1968; 

Ravazolli and Sesana, 1977; Nullo, 1979; Núñez and Cucchi, 1990 and 1997). 

This unit represents the Famatinian Orogeny and forms near all the pre-Triassic 

outcrops in the Limay River area in the western Nordpatagonian Massif. 

Radiometric dating, using Rb-Sr isochrones (Linares et al., 1988; Cingolani et 

al., 1991; Dalla Salda et al., 1994), indicates a Silurian-Devonian age for the 

type of area. Later studies by López de Luchi et al. (1999, 2000), Cerredo et 

al.(2000) and Pankhurst et al. (2006) show that this magmatic event can be 

related to the Gondwana Orogeny. Neither the Pampean nor the Famatinian 

rocks are displayed in Figure 1 in order to avoid confusion. 

Covering in non-concordance the above described units appears the Triassic 

Los Menucos Formation, which represents a continental rift. Above all the 

described units appears a set of rhyolitic and dacitic ignimbrites, rhyolitic lava-

flows, and tuffs, which were assigned by Nullo (1978) to the Garamilla 

Formation, and originally correlated with the Los Menucos Formation. 

This unit outcrops mainly in the area between the Limay River, La Esperanza 

and Laguna Blanca and has been regionally studied by Volkheimer (1964), 

Coira (1979), Núñez and Cucchi (1990, 1997), and Benedini and Gregori 
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(2012). A reliable age (188 ± 1.5 Ma, U-Pb in zircon) for this unit was obtained 

by Franzese et al. (2002) in rock outcrops more than 200 km south of the 

studied area, near the type locality. That age, in conjunction with the lithological 

characteristics of the Garamilla Formation, allows correlation with the Marifil 

Formation in the eastern portion of the Nordpatagonian Massif (Fig.1). 

In the eastern border of the Neuquén Basin, near the Limay River, appear the 

Piedra del Aguila and Sañicó Formations (Precuyano deposits), composed of a 

sedimentary sequence of alluvial and fluvial environments and andesitic and 

rhyolitic lava-flows and volcaniclastic deposits. The first unit was dated by 

Spalletti et al. (2010) using U-Pb in zircons obtaining an age of 191.7 ± 2.8 Ma. 

Jurassic basic volcanic rocks assigned to the Taquetrén Formation outcrop in 

the southwestern border of the Nordpatagonian Massif. Jurassic magmatic arc-

related igneous rocks appear in the Andean domain of northern Patagonia and 

were assigned to the Subcordilleran Batholith. The Tertiary and Quaternary are 

represented by tuffaceous material and unconsolidated sedimentary deposits. 

 

3. Volcanic stratigraphy of the Garamilla Formation 

The detailed profiling of the studied area allows us to differentiate three volcanic 

units and a set of rhyolitic dikes. A descriptive scheme of effusive and 

pyroclastic rocks is adopted during the facies descriptions (McPhie et al., 1993; 

Branney and Kokelaar, 2002) 

The first volcanic unit comprises lava-like ignimbrites, porphyritic massive 

rhyolite and microgranular massive rhyolite. The second is composed of 

porphyritic massive andesite and dacite, lapilli-tuffs and eutaxitic lapilli-tuffs of 

dacitic composition. The third unit includes tuffs, lapilli-tuffs, massive tuff-
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breccias, massive lithic breccias and porphyritic massive and flow-banded 

rhyolite (Fig. 2). 

 

3.1. First volcanic unit 

This unit is widely represented in the area located between Cañadón Mencué 

and Cañadón Quili Mahuida by a) lava-like ignimbrites, b) porphyritic massive 

rhyolite and c) microgranular massive rhyolite. 

 

a) Lava-like ignimbrites (lava-like T) 

The lava-like ignimbrites outcrop 1 km north of the Puesto Quiñenao ending in 

the Cañadón Quili Mahuida. They extend more than 5 km in an ENE–WSW 

direction, displaying a remarkable homogeneity along the overall path, and 

covering an area of 10 km2 (Fig. 2). The sequences are uniform stratified with 

individual flows ranging from 0.20 to 1 m thick. Columnar jointing is usually 

recognized (Fig. 3A). Microscopically, they show “granophyric texture”, 

(McArthur et al., 1998) composed of a mosaic of equigranular anhedral to 

subhedral crystals of quartz and K-feldspar (Fig. 3B) with less content of biotite. 

Individual crystals are less than 200. Lithic fragments of granitic rocks are 

sparse and range from 1 to 4cm in size. 

 

b) Porphyritic massive rhyolite (pmR) 

The massive rhyolitic lava-flows appear northwest of Puesto Martinez, between 

Cañadón Mencué and Cañadón Quili Mahuida (Figs. 2 and 3C). The 

relationship with the above described facies is complex and most of the time 

seems to be interbedded. However, when their morphological features have not 
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been preserved, the difference between both facies is difficult to recognize. 

They are pale pink to orange, less than 100 m thick and characterized by 

porphyritic textures defined by euhedral to subhedral K-feldspar, plagioclase 

and quartz phenocrysts arranged in a fluidal groundmass composed of 

microcrystalline quartz. The crystals have a moderate sericitic alteration, while 

biotite and plagioclase are altered to chlorite and calcite (Fig. 3D). Porphyritic 

textures, with high temperatures of devitrification in the groundmass, that could 

be internally massive or flow foliated (Mc Phie et al. 1993), define coherent 

lithofacies in lavas as synvolcanic intrusions. 

 

c) Microgranular massive rhyolite (mmR) 

The microgranular massive rhyolite has an oval shape, 2 km in diameter, 

rounded in morphology and internally massive and coherent (Figs. 2 and 3E). It 

is pale pink to orange in color and its texture is microcrystalline to porphyritic. 

The microcrystalline texture represents up to 70% of the sample and is formed 

by euhedral to subhedral quartz and K-feldspar with micrographic textures. 

Micrographic textures (Fig. 3F) evidence eutectic crystallization conditions. 

Plagioclase crystals are frequently altered to calcite and sericite. Biotite is 

euhedral and shows an incipient oxidation and chloritization. Autoclastic facies 

were not recognized. 

 

3.2. Second volcanic unit 

This unit is represented in the Cañadón Mencué and near Puesto Fuensalida 

and is composed of a) porphyritic massive andesite and dacite, and b) massive 

lapilli-tuffs and eutaxitic lapilli-tuffs of dacitic composition (Fig. 2). 
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a) Porphyritic massive andesite and porphyritic massive dacite (pmA and pmD) 

These lithofacies are exposed in the vicinity of Cañadón Mencué and near the 

Limay River, where they are covered by a succession of massive lapilli-tuffs and 

porphyritic massive rhyolite belonging to the third eruptive event (Fig. 4A). 

The best outcrops are located near Puesto Fuensalida, where they cover, 

unconformably, the Gondwana granites, without record of the first eruptive unit. 

Small outcrops were also detected west of Puesto Quiñenao resting on the 

lava-like ignimbrites of the first volcanic unit. The thickness reaches 60 m near 

Puesto Fuensalida. These facies exhibit a porphyritic texture consisting of 

euhedral to subhedral crystals of plagioclase, 1.5 mm long, together with 

amphibole phenocrysts embedded in a trachytic groundmass. Dacitic lava-flows 

have lower proportions of mafic minerals and are composed of K-feldspar, 

plagioclase, quartz and biotite. The groundmass shows a pilotaxitic texture with 

a strong orientation of plagioclase microphenocrysts. The plagioclase is altered 

to epidote (Fig. 4B). 

 

b) Massive lapilli-tuffs (mLT) 

The gray-blue to pale-violet massive lapilli-tuffs consist of deformed vesicular 

juvenile fragments and fragmented crystals disposed in a fine-grained matrix. 

A few kilometers west of Puesto Quiñenao, the massive lapilli-tuffs display 

eutaxitic texture (emLT) partially devitrified (Fig. 4C). The subhedral to anhedral 

crystals of plagioclase are fractured and altered to epidote. Amphibole is mainly 

altered to epidote and iron oxides, while the biotite is altered to chlorite. The 

fine-grained matrix is replaced by fine-grained clay minerals (Fig. 4D). 
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Accessory fragments ranging from a centimeter to a millimeter are of 

migmatites, granites and andesitic lava-flows. 

 

3.3 Third volcanic unit 

The last unit was recognized in two localities. One includes outcrops west of 

Puesto Quiñenao (Fig. 4E) and the other appears between Cañadón Curru 

Mahuida and Cañadón Quili Mahuida and includes a) parallel bedded tuffs, b) 

massive lapilli-tuffs, c) massive tuff-breccias, d) massive lithic breccias and e) 

porphyritic massive rhyolite and flow banded rhyolite totaling about 330 m thick 

(Fig. 2). 

 

a) Parallel bedded tuffs (//b T) 

Pale-yellow to white tuffs consisting of finely laminated layers rich in crystals 

(approx. 40%) were found near Puesto Quiñenao. They usually occur towards 

the base of pyroclastic rhyolitic succession and commonly display a coarsening-

upwards sequence together with the lapilli-tuffs (Fig. 5A). They include quartz, 

sanidine, plagioclase and biotite crystals. Quartz is anhedral to subhedral, 

usually fractured. Deformed laminas of biotite and plagioclase are altered to iron 

oxides and epidote respectively. The matrix corresponds to fine ash altered to 

sericite and clay minerals (Fig. 5B). 

 

b) Massive lapilli-tuffs (mLT) 

They are pink to white in color and contain juvenile, vesicular lithic fragments 

(Fig. 5C). Phenocrysts of quartz and K-feldspar are dominant, while the 

plagioclase and biotite are rare. The lithic fragments are generally subrounded 
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to subangular, 0.2 to 5 cm in diameter, and display porphyritic to spherulitic 

texture (Fig. 5D). The fine-grained matrix is partially silicified. This lithofacies 

was found near Puesto Martinez reaching 100 m thick, diminishing toward 

Puesto Quiñenao. 

 

c) Massive tuff-breccias (mTBr), 

These breccias cover the above mentioned facies by means of planar to slightly 

erosive surfaces. They are composed of lithic fragments of rhyolitic lava-flows, 

10 to 20 cm in diameter, immersed in a light gray tuffaceous matrix (Fig. 5E). 

They present bread-crust textures indicating hot deposition and very fast 

cooling. Vesicular juvenile fragments were not observed. They crop out north of 

Cañadón Mencué (Fig. 2). 

 

d) Massive lithic breccias (mLBr) 

Massive lithic breccias were identified at the top of the pyroclastic sequence 

present in the northern border of the Cañadón Mencué, overlying the massive 

lapilli-tuffs and massive tuff-breccias. They are characterized by the presence of 

large amounts of lithic fragments of tuff, granite and dacite that exhibit 

subangular to subrounded forms. The deposit is remarkably heterogeneous and 

particle size ranges from a few centimeters to almost 1 m in diameter (Fig. 5F). 

 

e) Porphyritic massive rhyolite and flow banded rhyolite (pmR and fbR) 

Small, subrounded bodies with vertical flows were observed near Puesto 

Fuensalida and west of Puesto Quiñenao (Figs. 2 and 5G). 

The lava-flows exhibit a lengthened shape and horizontal flow textures, and are 
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located on the top of the third volcanic unit with individual thicknesses of up to 

20 m. The porphyritic texture is composed mainly of K-feldspar and quartz 

phenocrysts and exhibits no differences, normative or compositional,with 

respect to the porphyritic massive rhyolite (pmR) lithofacies of the first volcanic 

unit. The main difference is the flow banding of the facies here considered. 

The flow banding consists of nearly parallel and alternating bands with different 

textures, one formed by partially devitrified glass and the other by variable 

concentrations of spherulitic aggregates and crystals. Rounded, small 

spherulites of 0.5 to 1 mm size are usually fractured while those bigger than 

1 cm are well preserved indicating a nearly null movement. 

 

3.4. Dikes 

Acidic dikes in the Quiñenao-Fuensalida area intrude the granitic rocks and 

sometimes the volcanic sequence. In the first locality (Fig. 2), they outcrop 

mainly near Cañadón Mencué with NW and NE strikes, dipping between 54° 

and 65° to the southwest and southeast. Most of the time, they are isolated, up 

to 100 m long and 15 m wide, with colors varying between pale-yellow and 

dark-orange. Sometimes dike swarm can be observed converging to a major 

subrounded structure that resembles a subvolcanic body emplaced in the 

granitic host rocks. Due to its major resistance to erosion, in comparison with 

granitic rocks, it forms prominent peaks in the landscape. 

In the Puesto Fuensalida area, dikes are commonly 5 to 15 m wide and up to 

1 km long. They are discontinuous and some portions can be covered. 

Microscopically, they display porphyritic and microgranular textures composed 

of euhedral to subhedral phenocrysts of K-feldspar (5–3 mm), quartz and 
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biotite. The last is altered to chlorite. The groundmass is composed of an 

aggregate of fine-grained quartz and K-feldspar, usually altered to sericite. 

Sometimes, the groundmass is glassy. The microgranular texture is 

characterized by the presence of spherulitic aggregates composed of quartz 

and K-feldspar. 

 

4. Geochemistry of the Garamilla Formation 

Fifteen samples were analyzed at ACTLABS, Canada, in order to determine the 

geochemical tendencies in the volcaniclastic sequence. In comparison with 

international geostandards, major, trace and REE elements were determined 

using X-ray fluorescence and inductively coupled plasma mass spectrometry. 

 

4.1. Major elements 

Geochemical analyses (Table 1) of the sequence reveal a calc-alkaline to high 

potassium calc-alkaline tendency (Fig. 6A) for the three volcanic units 

(Peccerillo and Taylor, 1976). The K2O concentrations range from 3.5 to 4.62% 

in the first volcanic unit, 1.78 to 4.25% in the second and 1.88 to 3.57% in the 

third. The relationship K2O/Na2O varies between 0.94 and 1.53 in the first 

volcanic unit, 0.43 to 0.95 in the second and 0.36 to 1.6 in the third. 

According to the abundance of K2O and Na2O (Fig. 6B) versus silica (Le Bas et 

al., 1986), samples for the first and the third volcanic units fall into the rhyolitic 

composition. The second volcanic unit falls into the dacitic composition. 

The three volcanic units present high silica content with values that vary 

between 60 and 82%. However, this wide range is dominated by compositions 

higher than 70% of SiO2. On the other hand, MgO values reach 2.33% in 
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andesitic lavas of the second volcanic unit, falling to 1.63% in the second 

volcanic unit. These features are revealed in highly differentiated magmas. 

Both the first and the third volcanic units present peraluminous characteristics, 

while the second is metaluminous (Fig. 6C) and shows a lower alkali 

concentration. Al2O3 contents range between 11% and 15% for the three 

volcanic units (Shand, 1951). 

The TiO2 concentrations also provide a measure of the geochemical evolution 

of the magmatic system. This oxide varies between 0.05% and 0.15% in the 

rhyolites (first and third volcanic units) and from 0.5% to 0.95% in dacitic to 

andesitic rocks, whereas the P2O5 varies from 0.02% to 0.05% and from 0.1% 

to 0.3%, respectively, for the same groups, and fractionation is linked to the 

crystallization of apatite. This content matches the range of average P2O5 of the 

calc-alkaline series (0.1 and 0.2%) determined by Gill (1981). 

 

4.2. Trace elements 

The composition of these rocks, according to the classifications SiO2 versus 

Zr/TiO2 (Fig. 6D) and Zr/Ti versus Nb/Y (not shown) of Winchester and Floyd 

(1977), confirms that they are andesites, dacites and rhyolites. The ratio Nb/Y 

presents a range of values generally less than 0.6 indicating that they belong to 

the subalkaline series. The diagram of the distribution of expanded trace 

elements normalized to chondrite (Thompson, 1982) in Figure 6E shows 

enrichment in LILE (Ba, Rb, Th, K, Sr, La, Ce) together with negative anomalies 

of Sr, P and Ti. The rhyolitic facies generally have more significant negative 

anomalies in Ti, P and Sr, and higher concentrations of LILE, indicating 

fractionation of apatite and titanite during magmatic evolution with enrichment in 
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K-feldspar. Another feature shown in Thompson’s diagram (1982) is the 

presence of negative anomalies of Nb and Ta relative to Th and La, while the 

ratio Nb/Ta varies between 6.5 and 16 (Fig. 6E). 

Zr concentrations range between 50 and 280 ppm and show an inverse 

relationship with respect to the concentrations of SiO2. Those specimens that 

are more evolved show Zr concentration between 50 and 120 ppm, while the 

dacites and andesite vary between 150 and 280 ppm. 

 

4.3. Rare earth elements 

In the REE normalized to S1 chondrite diagram (Sun and McDonough, 1989) 

nearly all samples show negative Eu anomalies (Fig. 6F). Values of Eu/Eu* vary 

between 0.88 and 1.02. The negative Eu anomaly is associated with 

fractionation of plagioclase and in minor extension alkali feldspar. In all 

samples, enrichment of LREE and the slopes (LaN/LuN) are similar, indicating 

the cogenetic character of the series. M and HREE values indicate hornblende 

fractionation and the absence of garnet in the parental magma. 

 

4.4. Tectonic discrimination 

In order to establish the tectonic environment of emplacement of the studied 

rocks, they were plotted in diagrams Rb versus Y + Nb and Nb versus Y 

(Pearce et al., 1984). In both diagrams (Figs. 6G and H) acidic and intermediate 

samples are grouped in the fields of magmatic arc-related rocks. Relationships 

Ta–Yb (0.19–0.53) also show igneous environments related to convergent plate 

margins (volcanic arc, Pearce, 1982). Its peraluminous character could be due, 

in part, to the assimilation of continental crust or merging with subducted 
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sediment. 

The LILE enrichment displayed in the diagrams of incompatible elements 

allows, according to Pearce (1982), suggestion that the source magma would 

have received contributions from fluids derived from a subducted oceanic crust. 

The negative anomalies of Nb and Ta corroborate this hypothesis (Fig. 6E). 

The relationship of Nb/Y greater than 0.6 and the development of the negative 

Eu anomalies in some samples do not rule out the presence of an intraplate 

component in the Garamilla Formation. Because of the chemical characteristics 

of the volcanic rocks discussed above, it is believed that these rocks maintain a 

magmatic arc signature. However, their location in the eastern border of the 

marine Jurassic Neuquén Basin, far away from the Jurassic trench, make it 

difficult to reconcile the geochemical signature with the Jurassic geological 

scenario recognized for this area. 

Therefore, these features could reveal the existence of inherited subduction 

components compatible with an extensional tectonic environment where the 

rocks were erupted. 

 

5. Geochronology of the Garamilla Formation 

In order to obtain a precise age of the Garamilla Formation, one sample of the 

second volcanic unit (sample Q-16) was obtained from a dacitic lapilli-tuff 

located at 40° 06' 35" S and 69° 48' 16" W. From that, 32 zircon grains were 

recovered and analyzed for geochronology at the Arizona LaserChron Center, 

Department of Geosciences, University of Arizona, using the procedures 

described by Gehrels et al. (2008). 

Zircons are typically medium grained (80–200 μm diameter), and most of them 
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show euhedral crystal morphology, preserving faces and interfacial edges (Fig. 

7A, inset). No overgrowths or metamorphic zircons with internal structures were 

observed. The zircons show moderate U values (109–655 ppm), and show high 

Th/U values consistent with a magmatic origin (>0.5). Thirty two analyses 

(Table 2) were conducted on single zircon crystals, among which 24 are 

concordant and define a weighted mean 206Pb/238U age of 187 ± 2.3 Ma 

(MSWD= 0.4). We interpreted this number as the timing of the magmatic 

crystallization of the zircons and corresponding to the deposition of the dacitic 

lapilli-tuff of the second eruptive unit (Fig. 7A). An average probability plot 

displaying the “best age” is shown in Figure 7B. Concordant late Paleozoic ages 

are displayed by seven grains. These and Mesoproterozoic ages registered in a 

single grain are considered to be xenocrysts dragged by the magmas from the 

country rocks during their ascent and eruption. 

 

6. Structural analysis. 

The structural analysis of the studied area was carried out using satellite 

imagery, mapping, profiling and the measurement of bedding, dike and fault 

attitudes. As showed in Figures 2 and 7C, the volcanic system is located 

between Cañadones Quili Mahuida and Curru Mahuida. Both Cañadones are 

considered here as structural lineaments and are nearly parallel with N 70–75° 

strikes. 

These lineaments can be traced along 15 km, between the Limay River and the 

Campana Mahuida area, and are 7 km apart in a NNW–SSE direction. 

The Quili Mahuida and Curru Mahuida lineaments are apparently truncated by 

N340–350° lineaments. The western border of this quasi-rectangular structure 
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follows the Limay River valley, which in this area has a N 330–340° strike. 

The above described structure strongly resembles a parallelogram with its 

longer axis oriented N70° (Fig. 7C). This structure can be divided into two 

domains: one, Quiñenao Domain, located north of the Cañadón Mencué, and 

the other, Fuensalida Domain, located south. 

 

6.1. Quiñenao Domain 

The Quiñenao Domain is characterized by the predominance of volcanic rocks, 

and the absence of sedimentary units interbedded in the volcanic sequence, 

making the correlation between different areas and, therefore, determining the 

original disposition of the volcanic beds difficult. Immediately north of Cañadón 

Mencué it is possible to recognize the unconformity of the surface between the 

volcanic and intrusive rocks. This domain is also characterized by a set of N 

290–300° strike lineaments, with lengths of up to 4 km, truncated against the 

Curru Mahuida (ENE–WSW) and a NNW–SSE lineament. These minor 

lineaments are relatively straight and parallel and were assigned to fault 

systems. Their strikes are N 300°, which indeed is parallel to the Cañadón 

Mencué. 

 

6.1. 1. Bedding attitudes 

As explained above, due to the structural complexity of this domain, 

measurements were taken in only a few locations, where it is believed that the 

original position of the beds was preserved. As shown in Figure 7C, this occurs 

southwest and north of Puesto Quiñenao. The first locality appears alongside a 

prominent cliff that produces a strong topography edge. Measurement starts 
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immediately west of Puesto Quiñenao (Fig. 7C) and ends near Puesto Martinez. 

The second locality is situated 3 km northwest of Puesto Quiñenao. As 

displayed in Figure 7C, in the first locality bed strikes are N333°, with an 

average dip of 39° in a NE direction; whereas in the second locality, the 

average strike is N30° with dips about 16° to the SE. In the Quiñenao Domain, 

bedding strikes and dip directions point to a location situated immediately north 

of Puesto Quiñenao, making the existence of a curved structure possible. 

However, due to the limited quantity of data and outcrops, the northeastern and 

southeastern trace of this supposed structure is missing. More data are required 

in order to confirm the existence of such a structure. 

 

6.1. 2. Dike attitudes 

Dike attitudes (Fig. 7D) were analyzed in two localities: one in the southern 

margin of the Cañadón Mencué, where the dikes cut the granitic rocks with NW 

strikes, dipping between 54° and 65° to the southwest; the other north of the 

Cañadón Mencué displaying highly variable strikes, between N54°, and N300°. 

Considering all dikes measured in this area, the predominant (52%) eigenvector 

is 204°/25°. The second eigenvector (33%) is 296°/2°. The last (15%) is 

30°/65°. According to these results, dikes in the Quiñenao Domain display 

complex arrangements, and more data are required to picture the structure. 

 

6.1. 3. Fault attitudes 

Fault attitude measurements were taken in only three localities, all near 

Cañadón Mencué. The first locality is situated in the lower part of the Cañadón 

Mencué. There, fault strikes were N52°, dipping 68° to the NW. Lineations on 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 

 

fault planes indicate a dextral oblique slip fault system. The second locality is on 

the northern border of the Cañadón Mencué. Fault strikes are predominantly 

N72° dipping 63° NW. As in location 1, a dextral oblique slip fault system can be 

interpreted. The last locality is situated north of Cañadón Mencué, 2 km 

southwest of Puesto Quiñenao. There, the strike is N280°, dipping 61° NE. The 

lineation shows that this is a normal fault system, with the northern block 

moving down. 

These features possibly indicate that the Quiñenao Domain was affected by 

tectonic subsidence, due to the existence of normal and oblique slip faults 

recognized in the Cañadón Mencué area. 

As indicated above, numerous near parallel, longitudinal lineaments were 

recognized between Cañadón Mencué and the Cañadón Quili Mahuida 

lineament. Most of them are discontinuous, truncated by other smaller linear 

structures. Only three are continuous, the Cañadón Mencué, the Cañadón of 

Puesto Quiñenao and another located 1 km north of the Puesto. The first is 

more than 8 km long, but the others are between 1 and 4 km long. These small 

lineaments are nearly parallel and are between 700 m and 1 km apart. Our 

interpretation is that these lineaments represent normal faults that produce 

tilting of the blocks located between. These blocks display a nearly constant dip 

and dipping direction, about 16° to the N25–35°. The topographic difference 

between the upper surface of the hanging wall block and foot wall block, due to 

the fault movement, seems to decrease from 150 to 30 m in a NE direction, 

from Puesto Quiñenao to the Cañadón Quili Mahuida. Field recognition shows 

that the tilting and movement of the blocks seem to decrease in this direction. 

Because no reference levels are available, these numbers are approximate. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 

 

 

6.2. Fuensalida Domain 

The domain located south of Cañadón Mencué is quite different. Most of it 

corresponds to outcrops of the Mamil Choique granite, partially covered by 

Quaternary sediments. Its actual upper surface dips 5 to 8° SW. The western 

area (Limay River) is almost completely covered by rocks of the Garamilla 

Formation. 

 

6.2.1. Bedding attitudes 

The volcanic rocks outcropping in the Limay River area are mostly tuff, and 

lapilli-tuff of rhyolitic composition. The outcrops exhibit a rounded shape about 

4.5 km in diameter (Fig. 2) and their morphology is defined by a series of nearly 

parallel bedded tuffs and massive lapilli-tuffs (third volcanic unit). Some areas, 

where subvolcanic bodies are absent, display a bedded disposition (Fig. 2), 

useful for measuring the structural position of the volcanic levels. 

The compilation of bedding values can be observed in Figure 7C in the contour 

diagrams (lower hemisphere). This figure shows that, in the area located 

immediately north and northeast of Puesto Fuensalida, the bedding dips to the 

northwest, with angles between 22 and 58° (Fig. 7C, E). The dip directions of 

the strata located 3 km north of Puesto Fuensalida points southeast with dip 

angles between 23 and 55° (Fig. 7F). 

Finally, the bed attitudes located 3 km west of Puesto Fuensalida, on the other 

side of the Limay River (Neuquén province), show dip directions to the 

northeast, with dip values around 35°. In the last locality, the major eigenvector 

(66%) points 211°/52°, whereas near the Puesto Fuensalida it points 152°/48° 
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and that located 3 km NW points 301°/59°. These values indicate a similar 

dipping of these beds, with values between 30° and 45°. Dipping directions form 

a subcircular design pointing to a location situated a few kilometers NNW of 

Puesto Fuensalida, where beds show a funnel-type design (Fig. 7G). 

 

6.2.2. Dike attitudes 

Dike attitudes (Fig. 7D) were also analyzed in three localities, two of them on 

the western side of the Limay River and one a few kilometers east of Puesto 

Fuensalida. In this area, up to 86% of them strike N44°, with dips of up to 76° to 

the NW. In the area located 4.5 km NW of Puesto Fuensalida, they change to 

N350° with an average dip of 66° to the NE. The last locality, situated 6 km NW 

of Puesto Fuensalida, displays two populations, one up to 73% striking N36° 

and dipping to the SE, and the other (26%) striking N313°, dipping SW. 

As indicated above, the structural disposition of the volcanic beds indicates a 

subcircular design with the Puesto Fuensalida area located near the center of 

an ellipsoidal figure. The dikes’ design also presents a circumferential pattern, 

with its northern border following the trace of the Cañadón Quili Mahuida. The 

southern border of this structure follows instead the trace of the Cañadón Curru 

Mahuida. 

 

6.2.3. Fault attitudes 

As only a small amount of fault evidence was detected, systematic 

measurements of the fault attitudes were not taken. 
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7. Discussion and correlations 

7.1. Depositional processes 

Several partial profiles, examined and measured in the studied area, allow us to 

build a composite profile for the Garamilla Formation. It forms an 810 m thick 

(Fig. 8) sequence of volcanic rocks that unconformably cover the Mamil 

Choique Formation. Three composed volcanic units where recognized in the 

Puesto Quiñenao area and only two in the Puesto Fuensalida area. 

The initial volcanic unit outcrops exclusively north of the Puesto Quiñenao area 

and extends in a NE–SW direction along 8 km. It is composed of three major 

interbedded lithofacies represented by lava-like ignimbrites, porphyritic massive 

rhyolite and microgranular massive rhyolites. It is partially cover by dacitic lapilli-

tuffs belonging to the second volcanic unit. 

The lava-like ignimbrite facies are uniform along their extension. These facies 

were possibly formed in association with the porphyritic massive rhyolite. 

The lava-like ignimbrites represent intense welding pyroclastic density currents, 

wherein pyroclast outlines are completely obliterated and exhibit a “granophyric 

texture” (McArthur et al., 1998). 

This microgranular fabric is interpreted by the last authors as being as a result 

of partial melting and recrystallization of juvenile fragments or spherulitic 

aggregates, which are developed where elevated temperatures and pressures 

are sustained over a long period of time. The vapor phase also promotes these 

types of textures (Lofgren, 1971). The continuity of the volcanic activity may 

also be responsible for the development of such features. 

The classical model of ignimbrite deposition (Branney and Kokelaar, 1997, 

2002) establishes the existence of rapid and sustained gradational processes 
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which recorded the compositional change during the eruption, evidenced by 

vertical compositional zoning in the ignimbrite. 

However, no evidence of compositional zoning was preserved in this lithofacies. 

The porphyritic massive rhyolite becomes more abundant westward of the 

Puesto Quiñenao area, which suggests the presence of an emission center in 

that direction. 

In the western sector of the Puesto Quiñenao, as shown in Figure 2, the 

microgranular massive rhyolites appear. These lithofacies are characterized by 

the dominance of exsolution textures in the phenocrysts of K-feldspar. The 

micrographic textures are interpreted in terms of a change in the 

thermodynamic conditions that reach a eutectic condition where K-feldspar and 

quartz crystallization is coeval. The modification in magma crystallization could 

be explained in terms of system depressurization and/or a change in volatile 

contents. Therefore, the existence of a shallow high silica magmatic chamber 

could not be ruled out, which, together with the abundance of porphyritic lava-

flows in this area, points to the existence of an eruptive vent in the proximity. 

The second volcanic unit is a composed andesitic to dacitic sequence, 

constituted by lava-flows and welded and partially welded ignimbrite deposits 

(mLT), up to 20 m thick, covering the Mamil Choique Formation in the Puesto 

Fuensalida area. 

The porphyritic massive andesite outcrops are not well preserved near Puesto 

Quiñenao and those observed in Puesto Fuensalida do not display lithological 

variations. 

The pyroclastic event (massive lapilli-tuff, and eutaxitic lapilli-tuff of dacitic 

composition) presents inverse grading of the lithic fragments and normal 
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grading of juvenile fragments. These characteristics allow the consideration of 

the existence of a waxing period in the pyroclastic density current, generated by 

the presence of a highly unsteady (short lived) phenomenon. 

A highly unsteady pyroclastic density current can be formed by the collapse of a 

lava dome or lateral decompression jets. Emplacement of lava domes and 

subvolcanic bodies could create the pressure increase in the magmatic 

chamber (Cas and Wright, 1987). The second volcanic unit concluded with the 

emission of dacitic lava-flows that indicate depressurization of the magmatic 

system. 

The third volcanic unit is initiated with good-sorting, parallel bedded tuff 

lithofacies, with minor cross-stratification. This feature indicates a traction-

dominated flow, where the finest grained clasts were transported by turbulent 

fluids. 

Pyroclastic deposits with this characteristic are generally reported as ground-

surge currents and are usually located at the base of the ignimbrite deposits. 

The last are represented by massive lapilli-tuffs, which are the most common 

ignimbrite lithofacies in the literature (Sparks, 1976; Branney and Kokelaar, 

1997). 

Due to the above described characteristics, it is considered that they were 

derived from plinian eruptive columns sustained over a considerable time. Their 

collapse generated low-welded ignimbrites, interpreted as a compound-cooling 

unit. The massive tuff-breccias are generally massive monomictic deposits that 

represent block-and-ash flow associated with the collapse and avalanche of 

lavas and/or lava domes. The block-and-ash-flow deposits are highly variable in 

thickness and present very low continuity along the depocenter occurring as 
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terraces and ledges. 

The intensity of the volcanic activity increases progressively with the deposition 

of massive lithic breccias. This lithofacies outcrops in the Cañadón Mencué 

area and is interpreted as a coarse and proximal facies of ignimbrite deposits 

generated by the collapse of plinian columns. 

The small rounded bodies, 20 to 50 m in diameter, formed by vertical flow 

banded rhyolites, are interpreted as representing the coherent lava-dome 

facies, whereas the elongated-narrow levels were interpreted as rhyolite lava-

flows. The lava-domes and lava-flows that are related to the massive tuff-

breccia lithofacies possibly represent the end of the volcanic activity. 

The last igneous activity was recorded by rhyolitic dikes that exhibit a 

circumferential pattern in the Limay River area and a more complex pattern in 

the Puesto Quiñenao area. 

 

7.2. Geochronology of the Garamilla Formation and its relationship with 

equivalent units of the Neuquén Basin 

In order to establish the correlation between the analyzed unit and those 

equivalents of the Neuquén Basin, we compare radiometric dating, as well as 

the geological characteristics shared by the units. In the southern sector of the 

Neuquén Basin, in the Piedra del Aguila area, located 10 km west of the studied 

area, Ferello (1947) described the Piedra del Aguila Formation, assigning an 

Early Jurassic age due to the existence of Liassic flora. The unit was 

considered to represent the “Precuyano Cycle” of Gulisano et al. (1984). The 

age was subsequently confirmed by Spalletti et al. (2010) using U-Pb dating in 

zircon (191.7 ± 2.8 Ma). This unit is covered by the Sañicó Formation, which 
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consists of andesitic lava-flows, dacitic tuffs and, according to Galli (1969), rests 

over the Piedra del Aguila Formation. 

D’Elia et al. (2012a) describe three sections in the Sañicó Formation, starting 

with lava-flows of andesitic composition. The middle section is composed of 

pyroclastic rocks of rhyolitic to rhyodacitic compositions. It concludes with an 

upper section comprising andesitic lava-flows and epiclastic sedimentary rocks 

with interbedded limestones. As indicated above, the volcanic succession of the 

Garamilla Formation can be compared with those of the Sañicó Formation. The 

age established for the Garamilla Formation in the Quiñenao area is 187 ± 2.3 

Ma (U-Pb, zircon), making a straight correlation between both units possible. 

Bermúdez et al. (2002) reported a significant sequence 2,500 m thick in the 

subsurface of the central area of the Neuquén Basin. The rocks belong to the 

Cerro Bandera depocenter, along the western sector of the Dorsal de Huincul. 

This depocenter is located 150 km northward (Fig.1) and the sequence starts 

with a lower section formed by phenoandesitic lava-flows intercalated with 

sedimentary rocks. The middle section is characterized by an intercalation of 

sedimentary rocks (siltstones and sandy siltstones) with tuffs and pyroclastic 

flows, whereas the upper section is composed of phenorhyolitic crystalloclastic 

tuffs. The age is considered to be between 216 and 244 Ma (Pángaro et al., 

2002) and therefore to represent an extensional stage (Precuyano Cycle) 

previous to the development of the marine basin. 

Schiuma and Llambías (2008) and Llambías et al. (2007) studied a volcanic 

sequence in the Anticlinal Campamento depocenter, also located in the western 

portion of the Dorsal de Huincul. They described lava-flows and block-and-ash 

deposits of andesitic, dacitic and rhyolitic compositions, as well as, ignimbrites 
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and fall-deposits rich in silica. These rocks were assigned to the Late Triassic 

(Rhaetian)-Early Jurassic (Hettangian) time from U-Pb isotope studies in 

igneous zircons (199.0 ± 1.5 Ma andesite lava-flow and 203.75 ± 0.26 Ma 

dacite breccia). 

The so called Precuyano Cycle (Gulisano et al., 1984) represents the first stage 

of extension, prior to the marine transgression in the Neuquén Basin. The 

above cited units share many stratigraphic and chemical similarities and 

represent an extensional stage that can be recognized along the central and 

southern part of the basin. This period of extension starts in the Triassic and 

can be traced into the Middle Jurassic. Therefore, the Lower Jurassic volcanism 

recognized in the central portion of the Neuquén Basin, as well as in its 

southeastern border, in the Piedra del Aguila area, can be continued into the 

western portion of the Nordpatagonian Massif, making a direct correlation 

between the volcanism of the Garamilla Formation and those of the Neuquén 

Basin, such as the Sañicó, Lapa, Sierra de Chacaico and equivalent formations. 

 

7.3 Geochemistry and tectonic settings of equivalent units of the Neuquén 

Basin and the Nordpatagonian Massif. 

As indicated above, Bermúdez et al. (2002) described rocks that can be related 

with the Precuyano Cycle of the Neuquén Basin (Gulisano et al., 1984). 

According the geochemical data (Bermúdez et al., 2002) these rocks display 

chemical composition between those of andesite and rhyolite, belonging to a 

subalkaline series. The trace and rare earth elements were plotted against 

normalized values of chondrite and N-MORB and the results are shown in 

Figure 9A and B. Figure 9A displays an envelope of the igneous rocks 
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considered to belong to the Precuyano Cycle, including those of Bermúdez et 

al. (2002). Compared with out samples from the Garamilla Formation, the 

concentration of LILE is similar, including the negative anomaly of Nb. A 

different behavior is related to the positive anomaly of Pb in our samples, which 

indicates a major contribution of sedimentary material during subduction. 

According to Schiuma and Llambías (2008) the Precuyano volcanic rocks drilled 

in the Norte de la Dorsal and Anticlinal Campamento areas are andesite and 

dacite in composition. Figure 9B shows their results plotted together with other 

Precuyano volcanic rocks, contrasted with chondrite in an extended normalized 

diagram. The design displays characteristics of subduction-related rocks, such 

as the highly positive anomalies of LILE, negative Ta and Nb and highly 

negatives Sr, P and Ti. 

D’Elia et al. (2012b) analyzed the geochemical characteristics of several 

Precuyano volcanic units, including those outcropping in the Cordillera del 

Viento, Chachil, Dorsal de Huincul and Piedra del Aguila areas. Their results 

were plotted with our samples of the Garamilla Formation in Figure 9C and D. 

Figure 9C indicates that most rocks were plotted in the volcanic arc field in the 

Y versus Nb diagram of Pearce et al. (1984). A portion of the population of the 

Marifil Group samples (Pankhurst and Rapela, 1995) plot in the intraplate field, 

possibly due to the minor influence of subduction components during their 

evolution. Figure 9D displays the REE normalized to chondrite diagram. As 

observed in the above cited figures, samples of the Garamilla Formation follow 

the trend marked by other Precuyano volcanic rocks. Our samples are located 

in an intermediate position between the Precuyano samples of D’Elia et al. 

(2012b) and those of the Marifil Complex. This behavior can be related to the 
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position of the Garamilla samples, which are located east of those of D’Elia et 

al. (2012b) and west of those of the Marifil Complex. 

As indicated by D’Elia et al. (2012b), rocks from the Cordillera del Viento, 

Chachil, Dorsal de Huincul and Piedra del Aguila areas mostly belong to the 

calc-alkaline series with trace element patterns typical of the orogenic series. 

However, the sequence shows some evolutionary and compositional 

differences (> 50% differentiated acidic terms) compared with the classic arc 

series. Also, its similarity with the rocks of the Marifil Complex allows for the 

suspicion of some differences compared with the classical subduction-related 

volcanic arcs. Therefore, our interpretation favors an intraplate setting of 

emplacement for the volcanic rocks of the Garamilla Formation related to 

extensional conditions. 

 

7.4 Structural characteristics of the Quiñenao-Fuensalida area and comparison 

with structures of a similar age 

The compilation of the attitudes of bedding in Figure 7C show that the dip 

directions of the strata in the Fuensalida area converge toward a position 

located a few kilometers north of Puesto Fuensalida. The dip angles of the 

bedding also increase toward this position. Dikes are usually considered as a 

result of near-field or local stress. The incomplete development of a 

circumferential dikes pattern in this area could be related to an incomplete 

formation of a ring-fault system. 

Two possibilities were invoked by Acocella and Neri (2009) in order to explain 

the local stress in the volcanic structure. One is considering the existence of a 

pressurized shallow magma reservoir, and the other is the load of a volcanic 
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edifice. No evidences of a shallow magmatic reservoir or related rocks were 

detected during field recognition, but the second possibility cannot be excluded. 

As displayed in Figure 2, the outcrops in the Fuensalida area show an 

ellipsoidal shape, consistent with the attitude of the volcanic bedding and dike 

disposition. Therefore, the existence of a volcanic edifice in the Fuensalida area 

cannot be ruled out. In the Quiñenao area, dikes also point to a curved 

structure, but the data is insufficient to clearly define the design, although, a few 

kilometers west, the outcrops of the microgranular massive rhyolite point to the 

existence of a shallow magmatic acidic reservoir associated with the volcanic 

system. 

As indicated by Figures 2 and 7, the volcanic system in the Fuensalida-

Quiñenao area is located in a near parallelogram structure. Its northern and 

southern borders are N 70–75° fault systems called, respectively, the Quili 

Mahuida and Curru Mahuida lineaments. A major, curvilinear N290–300° 

structure (the Cañadón Mencué) represents a hinge zone that divides the 

Quiñenao-Fuensalida structure. North of the hinge zone several N290–300° 

normal and oblique slip faults produce NE tilting of the blocks, which point to a 

NE–SW extension (N30°–50°). The extensional regime and the fault-driven 

subsidence north of the hinge zone produced enough room to accommodate 

the volcanic sequences recognized in the Quiñenao area. 

A trapdoor structure could be indicated for the area located south of the hinge 

zone (Cole et al., 2005), facilitated by the existence of an incomplete ring-fault 

system. The result could due to asymmetrical block subsidence (Fig. 9E). 

Our preliminary interpretation of the Quili Mahuida and Curru Mahuida 

lineaments is that the deformation was produced by a dextral transtensional 
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system developed on Upper Paleozoic rocks. This deformational event can be 

assigned to a regional stress field also recognized in the southern part of the 

Neuquén Basin. There, several NE–SW Precuyano depocenters are subparallel 

to the Limay River (Sañicó, Piedra del Aguila, China Muerta, El Sauce, Loma 

Pedregosa, Borde del Limay, and Rio Limay, Vergani et al., 1995), and were 

produced by extensional faults during the Late Triassic-Early Jurassic episode 

of rifting. The volcanic system recognized in both areas north and south of the 

hinge zone, was deposited in the open spaces generated during fault 

movement. 

This structure strongly remembers those half-grabens located in the eastern 

part of the Neuquén Basin (Vergani et al., 1995; Franzese and Spalletti, 2001; 

Franzese et al., 2006; Cristallini et al., 2009).Accordingly, the area located north 

of the hinge zone can be considered as a half-graben depocenter, similar to 

those of the Neuquén Basin and named here as the Quiñenao depocenter. 

In contrast, south of the hinge zone the deformation is dominated by a near 

local stress, possibly generated by the weight of the volcanic edifice, while 

regional deformation is masked by this local stress field. 

The Quili Mahuida and Curru Mahuida lineaments have a similar trend that 

others recognized in the western Nordpatagonian Massif. The Patú Co and El 

Loro lineaments (Bjerg et al., 1997), located east of El Cuy, display a similar 

design with strikes between N60° and N85°. These lineaments also affected 

Upper Paleozoic granitic rocks. 

The trends of the Quili Mahuida and Curru Mahuida lineaments are also similar 

to those of the “A” lineament described by Gregori et al. (2008), which extends 

between Salitral Bajo de Menucos and Chimpay. These lineaments are 
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believed to be related to the Gondwanide Orogeny of northern Patagonia 

(Gregori et al., 2008), but more information is required in order to constrain the 

time and cinematic of the deformational event recorded in the Quiñenao-

Fuensalida area. 

 

8 Conclusions 

The facial, stratigraphic, petrographic and geochemical analyses of the volcanic 

rocks of the Garamilla Formation in the Puestos Fuensalida and Quiñenao 

areas reveal a complex volcanic sequence formed by three volcanic units. The 

geochemical studies have shown an evolution from normal calc-alkaline to high-

K calc-alkaline series, the preponderance of the peraluminous rocks over 

metaluminous, and an increase in high-field element negative anomalies along 

the volcanic activity development. 

These elements point to a progressive change from an initial subduction-related 

volcanism to one of intraplate-related volcanism. 

Radiometric U-Pb dating has demonstrated that the Garamilla Formation in the 

Fuensalida and Quiñenao area is of Early Jurassic age. This volcanic activity is 

temporally and geochemically equivalent to similar volcanic units located in half-

grabens in several areas of the Neuquén Basin and the eastern area of the 

Nordpatagonian Massif. The Fuensalida and Quiñenao areas show two different 

structural designs divided by a hinge zone. The northern zone was interpreted 

as a transtensional half-graben, whereas the southern exhibits a trapdoor 

structure. The trends of lineaments that bound the volcanic system in the 

Fuensalida-Quiñenao area (Quili Mahuida and Curru Mahuida lineaments) were 

also recognized in western Nordpatagonian Massif, which were assigned to the 
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Gondwanide Orogeny. 
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FIGURE CAPTIONS 

Figure 1: Geological sketch of northern Patagonia showing the distribution of 

principal outcrops of the Jurassic volcaniclastic units, as well as the Jurassic-

Cretaceous Colorado and Neuquén Basins that border the Nordpatagonian 

Massif. The Huincul (according to Orchuela et al, 1984, Kostadinoff et al., 2005 

and Gregori et al., 2008) and Gastre fault zones, also considered as boundaries 
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of the Nordpatagonian Massif, are shown. The older volcaniclastic units are the 

Triassic Los Menucos Formation and Late Triassic-Early Jurassic Precuyano 

deposits. Jurassic magmatism is represented by the Marifil, Garamilla and 

Taquetrén Formation. The Jurassic Subcordilleran Batholith, located west of the 

Nordpatagonian Massif includes arc-related intrusive rocks. Location of Figure 2 

is also displayed. 

 

Figure 2: Geological map of the Quiñenao-Fuensalida area. The distribution of 

the three volcanic units of Garamilla Formation is shown. The studied area is 

located between the Cañadones Quili Mahuida and Currú Mahuida. In the 

central part, a Quaternary cover precludes establishing the architecture of the 

volcanic rocks. 

 

Figure 3: A) Columnar joints in lava-like ignimbrites north of Puesto Quiñenao. 

Hammer in the lower margin of the picture as scale. B) “Granophyric texture” 

(McArthur et al., 1998) in lava-like ignimbrites showing equigranular, anhedral 

crystals of quartz and K-feldspar. C) Typical outcrop of porphyritic massive 

rhyolite located 1 km west of Puesto Martinez. D) Porphyritic texture showing 

euhedral K-feldspar, plagioclase and quartz phenocrysts in a sericitic altered 

fine-grained groundmass. E) Microgranular massive rhyolite outcrop located 2 

km west of Puesto Martinez. Most borders of this body seems to by nearly 

vertical. F) Micrographic texture in euhedral to subhedral quartz and K-feldspar 

crystals. 

 

Figure 4: A) Outcrop near Puesto Fuensalida showing the porphyritic massive 
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dacite of the second volcanic unit covered by massive lapilli-tuffs of the third 

unit. B) Euhedral to subhedral phenocrysts of zoned plagioclase embedded in a 

fine-grained groundmass. C) Massive lapilli-tuffs of dacitic composition showing 

eutaxitic texture. Outcrop located southwest of Puesto Quiñenao. D) Lithic 

fragment of migmatite embedded in a glassy groundmass. E) Typical outcrops 

of the third volcanic units west of Puesto Quiñenao. Massive lapilli-tuff 

displaying a lobular morphology is partially cover by massive tuff-breccia and 

porphyritic massive and flow banding rhyolites. 

 

Figure 5: A) Typical outcrop of parallel bedded tuff near Puesto Quiñenao, 

located in the base of a pyroclastic succession of the third volcanic unit. B) 

Microphotograph of aligned crystal of quartz K-feldspar in a glassy groundmass. 

C) Ignimbritic lobe 30 m thick 2 km north of Puesto Fuensalida. D) Small lithic 

and juvenile fragments softy deformed in a fine-grained groundmass 2 km north 

of Puesto Fuensalida. E) Representative outcrop of the Massive tuff-breccias 

displaying a chaotic texture composed of angular fragments of rhyolitic lava-

flow. Hammer as a scale. F) Massive lithic breccia outcropping 1 km northeast 

of Puesto Martinez showing large fragments of massive lapilli-tuffs and granitic 

rocks. G) Nearly vertical flow banding in a subrounded rhyolitic body, north of 

Puesto Fuensalida. 

 

Figure 6: A) Peccerillo and Taylor’s (1976) diagram displaying a normal to a 

high-K calc-alkaline trend typical of continental magmatic arcs with a 

predominance of acidic composition. B) Le Bas et al.’s (1986) diagram showing 

rhyolitic to andesitic composition for the volcanic sequence. C) Shand’s (1951) 
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diagram displaying a metaluminous character for the second volcanic unit and 

dominantly peraluminous for the other two. D) Winchester and Floyd’s (1977) 

SiO2 vs. Zr/TiO2 diagram indicates that most samples are of rhyolitic and dacitic 

composition. E) Normalized to chondrite (Thompson, 1982) expanded diagram 

displaying negative anomalies of Nb and Ta, indicative of subduction-related 

fluids during evolution of the volcanic rocks. F) Chondrite normalized REE 

diagram (Sun and McDonough, 1989) of samples of Garamilla Formation, 

showing small negative Eu anomalies indicative of plagioclase fractionation. 

Flat HREE illustrate that garnet was not involved during melting of the parental 

magma. G) Rb vs Y + Nb diagram (Pearce et al., 1984) indicating that all 

samples plot in the field of magmatic arc-related rocks. H) The same result was 

obtained in the Nb vs Y diagram (Pearce et al., 1984). 

 

Figure 7: A) Cathodoluminescence image of typical zircons of the Garamilla 

Formation. They are medium grained (80–200 μm diameter), with a euhedral 

morphology preserving faces and interfacial edges. Concordant ages are 

displayed by 24 grains. A weighted mean 206Pb/238U age of 187 ± 2.3 Ma was 

obtained. B) Probabilistic plot of 206Pb/238U ages displaying the “best age” for 

Garamilla Formation. C) Satellite imagery of the studied area displaying 

bedding attitude results. D) Satellite imagery of the studied area displaying dike 

attitude results. E) This picture shows the area located north of Puesto 

Fuensalida where a sequence of parallel bedded tuffs and massive lapilli-tuffs 

are dipping NW. F) Outcrops located 3 km north of Puesto Fuensalida 

displaying same lithofacies as E) dipping SE. G) Funnel-type design in massive 

lapilli-tuff a few kilometers NNW of Puesto Fuensalida. 
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Figure 8: Composite profile for the Garamilla Formation as documented by 

several minor profiles measured in the Fuensalida-Quiñenao area. The first 

volcanic unit, mainly outcropping in the Quiñenao area is composed of acidic 

facies. The second unit includes intermediate to mild acidic pyroclastic and 

lava-flow facies, with minor thickness. The last is 400 m thick and is 

represented by an acidic composition that includes tuffs, lapillis, breccias and 

lava-flows. 

 

Figure 9: A) Normalized to NMORB (Sun and McDonough, 1989) diagram of 

the Precuyano Cycle volcanic rocks, compared with Garamilla Formation 

samples. All display a significant negative Nb anomaly. Garamilla Formation 

samples show a positive Pb anomaly. B) Chondrite normalized expanded 

diagram (Sun and McDonough, 1989) of Precuyano deposits which are strongly 

similar to samples of Garamilla Formation. C) Y vs. Nb diagram (Pearce et al., 

1984) showing that all samples from Precuyano deposits and Garamilla 

Formation plot in the volcanic arc granite field. Several samples of Marifil 

Formation plot in the within-plate field of granitic rocks. D) Normalized to 

chondrite REE diagram shows a very similar design for Precuyano deposits of 

the Neuquén basin, and the Marifil and Garamilla formations of the 

Nordpatagonian Massif. E) Geological cross section for the Fuensalida-

Quiñenao area during eruption of the Garamilla Formation. The half-graben 

domain of the Quiñenao area is separated from the trapdoor domain of the 

Fuensalida area by the “hinge” zone along the Cañadón Mencué 
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Table 1: Chemical composition of the analyzed samples. (All samples were collected in the area of Puesto Quiñenao) 

 

Sample Q6 Q7 Q12 Q16 Q20 Q22 Q24 Q25 Q26 Q27 Q8 Q4 Q2 Q19 Q21 

volcanic unit 2 1 3 2 3 2 2 2 1 1 1 3 3 3 3 

SiO2 67.7 78.57 76.19 61.46 80.43 65.95 65.32 60.95 75.22 75.08 75.71 73.71 76.03 76.88 70.11 

Al2O3 15.44 11.55 12.45 14.77 11.35 15.4 15.37 15.75 12.65 12.44 12.62 13.91 11.69 11.44 14.07 

FeO 5.06 1.42 1.38 5.05 1.17 4.82 5.03 7.60 1.48 1.92 2.16 2.01 1.78 1.40 4.55 

Fe2O3(T) 4.55 1.28 1.24 4.54 1.05 4.34 4.53 6.84 1.33 1.73 1.94 1.81 1.60 1.26 4.09 

MnO 0.05 0.02 0.05 0.16 0.02 0.10 0.09 0.09 0.06 0.06 0.04 0.06 0.02 0.02 0.02 

MgO 0.50 0.10 0.11 0.97 0.10 1.37 1.61 2.33 0.14 0.15 0.16 0.19 0.14 0.10 0.59 

CaO 1.55 0.35 0.46 7.31 0.18 2.63 2.34 5.02 0.29 0.69 0.47 1.00 0.26 0.43 0.94 

Na2O 5.53 3.70 2.64 3.45 2.68 3.72 4.10 3.77 3.01 3.52 3.87 3.20 3.32 2.83 4.84 

K2O 2.40 3.50 4.25 1.88 3.26 3.57 3.10 2.14 4.62 4.38 4.29 3.97 3.86 4.06 1.78 

TiO2 0.51 0.11 0.08 0.49 0.10 0.68 0.66 0.92 0.08 0.12 0.12 0.14 0.13 0.14 0.49 

P2O5 0.13 0.02 0.02 0.10 0.02 0.20 0.19 0.28 0.03 0.05 0.02 0.03 0.03 0.02 0.12 

LOI 1.31 0.25 1.33 4.04 1.00 2.18 1.48 1.21 0.81 0.91 0.89 1.51 1.49 1.31 1.62 

Total 99.68 99.45 98.82 99.18 100.20 100.10 98.79 99.29 98.23 99.14 100.10 99.53 98.57 98.50 98.68 

                Sc 10.00 3.00 2.00 10.00 3.00 12.00 12.00 19.00 3.00 4.00 3.00 3.00 3.00 2.00 10.00 

V 50 7 4 52 4 70 83 144 6 3 5 14 10 6 74 

Ba 709 745 1190 515 947 959 1042 824 572 892 1000 963 1222 1046 381 

Sr 355 55 47 215 73 350 305 429 79 50 81 104 87 101 368 

Y 15 19 18 30 14 27 30 30 25 30 25 17 13 16 15 

Zr 137 81 67 254 81 224 262 211 64 112 106 103 96 120 145 

Cr 10 10 10 10 10 10 10 10 10 10 19 18 17 19 20 

Co 7 1 1 1 1 6 9 12 1 1 1 1 1 1 5 

Ni 18 18 18 18 18 18 18 18 18 18 17 20 17 18 17 

Ga 14 13 13 27 13 18 17 19 14 15 17 21 10 12 14 

Rb 83 158 200 75 152 132 110 77 222 192 154 157 125 168 90 

Nb 8 9 8 9 10 10 9 8 9 11 10 8 5 9 8 

Cs 11.70 2.90 6.00 2.80 3.70 12.30 2.80 13.30 6.70 4.20 2.80 12.10 9.90 4.80 6.80 

Table 1
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La 27.10 27.60 28.50 36.70 19.30 34.50 31.20 26.90 15.40 31.90 30.60 48.20 38.40 32.00 24.30 

Ce 50.00 52.20 51.80 66.80 36.40 66.60 60.60 53.70 32.20 63.70 64.00 80.60 62.40 49.50 46.50 

Pr 6.24 6.29 6.27 8.86 4.37 8.56 7.91 7.23 4.08 8.11 7.55 9.20 7.84 6.71 5.61 

Nd 21.80 20.90 20.80 32.80 14.50 32.00 29.00 28.40 14.80 28.60 27.20 30.20 25.70 22.00 19.80 

Sm 4.20 4.00 4.00 6.70 2.80 6.50 5.90 6.10 3.70 6.00 5.60 5.20 4.20 3.80 3.90 

Eu 0.96 0.62 0.61 1.62 0.44 1.49 1.33 1.52 0.41 0.73 0.95 0.89 0.72 0.64 0.80 

Gd 3.40 3.20 3.10 5.90 2.10 5.60 5.30 5.60 3.50 5.10 4.70 3.60 2.90 2.70 3.20 

Tb 0.50 0.60 0.50 1.00 0.40 0.90 0.90 0.90 0.60 0.90 0.80 0.50 0.40 0.40 0.50 

Dy 2.90 3.40 3.20 5.50 2.50 5.10 5.10 5.40 4.10 5.40 4.60 3.10 2.40 2.60 2.60 

Ho 0.50 0.70 0.60 1.10 0.50 1.00 1.00 1.10 0.80 1.10 0.90 0.60 0.50 0.50 0.50 

Er 1.60 2.00 1.90 3.20 1.70 2.90 3.00 3.20 2.60 3.30 2.70 1.70 1.30 1.60 1.50 

Tm 0.23 0.33 0.31 0.50 0.29 0.45 0.47 0.49 0.44 0.50 0.41 0.25 0.21 0.26 0.22 

Yb 1.50 2.30 2.20 3.30 2.10 3.00 3.10 3.20 3.10 3.50 2.80 1.70 1.50 1.90 1.50 

Lu 0.25 0.37 0.34 0.51 0.34 0.47 0.49 0.49 0.49 0.55 0.47 0.29 0.24 0.32 0.25 

Hf 4.10 3.00 2.60 7.10 3.00 6.40 7.00 5.90 2.90 4.20 3.80 3.10 2.70 3.30 3.70 

Ta 0.80 0.80 0.80 0.70 0.80 0.70 0.60 0.50 1.30 1.00 1.00 0.80 0.70 0.90 0.80 

Pb 19.00 33.00 14.00 25.00 14.00 15.00 14.00 8.00 25.00 23.00 20.00 25.00 23.00 17.00 25.00 

Th 10.60 11.00 10.20 9.90 11.60 10.80 9.90 7.20 16.80 13.30 15.00 17.90 15.80 13.30 10.50 

U 2.70 2.80 2.10 2.50 3.10 2.80 2.60 2.00 3.60 3.20 3.00 2.40 2.50 2.80 3.00 
 
 Analyst: ACTLABS 
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Table 2: U-Pb geochronological analyzes. 
 

Sample Q16 
 
 

Isotope ratios Apparent ages (Ma) 
 

Analysis U (ppm) 
206Pb/
204Pb U/Th 

206Pb*/
207Pb* ± (%) 

207Pb*
/235U* ± (%) 

206Pb*
/238U ± (%) 

Error  
corr 

206Pb*
/238U* 

± 
(Ma) 

207Pb*
/235U ± (Ma) 

206Pb*/
207Pb* ± (Ma) 

Best age 
(Ma)  ± (Ma) 

 Q16 - 27R 246 22270 1.7 20.7803 11.1 0.1864 12.1 0.0281 4.9 0.40 178.6 8.5 173.5 19.3 105.3 262.5 178.6 8.5 

 Q16 - 26R 239 21176 2.8 21.2097 9.9 0.1867 10.4 0.0287 3.0 0.29 182.5 5.5 173.8 16.5 56.7 236.7 182.5 5.5 

 Q16 - 18R 655 25050 3.1 20.8056 4.7 0.1905 5.7 0.0287 3.2 0.57 182.7 5.8 177.0 9.3 102.4 111.0 182.7 5.8 

 Q16 - 21R 579 29289 2.9 19.8101 5.1 0.2005 5.9 0.0288 2.9 0.49 183.1 5.2 185.6 10.0 217.1 118.6 183.1 5.2 

 Q16 - 20 109 5464 1.3 17.2249 24.8 0.2312 26.4 0.0289 8.9 0.34 183.5 16.2 211.2 50.3 531.9 551.0 183.5 16.2 

 Q16 - 7R 409 46166 2.7 20.5807 9.9 0.1948 10.4 0.0291 3.3 0.31 184.8 6.0 180.8 17.3 128.1 233.7 184.8 6.0 

 Q16 - 3R 506 28733 3.7 19.9360 5.9 0.2012 7.0 0.0291 3.8 0.54 184.8 6.9 186.1 12.0 202.4 137.5 184.8 6.9 

 Q16 - 22C 487 13930 1.6 19.4779 5.2 0.2061 6.9 0.0291 4.5 0.65 185.0 8.2 190.3 12.0 256.1 120.4 185.0 8.2 

 Q16 - 9R 439 31772 2.8 20.2320 7.8 0.1987 8.0 0.0292 1.7 0.22 185.2 3.2 184.0 13.4 168.1 181.6 185.2 3.2 

 Q16 - 19R 601 25234 2.1 19.9751 2.8 0.2014 3.4 0.0292 2.0 0.58 185.4 3.6 186.3 5.8 197.9 64.9 185.4 3.6 

 Q16 - 14R 319 7115 2.4 20.1669 11.2 0.2003 11.6 0.0293 2.9 0.25 186.1 5.3 185.3 19.6 175.6 261.6 186.1 5.3 

 Q16 - 1R 276 12207 3.4 19.5216 9.3 0.2069 9.8 0.0293 3.1 0.31 186.1 5.6 191.0 17.1 251.0 215.0 186.1 5.6 

 Q16 - 16R 495 15785 2.4 18.3763 9.0 0.2208 9.3 0.0294 2.3 0.25 187.0 4.2 202.6 17.0 388.4 201.9 187.0 4.2 

 Q16 - 13R 345 13187 2.3 20.2678 8.9 0.2007 10.2 0.0295 4.9 0.48 187.4 9.0 185.7 17.2 164.0 208.5 187.4 9.0 

 Q16 - 9C 386 3126 2.7 17.8425 15.9 0.2290 17.7 0.0296 7.6 0.43 188.3 14.2 209.4 33.5 454.2 355.7 188.3 14.2 

 Q16 - 15C 200 2738 1.8 17.6857 12.3 0.2316 13.5 0.0297 5.6 0.41 188.7 10.3 211.5 25.7 473.7 272.1 188.7 10.3 

 Q16 - 17C 579 12910 4.1 18.3363 10.9 0.2236 11.2 0.0297 2.3 0.21 188.9 4.3 204.9 20.7 393.3 245.9 188.9 4.3 

 Q16 - 24R 452 14277 3.1 20.9433 5.1 0.1970 6.2 0.0299 3.5 0.57 190.1 6.6 182.6 10.4 86.8 121.0 190.1 6.6 

 Q16 - 10R 384 5206 1.5 19.7811 9.7 0.2088 9.9 0.0300 2.1 0.21 190.2 3.9 192.5 17.3 220.5 223.8 190.2 3.9 

 Q16 - 22R 264 9448 2.3 21.3072 13.3 0.1951 13.7 0.0302 3.0 0.22 191.5 5.7 181.0 22.7 45.8 319.7 191.5 5.7 

 Q16 - 30 395 17919 1.5 21.1989 10.5 0.1973 10.9 0.0303 3.2 0.29 192.7 6.1 182.9 18.3 57.9 250.1 192.7 6.1 

 Q16 - 12R 232 11000 2.7 18.9086 13.7 0.2216 14.8 0.0304 5.6 0.38 193.0 10.6 203.3 27.2 323.9 311.5 193.0 10.6 

 Q16 - 4R 612 45876 2.0 20.2899 3.8 0.2086 6.9 0.0307 5.8 0.84 194.9 11.1 192.4 12.1 161.4 88.6 194.9 11.1 

 Q16 - 25C 629 5569 3.6 20.4463 6.0 0.2080 6.8 0.0308 3.2 0.47 195.8 6.2 191.8 11.8 143.4 140.0 195.8 6.2 

Table 2




