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In thermal equilibrium, the fluctuation-dissipation theorem relates the linear response and correlation functions
in a model and observable independent fashion. Out of equilibrium, these relations still hold if the equilibrium
temperature is replaced by an observable and frequency-dependent parameter (effective temperature). When
the system achieves a long-time thermal state all of these effective temperatures should be equal and constant.
Following this approach we examine the long-times regime after a quantum quench in a system with bipartite
entanglement in which the asymptotic values of the observable are compatible with the ones obtained in a
Gibbs ensemble. We observe that when the initial entanglement is large, and for a large range of (intermediate)
frequencies, the effective temperatures corresponding to the analyzed local and nonlocal operators approach an
approximate constant value equal to the temperature that governs the decay of correlations. Still, the residual
frequency dependence in the effective temperature, and the differences observed among observables, discards

strict thermalization.
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I. INTRODUCTION

A series of experiments with ultracold atoms carried out
in the last decade [1-7] exhibited absence of dissipation in
the many-particle system and therefore essentially unitary
time evolution on long-time scales. This motivated a great
deal of activity involving the study of the dynamics of
interacting quantum systems that are driven out of equilibrium
by preparing them in an initial state that is not in the eigenbasis
of the Hamiltonian. Several interesting problems arise in these
systems such as the thermalization mechanisms in integrable
and nonintegrable models (see Refs. [§-10], and references
therein) and more generally the emergence of thermodynamics
in isolated systems.

Much of the theoretical effort has been devised to inves-
tigate exactly solvable models and integrable systems, which
are special since the large number of integrals of motion that
constrain the nonequilibrium dynamics are believed to pre-
clude the relaxation to thermal equilibrium. Instead, in many
cases the long-times steady state is captured by a statistical
description based on a generalized Gibbs ensemble (GGE) [11]
which results from the maximization of the entropy subjected
to the constraints imposed by the conserved quantities. In such
a description a different temperature is associated with each
conserved quantity. There are cases, however, where the GGE
fails to explain the system’s asymptotic steady state [12—14].
Nevertheless, it is unclear whether the issues with the GGE’s
description are a consequence of the failure of the generalized
eigenstate thermalization hypothesis or of the lack of a proper
set of conservation laws in the GGE’s construction [15,16].

Interestingly, it was shown in Refs. [17,18] that certain
kinds of initial states can lead to asymptotic values of the
observables whose GGE description is essentially indistin-
guishable from the one computed with a standard thermal
Gibbs ensemble. This effect turns out to be generic for
integrable models that can be mapped onto quadratic, bosonic,
or fermionic models and initial states for which two sets of
modes are strongly entangled [19]. However, the GGE cannot

1098-0121/2015/91(2)/024301(9)

024301-1

PACS number(s): 02.30.1k, 73.43.Nq, 05.30.Fk, 05.70.Ln

reproduce the behavior of all observables [20-22], and in
particular it fails to capture energy fluctuations. Therefore, the
effective temperature that emerges from the standard Gibbs
distribution description characterizes the asymptotic thermal
correlations and constitute a measure of the entanglement
between the eigenmodes in the initial state, but does not have
the usual thermodynamic meaning.

One important relation in equilibrium statistical mechanics,
both quantum and classical, is the fluctuation-dissipation
theorem (FDT), that relates linear response and correlation
functions in a model and observable-independent fashion.
Even though the FDT is strictly valid for systems in thermo-
dynamic equilibrium, in many out-of-equilibrium situations,
the generalized fluctuation-dissipation relations (FDRs) turn
out to be more relevant for the analysis of thermalization
issues than the functional decay of observables [23]. They
were shown to hold out of equilibrium after relaxation, in both
nonintegrable [24,25] and integrable [24] systems. However,
in the latter case only a basic form of them hold, implying that
the way in which deviations from equilibrium states originated
in external perturbations and random fluctuations dissipate in
time are related, but a detailed balancing relation between the
probabilities of energy absorption and release involving only
the temperature of the system breaks down. Still, it is possible
to define an effective temperature from the FDRs [26] in the
context of quantum quenches as was done for example in
integrable models such as the Luttinger model [27,28] and the
transverse field Ising chain [29,30]. The FDRs are analogous to
the FDT, but the effective temperatures defined in them depend
on the momentum and frequency being considered and, more
important, change according to the observable under study.

In this work we analyze how these ideas apply in the
context of a quantum quench for which two sets of modes
are strongly entangled in the initial state and that as a
consequence exhibit signs of thermalization in the decay of
their correlations. We compute dynamic correlation functions
of local and nonlocal operators in a model that is describable
in terms of free fermions, from which we obtain effective
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temperatures by employing the FDRs. We show that all the
effective temperatures obtained for local operators have a well
defined limit (at least in a certain range of frequencies) when
the initial entanglement is strong, that is given by the effective
temperature of the system after relaxation. On the other
hand, effective temperatures extracted from correlatons of
nonlocal operators exhibit a similar behavior, but its frequency
dependence at large values of the initial entanglement show
small deviations from that limit.

The rest of this paper is organized as follows: In Sec. II
we present the model (a one-dimensional hard-core boson in
presence of a superlattice potential) and the known results
in the generalized Gibbs ensemble. In Sec. III we study the
dynamic two-time correlation functions of Fermi, density,
and nonlocal operators. In Sec. IV we introduce the concept
of fluctuation-dissipation relations and compute effective
temperatures for the operators analyzed in the previous section.
In Sec. V we present our conclusions and discuss some
implications of our work.

II. MODEL

Let us consider a model that describes a system of
hard-core bosons in one dimension that initially move in
the presence of a superlattice potential. After performing
a Jordan-Wigner transformation, this model maps onto the
following Hamiltonian:

L L
S S TRRS IS 5 SN AT
i J

written in terms of noninteracting spinless fermions creation
fj and destruction f jT operators at site j (j = 1,...,L, for a
lattice of L sites). Periodic boundary conditions (BCs) in the
bosonic model translate into either periodic or antiperiodic
BCs in the corresponding fermionic model depending on
whether the number of bosons (fermions) in the system N
is odd or even, while open BCs map into open boundary
conditions. The system is driven out of equilibrium by
preparing it in an initial state in contact with a thermal
reservoir at a temperature 7, i.e., it is described by a density
matrix py = Z'ef/T (such that Tr py = 1). For ¢ > 0, the
superlattice potential is switched off and the system evolves
unitarily with a Hamiltonian H obtained from Hj by setting
A =0.

Let us first recall the results of Ref. [19] and show that
correlation functions acquire a thermal form for long times.
After Fourier transforming, Hy and H become

Hy=H+AY (flnfo+ fi feon) @
k
and
H =" f{ fi = fn frn), 3)
k
where wp = —2cosk and —m/2 < k < /2. The existence

of the coupling A in Hy implies that in the initial state
there are correlations (i.e., bipartite entanglement) between the

eigenmodes at k and k + 7, i.e., (f,jﬂ Jfx) # 0. A Bogoliubov
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rotation finally renders Hp diagonal with dispersion Ej =
Y a),% + A2,

Dephasing makes static correlations at long times to be
described by a GGE density matrix that is obtained using the
maximum entropy principle taking into account that the system
dynamics is constrained by the existence of the set of integrals
of motion given by [; = f,j frand iy = f,jﬂ Jirn (with k
restricted to the first Brioulin zone). The GGE density matrix
thus obtained reads

1
PGGE =
ZGGE

exp!—Zmﬂfk—f&ﬂfm) L@
k

where, at T = 0 for simplicity,

Ep + wy

M =1In .
k Ek—(,z)k

®)
For A > wy, E; can be approximated by A and therefore
M = 2w/ A. Thus, the GGE density matrix, Eq. (4), reduces
to a standard Gibbs ensemble with temperature Te(f}f =A/2
and the system exhibits thermal correlations.

III. DYNAMIC CORRELATIONS

In this section we present our results for the dynamic
correlations of several quantities relevant for our model.
We study (anti)symmetrized two-time correlations of two
operators A and B in the Heisenberg representation, Ay () =
ei Ht A e—i Ht,

CB(t,10) = ([A(t + 1), B(to)]+). (©6)

where [X,Y ]+ = (XY £ Y X)/2and (- - - ) represents the trace
over the initial state po. Without loss of generality we consider
operators with zero mean value, i.e., O(t) = O(t) — (O(2)).
We focus on the (anti)symmetric correlator C.(C-) and
the retarded (or linear response) function, which can be
constructed by using Cy

RAB(1,10) = 2i0(t)CLE (1, 10). (7)

R%® vanishes for t <0 respecting causality. In thermal
equilibrium it is related to the correlation function C#£2 by
means of the fluctuation-dissipation theorem (FDT) explained
in Sec. IV. While the usual (bosonic) FDT involves R_ and
C;, a fermionic version can be constructed by using R and
C_. We examine these functions in time domain in Sec. III A,
and in the frequency domain in Sec. III B. The latter is in turn
used to compute the effective temperature for each pair of
operators.

A. Time dependence

Before starting with the specific two-time correlators calcu-
lation, we remark some aspects of the procedure followed and
state general results. We are concerned with the computation
of the two-time correlation functions

C4 () (t:10) = ([An(t + 10), A (10)]), ®)

where the subindices n,m represent the position in the lattice
and A, are generic operators. The mean value (- - -) is taken
over the ground state of the system before the quantum quench,
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i.e., the ground state of Hy: py = Vo) (¥o]. We work in the
thermodynamic limit L — oo which we impose by taking
the analytic limit or considering a system of L = 1000 lattice
sites in the case of numerical results. In the limit #y) — oo,
correlation functions reach a stationary regime, in which, as
in equilibrium, they only depend on the time difference ¢:
() ﬁ (t,ty > x0)=C i‘ (t). This regime is relevant for extracting
effective temperatures and is imposed analytically, by using
the Riemann-Lebesgue lemma, or numerically, by taking
to = 100. Within the thermodynamic limit and the stationary
regime the linear-response function Ry and correlator Cy of
all the operators studied in this paper show an independence
on specific site n and m for periodic boundary conditions; they
only depend on the site difference | =n — m, C i(mm)(t,to —
o00)=C i ;(t). In the case of open BCs, this rule does not apply,
but is nearly fulfilled by taking n and m near the center of the
lattice.

We shall study the time dependence of Cy and R for
several operators in the limits mentioned above, analyzing
their dependence with site difference /, the initial superlattice
potential strength A, and initial temperature 7.

1. Local operators

Let us start by studying the quasiparticle Fermi operator
f» correlation functions. Following the definition (6), we shall
consider

CL m Es10) = (Lfult + 10), £ (t0)1), )

where we shall employ C, to build the linear-response
(retarded) function R,. As we mentioned before, in the
thermodynamic (L — 00) and stationary (f) — oco) limits,
these functions have only dependence on 7 and the lattice site
difference [ = n — m. In these regimes, the linear-response
function R results,

Ri,l(l) = 00"t J(21), (10)

where J;(¢) represents a Bessel function of the first kind.
Interestingly, le is independent of A which may lead to the
conclusion that in the stationary regime the initial-state corre-
lations have been lost. Nevertheless, some information remains
as R/ is different for even and odd site difference, which is
a consequence of the different translational symmetries of H
and Hy. On the other hand, the antisymmetric correlator C f in
the stationary regime,

eirrleiwkt)

. /2 dk —iwpt __
Cf’l(z)=/ K ok (11)

/2 47 Jor + A2

does depend on the supperlatice potential. In Fig. 1 we plot the
real and imaginary parts of the response R and antisymmetric
correlator C_ for different values of site difference /. We
observe that both functions are real or pure imaginary for
odd [ or even [, respectively. Also, we notice the presence of
the so-called light-cone effect [31], in which the functions are
expected to be constant up to a time t, = [ /v, (I/2 in this case)
where v, is the quasiparticle (excitation) velocity. On the other
hand, the change in A reduces the amplitude of C /' Moreover,
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FIG. 1. (Color online) Correlation functions for the Fermi oper-
ators varying the site difference / with A = 1. In panels (a) and (c)
we show the real and imaginary part of C/, respectively, while in
the right panels (b) and (d) the same information is displayed for the
response function R/ .

for large A,

141
¢! (0~ S Ui (20 = I 20), (12)

while the long-time behavior is well represented by

¢!~ %I; cos(2t + ), (13)

where o = a(A), ¢; a phase that depends on the site difference
and [; =i for even / and I; = 1 in other case. The decay rate
is universal (t~!/?), clearly independent from / or A. Both R
and C in the stationary regime show the same decay rate as
the density and one-time ( fjl(t) fi(t)) correlation functions.
As we shall see, the rather simple structure of the Fermi
operator correlation functions will allow us to extract a simple
expression for the effective temperature, which coincides with
the one expected in the GGE.

At this point one wonders whether the properties observed
above are unique to the quasiparticle correlations or manifest
in other types of correlation functions. For instance, we shall
consider the case of the density-density correlator,

CLL(t.10) = ([nn(t + 10),nm(10)] ). (14)

As n;(t) is a bosonic operator, we study the usual correlation
functions R_ and C.. Figure 2 shows the A and lattice site
difference / dependence of these functions in the stationary
regime. Both functions show a ¢ ~! universal decay,

C (1) =58 + sin), (15)

RY (1) ~=" cos di (16)

for the ¢ > 1 regime, which is also shown by the out-of-
equilibrium one-time density correlation (n;(¢)n;(t)). The
light-cone effect is also present. As in the previous correlators
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FIG. 2. (Color online) Density-density two-time correlation
functions. Panels (a) and (b) show the site difference dependence for
A = 1[C! in (a), R" in (b)]. The change in A for C} (c) and R" (d)
with / = 0. In the double logarithmic scale plot (d) the dashed lines
represent a t~! decay, compatible with both correlators.

an increase in the initial superlattice potential intensity
decreases the correlation functions’ amplitude. In the large
A limit, these functions can be written in terms of Bessel
functions:

1 1
Cl (1) ~7 <J12(2t) a2 [Ji-1(2t) — Jz+1(2!)]2> . (1)

-
A

R™ (1) = 6(1) SO [J1-1Q21) = T 20)]. - (18)

2. Nonlocal operators

The last set of operators we shall consider are the hard-core

bosons creation and annihilation nonlocal operators b, and bI,L
written in terms of the local operators as

m—1 m—1
bo= [T =26 ffr Bl = £l [T =26 ). (19

Jj=1 J=1

Nonlocal two-time correlations have been already studied
in Refs. [29,30,32] for the quantum Ising model in a
transverse magnetic field. In these papers the computation
(o7 (t +19)o;, (1)) involves calculating the four-spin correla-
tion function done by means of a2L x 2L Toplitz determinant.
The two-spin correlator is then recovered by taking the
thermodynamic limit and making use of the cluster property.
For our model, the fermionic Hamiltonian [Eq. (1)] does not
contain anomalous terms and therefore we can make use
of a simpler straightforward approach. We start by defining
the Hermitian combination B; = b; + bf and considering the
two-point correlation functions C2,

CE(t,10) = ([Bu(t + 10), Bu(t0)]), (20)

from which we can calculate the response function. We observe
that only one of the two terms in Eq. (20) is needed, as C# =
Re(B,B,,) and C® =iIm(B,B,,). Using the definition, we
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obtain
(By(t) B () = (by ()b} (1)) + (b} (1)b(t))) @21

since the remaining terms vanish. The first term in Eq. (21) can
be computed by extending the approach presented in Ref. [33]
for different times (see also Ref. [34]). We can write

(W b, (1)b], (1) W) = (W ()| bre e b} (W (1)),  (22)

where bI,,(bn) can be mapped to fermions by Eq. (19) and W(¢)
is the time evolved ground state:
N N
|\I’(t/)) — l_le—th’ClT}'O) — nefin’CIeth’efin'm

v=1 v=1
N L

=T1>_ fle.i.)10). 23)
v=l j=1

where | are the operators that render Hy diagonal and ¢,(j,#")
are the time-dependent eigenfunctions of Hy. Then

m—1 N L
b wa) = fiTTa =261 flenia) o).

j=1 v=1 j=1
Then we define a L x N matrix P(t’) with elements ¢,(j,t’).
Then the action of b,T,, on |W(¢")) amounts to changing the signs
of elements P;, with j < m — 1 and the further creation of a
particle at site m implies the addition of a column to P with
elements P; yy; = &;,. Thus, we can write

' . N+1 L
LTRSS B DI N AT 24)

vz
=T1Xfentrio. (25)

v=1 i=1

where P’ is obtained by changing the required signs and
adding the new column, and Q(t') = ¢ P'(t) is again a
L x N matrix, where & is the matrix representation of the
Hamiltonian H. Hence, we can rewrite Eq. (22) as

(W by(1)b],(1) |¥) = det QT(1) Q(t) (26)
= det P/(1)e "= P! (). 27)

The second term in the correlator (21) is more involved since
we can no longer create a new column in P as the fermionic
creation and destruction operators are permuted with respect
to the ground-state operators,

N L
biOba) = [T Y ept.09u(t)x
wov=l1 j,l=1
X (O] fi- -+ fle B0 g fT10) . (28)

We circumvent this issue by employing the following property:
Callingt =¢—1t":

N
frj’efiHTﬁn — e*iH‘rfJ(_[)fm — e*iHT Z f;(eihr)jnfm

j=1
— —e_iHTfmeiHrfnTe_th+€_th(€ihT)mn.

(29)
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FIG. 3. (Color online) Nonlocal two-time correlation functions.
Panels (a) and (b) show the site difference dependence for C f and the
A dependence in R, respectively. In the insets the same information
in semilogarithmic axis along with exponential decays. The insets also
present the exponential decay constants y,.(A) and y, (A) respectively.

Then (b,t(t)bm(t/)) can be written as
(bl (Db (t)) = det P(t)e ™= P, (")
— det O™1(2,t)O"(t' 1), (30)

where P, is P, with no additional column and O}, is a L x
N + 1 matrix defined by

(e P™(t"));, for

(eiht)jn for

v=1,...,N

Ont/,t:
m(0-0) v=N+1

3D

forj =1,...,L. Wecanrecover (B,(t + ty) B,,(ty)) by adding
expressions (27) and (29) and taking ¢’ — ty and t — ¢ + fo.
Thus, for our model, this approach reduces the computation of
nonlocal correlations to the evaluation of (N + 1) x (N + 1)
matrix determinants, instead of determinants of 2L x 2L
Toplitz matrices. We compute the nonlocal correlation func-
tion using a system with 1000 lattice sites with open-boundary
conditions, half filled (N = L/2) and taking 7y = 100 as the
stationary limit. In Fig. 3 we show the results obtained for
C; [Fig. 3(a)] and linear-response function [Fig. 3(b)]. These
functions present an exponential decay whose rate depends on
the initial superlattice potential A, and is independent of the
lattice difference [shown in the insets of Figs. 3(a) and 3(b)].
The long-time behavior is well fitted by

CB (1) = e <ﬂc + %\/;"’)) )
RE (1) = e <ﬂ, + %ﬁ”’)) RENEE

i.e., damped oscillations modulated by an exponential decay
dictated by y; = y;(A).
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FIG. 4. (Color online) Initial temperature dependence of the two-
time correlators. Panels (a) and (b) show the C_ correlator for Fermi
operators with different site difference, while (c) and (d) are C, and
R_ for density operators. In both cases A =1 and / = 0. The solid
lines represent periodic boundary conditions while the dots are open
boundary conditions correlators.

3. Initial state at finite temperature

We extend our analysis to the case in which the initial
state is a thermal state with temperature 7, described by
po = exp(—Hy/T)/Z, which involves working in the grand
canonical ensemble (GCE). This raises a new problem as the
border terms fLT fr+1 are treated by imposing (anti)periodic
boundary conditions which depend on the number of particles
N in the system, and N is not fixed in the GCE. One
possible workaround could be to calculate the correlations
using open boundary conditions, but this approach complicates
the analytical results. We address this issue by keeping the sim-
plicity of analytically calculated periodic boundary conditions
correlators and checking the relevance of the border terms
comparing these results with the ones obtained by solving the
problem numerically with open-boundary conditions (shown
as dots in Fig. 4). We checked the independence of the
boundary conditions for the correlators in the zero-temperature
case far from the lattice borders.

Following the zero-temperature analysis done before, we
start by studying the Fermi operator correlators. We compute
CL,(t.10) = (Lfu(t + 10). f(t0)]) Where (---) now repre-
sents Tr[pp - - - ]. In the thermodynamic limit and stationary
regime the R correlator is the same as in the zero-temperature
case [Eq. (10)], i.e., it has neither A nor initial temperature
dependence. The differences between this result and the
one obtained numerically with open boundary conditions
are negligible. The temperature 7 and superlattice potential
A dependencies are only contained in the linear-response
function

/2
clen = [ kT (fop +aom). G
—/2
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where 7 represents the integrand in Eq. (11). In Figs. 4(a)
and 4(b) we show this function (solid lines) and the numerical
calculations (dots) varying the reservoir temperature 7. The
agreement of both calculations, periodic and open boundary,
shows that the border terms are not significant. We notice
that the limit 7 — 0 is well defined as we recover the
zero-temperature result. Varying the initial temperature has a
similar behavior in C_ as changing the supperlattice potential
strength A. Moreover, the large 7 limit as in the Fermi case
is identical to the A > 1 regime [Eq. (12)] taking A = 2T,
while the strong insulator limit is the same as in the 7 = 0
case. Furthermore, for large time difference (¢ > 1) it has the
same behavior as in zero temperature, shown in Eq. (13), with
o =a(A,T).

The analysis of density-density correlators with an initial
thermal state, shown in Figs. 4(c) and 4(d), shows similar
features as the Fermi correlators. The effect of raising T is
similar to the one produced by increasing A and the high-
temperature limits are well described by Egs. (17) and (18)
taking A = 2T. As in the Fermi case, open (dots) and periodic
boundary (lines) conditions correlators coincide, showing that
the border terms do not play an important role in the studied
correlations.

B. Frequency dependence

In this section we analyze the frequency dependence of
the correlation calculated in Sec. III A. More specifically, we
study the Fourier transform of the linear-response function
imaginary part and the (anti)symmetric correlator in the
stationary and thermodynamic limits, both of the functions
related by the fluctuation-dissipation theorem. Following the
order established in Sec. IIT A, we start by analyzing the
simpler Fermi correlations, whose linear-response function
imaginary part in the frequency space is

e Ti(w/2)
V1= w?j4’

where T,,(x) are the Chebyshev polynomials of the first kind
and degree n. The higher contribution to R, comes from
frequencies from the bands’ edge (w =~ £2), while the T,
polynomials mostly modify the center of the band as the
site difference / increases. Furthermore, the antisymmetric
correlator is

ImR/ (@) = 6(1 — w*/4) 35)

¢! [(®) = ImR/ () : (36)

w

602 + A2
which shows the same bandwidth and functional dependence
in /. The main effect of increasing the supperlatice potential
strength is to reduce the contribution of the frequencies in
the center of the band to C_. Since ImR, can be factorized
from C_, the effective temperature can be easily extracted [see
Eq. (48)]. On the other hand, when the system is in contact
with a thermal reservoir the temperature dependence appears
inc’ through a multiplicative factor,

Vo? + A?
2T

Even though it clearly modifies the response function, the main
consequence of raising the temperature of the initial reservoir

¢’ (»,T) = €’ ,(w)tanh (37)
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FIG. 5. (Color online) Density and nonlocal correlators in fre-
quency space. Panels (a) and (b) show the density symmetric
correlator and linear-response imaginary part for different A values.
Panels (c) and (d) present the same functions for nonlocal operators.
In all the cases / = 0.

is similar to the one produced by increasing A: decreasing
the contribution of the low-frequency modes in the correlation
function as T — 00. As expected from the results shown in
Sec. IITA3, the linear-response function is independent of T,
coinciding with Eq. (35).

Next, we study the frequency dependence of the density
and nonlocal correlations in the thermodynamic limit and
stationary regime, by performing a discrete Fourier transform
over the time-dependent correlators in ¢ € [0,100] with a time
interval T = 0.25. In Fig. 5 we plot these functions, only
showing the positive frequency sector as both functions have
definite parity (C, is even and ImR_ is odd). Both density
correlators [Figs. 5(a) and 5(b)] present a contribution from
frequencies between —4 < @ < 4. For small values of A the
contribution of higher frequencies to C'} is important, but as the
initial potential increases the lower frequency modes become
more relevant. In the case of ImR”, the amplitude seems to
be inversely proportional to A, decreasing the contribution
of all frequency modes for higher potential values. Finally,
the nonlocal correlators present a different panorama, as
both functions amplitude decrease as the frequency increases.
Analyzing the variation with A, we notice that the symmetric
correlator remains almost unchanged, only becomes smoother
with this change. The linear-response imaginary part presents
a peak around w ~ 1.3, which reduces its amplitude and shifts
to higher frequencies as the initial superlattice potential rises.
The frequency-dependent correlators obtained in this section
shall be employed in the calculation of effective temperature,
depicted in Sec. I'V.

IV. EFFECTIVE TEMPERATURES FROM FDRS

In this section we compute the effective temperatures from
the correlators studied in Sec. III, analyzing both zero- and
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finite-temperature initial states. Let us start by stating some
generalities of the fluctuation-dissipation theorem (FDT). For
typical observables having bosonic properties, the correlation
function C~ is used to construct the retarded function
RAB(t,15) = 2i0(t)CAB(t,t), while, in the case of Fermi op-
erators which do not commute, the retarded function is defined
employing the commutator, R4 5(z,19) = 2i0(t)C£8(t,19). The
FDT relates the functions R{” and C4” in equilibrium at
inverse temperature . In the frequency domain, where

R1B(w) = / h dte' RLE (1), (38)

o0

it takes the form
Fl1
Im R48(w) = |:tanh %] C2% (o). (39)

Out of equilibrium the FDRs hold the same form as the
FDT, but the inverse temperature B is replaced with an
effective parameter (temperature) 84p(w), which depends on
the frequency, momentum, and the observables analyzed.

Before obtaining specific results for effective temperatures
from FDRs for this model, let us state a general result valid for
quasifree systems whose static correlations relax to the GGE.
In this case dynamic correlations of local operators are also
asymptotically described by the GGE [24]. By using a spectral
decomposition in terms of eigenstates of the Hamiltonian one
can show that a basic form of the FDT holds out of equilibrium
for long times [24]:

1
- Im x 45 (w) = Sa(@) — Spa(—w). (40)

However, differently from the usual FDT for systems in
thermodynamic equilibrium, the negative S 45(w) and positive
Spa(—w) parts of the spectral function in general are not
simply related by Sga(—w) = e #°S 15(w), where B is the
inverse temperature. We will show that after relaxation from a
quantum quench itis possible to establish an analogous relation
for correlations of quasiparticle creation and destruction
operators.
Consider a Hamiltonian

general bilinear H, =

> ;i hij fi where f and f] are destruction and creation
fermionic operators and s a symmetric matrix. Hj, is
diagonalized by a canonica.l transf.ormat.ion fi = >, u v fos
H,=Y ¢ fj f» where ¢, is the dispersion relation. Consider

the correlation function for the Fermi field

Cli(t.10) = (£t + 10) f] (1)) (41)
= Y Uplje et g, £, (42)
Qv
where (...) is the initial state. Even though the correlator

(fu £y is not diagonal for initial states that are not translation
invariant, for rather standard conditions the nondiagonal
contributions decay rapidly and vanish in the thermodynamic
limit [35,36] which constitutes the way by which dephasing
takes place. In the specific model we are analyzing, the
eigenmode correlator is not diagonal in momentum space, but
the only contribution outside the diagonal is the correlation

between modes at k and k + m, (fkf,jJrn) = A/Ey. In the
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thermodynamic limit these terms yield a smooth function

of k and therefore by application of the Riemann-Lebesgue

theorem do not contribute to Eq. (42):

lim CY(t,1) = Zz/tj;ume*"s‘”[l — No(e)],  (43)
i

fy—>—+0o0

where Ny(e,) = 1/[e*®) + 1] are the mode occupations in the
initial state. From this correlator we can construct the response
and the correlation function, which in frequency space read

0

C_(@)=m Y Ui Upudw — e,)[1 —2No(e,)].  (45)
%

Therefore, both functions are related as

-1
Im R, (w) = |:tanh @} C_(o), (46)

and therefore we have a frequency-dependent effective temper-
ature 1/ Te(w) = A(w)/w. We notice that this result is generic
for initial states and quenches to quasifree models for which
the long-times regime is captured by the GGE.

Effective temperatures for local and nonlocal operators

After obtaining this general result, we wish to explore
the effective temperatures extracted from the correlators
calculated for our model shown in Sec. III. In general, these
can be written as

I RAB Fl
T4 (w) = garctanh71 {(%@?)) :| . 47
:F

For out of equilibrium systems these temperatures usually
depend on frequency and the operators studied. However, if
the system achieves a thermal state after long times, all of the
T.¢ should be equal and frequency independent, at least for a
value of 1, large enough.

Let us start with the Fermi operators correlations, whose
effective temperature TeJ;f can be calculated analytically, being

w
— . (48)
V? + A? :|

Thus, we obtain a frequency-dependent effective temperature
that is independent of the site difference, even though the
correlation functions depend on thjs difference. Nevertheless,

one can check the fidelity of Te’;f: by reducing the size of

T/ (w) = garctanh’1 |:
eff - 2

the quench by taking A — 0, Te{;f — 0 and equilibrium is
recovered. As we expected from the general result above, Te{f

coincides with the temperature calculated in the GGE (Te(g’fGE)

and therefore is Te};f ~ A/2in the A > 1 regime.

At this point the relevant question is whether these
characteristics are shared by the effective temperatures that
correspond to other observables. In Figs. 6(a) and 6(b) we show
the temperatures obtained for the autocorrelation functions
(I = 0) of density and nonlocal operators, respectively. As one
could expect, they do not share the same frequency dependence

and are different from Tejf}. However, as A increases, the
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FIG. 6. (Color online) Effective temperatures for the different
autocorrelation functions: density operators [T (w)] in (a), nonlocal
operators [T (w)] in (b), and density operators [7/k(w,T)] for an
initial thermal state in (c).

effective temperature from density correlations smooths out
and reduces its amplitude approaching the value A /2 predicted
by the GGE temperature, as is shown in the inset of Fig. 6(a).
Although in this regime the system seems to approach a
standard Gibbs ensemble with temperature 7 = A/2, the
remaining frequency dependence, as in the case of Te’;f,
discards thermalization. In the nonlocal case [Fig. 6(b)] the
effective temperature seems to approach A /2 for large values
of A. However its deviations from this value at intermediate
frequencies are larger than in the local case, and do not vanish
in the limit A — oo.

We remark that for all the operators analyzed, the value
of the effective temperatures when the initial entanglement is
large (A > 1) coincide with the one predicted in the decay
of the correlations by the GGE. Nevertheless, we stress that
the system does not reach a Gibbsian unique temperature state
even after long times, as if it did, all the calculated effective
temperatures should be equal and constant.

When the system is connected with a thermal reservoir
before the quench, the properties of the effective temperatures
are quite similar to the ones above. For the Fermi opera-
tors, the additional temperature dependence in Te’;f(a),T) is
given by an extra factor in the argument of the hyperbolic
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arctangent,

2T

w,T) = —arctan _—
e 2 Vol + A2

As Te{f(a)), it shows an independence on the site difference /.
It also presents a well defined “equilibrium” limit approaching
T as A — 0, while in the A > 1 regime follows the GGE
temperature. As expected by the results in Sec. III, the
high-temperature regime is Te{f(a),T) ~ T, but as a residual
frequency dependence remains, a thermal state is not reached
in this regime. The density-density autocorrelation function,
shown in Fig. 6(c), presents a similar panorama. Its frequency
dependence is different from the correlators above, although
as A or T rises its value approaches A /2 or T, respectively.
Comparing Figs. 6(a) and 6(c), it seems that one can reach
a state similar to a standard Gibbs state faster by increasing
the reservoir temperature than by raising A, as the inset in
Fig. 6(c) shows a smaller dispersion than the inset in Fig. 6(a).
This can be explained by the initial thermal reservoir, which
favors an incoherent evolution of the system. Nevertheless, the
persistent frequency dependence hints a nonthermal state.

V. SUMMARY

To conclude, we analyzed various dynamic correlation
functions, for local and nonlocal operators after a quantum
quench in an exactly solvable model in which the statistical
description in terms of the GGE essentially leads to the
emergence of thermal correlations. This is due to the existence
of bipartite eigenmode entanglement and a gap in the spectrum
of the Hamiltonian that describes the initial state. For these
correlations, the imposition of the FDRs in the nonequilibrium
context leads to the appearance of an effective tempera-
ture depending on frequency (and eventually momentum
or position) that is different for each operator considered.
Nevertheless, in the limit of strong initial entanglement, the
local operators effective temperatures approach a well defined
value (in a certain frequency region), in agreement with the
emergence of thermal behavior observed in the decay of
observables in the GGE. However, the remaining frequency
dependence of these temperatures and the fact that the nonlocal
temperature does not follow this limit discards thermalization
to a standard Gibbs state in a strict sense. Finally, of particular
interest is the case of the frequency-dependent effective
temperature obtained from the application of the FDRs to the
quasiparticle correlation function, evaluated at the dispersion
relation of the Hamiltonian that performs the evolution. This
effective temperature is directly related to the GGE Lagrange
multipliers.
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