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a b s t r a c t

Weshow that the kinetic-energy partitionmethod (KEP) is a partic-
ular example of the well known Rayleigh–Ritz variational method.
We discuss some of the KEP results and compare them with those
coming from other approaches.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Mineo and Chao [1] proposed an approach for solving the time-independent Schrödinger equation
for systems with competing potentials which means that the Schrödinger equation for each of the
potentials is exactly solvable. Themethod consists in writing the solution to the Schrödinger equation
as a linear combination of two basis sets, one for each potential. To this end, the authors split the
kinetic energy into two parts so that the whole Hamiltonian operator is a sum of two operators that
depend on the same momentum and coordinate.

They applied the above-mentioned kinetic energy partition (KEP) strategy to three quantum-
mechanicalmodels: a sort of one-dimensional delta-potentialmolecule, a charged harmonic oscillator
in a strong magnetic field and the hydrogen-molecule ion under the Born–Oppenheimer approxima-
tion. The first two models are exactly solvable.

DOI of original article: http://dx.doi.org/10.1016/j.aop.2012.05.010.
E-mail address: fernande@quimica.unlp.edu.ar.

https://doi.org/10.1016/j.aop.2018.03.016
0003-4916/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2018.03.016
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2018.03.016&domain=pdf
http://dx.doi.org/10.1016/j.aop.2012.05.010
mailto:fernande@quimica.unlp.edu.ar
https://doi.org/10.1016/j.aop.2018.03.016


72 F.M. Fernández / Annals of Physics 393 (2018) 71–75

The purpose of this comment is to analyze both the method as well as its applications to these
illustrative quantum-mechanical models. In Section 2 we outline KEP, in Section 3 we discuss its
application to three illustrative examples and compare it with other approaches and in Section 4 we
summarize the main results and draw conclusions.

2. Outline of KEP

As sketched in the introduction KEP applies to a Hamiltonian of the form

H = T + V1 + V2. (1)

It consists in splitting the kinetic energy as T = T1 + T2 and solving the Schrödinger equations for the
Hamiltonians Hi = Ti + Vi. The approximate solution for H is then written as a linear combination of
the eigenfunctions of these two operators.

ψ =

∑
n

C1nψ1n +

∑
k

C2kψ2k,

Hiψij = Eijψij, i = 1, 2. (2)

The coefficients Cij and the approximate eigenvalues of H are then obtained from the conditions

⟨ψ1i|H − E |Ψ ⟩ = 0,⟨
ψ2j

⏐⏐H − E |Ψ ⟩ = 0, (3)

that lead to the secular equations which one would obtain by means of the well known Rayleigh–Ritz
variational method with the basis set

{
ψ1i, ψ2j, i, j = 1, 2, . . .

}
. In other words, KEP is a Rayleigh–Ritz

variational approach with an overcomplete basis set (see [2] for details on the problems of such basis
sets). According to the authors this is ‘‘a general solution scheme’’ but the obvious fact is that it is
restricted to problems where one can solve the Schrödinger equation for each Hi exactly. It is clear
that this approach cannot be applied to most problems of physical interest (as we can certainly do
with the more general Rayleigh–Ritz method). The authors applied KEP to three examples that we
analyze in the following section.

3. Illustrative examples

The Schrödinger equation for the one-dimensional delta-potential molecule is

−
h̄2

2m
ψ ′′(x) − λ [δ(x + a) + δ(x − a)]ψ(x) = Eψ(x), (4)

where δ(x) is the well known Dirac delta function. If we define

q =
x
a
, ϵ =

ma2

h̄2 E, Z =
maλ
h̄2 , (5)

we obtain the much more convenient dimensionless equation

−
1
2
ϕ′′(q) − Z [δ(q + 1) + δ(q − 1)]ϕ(q) = ϵϕ(q). (6)

After solving this equation in the usual way we obtain the following two solutions

Z =
ke2k

e2k + 1
, Z =

ke2k

e2k − 1
, k =

√
−2ϵ. (7)

The first solution is the ground state that is bound for all values of Z > 0 and the second one is the
excited state bound only for Z > 1

2 . These analytic parametric solutions are quite practical for many
purposes.
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In what follows we compare the KEP solution with the textbook approach known as molecular
orbital as linear combination of atomic orbitals (MOLCAO). To this end we define the dimensionless
kinetic and potential-energy operators

T = −
1
2

d2

dq2
, V1(q) = −Zδ(q + 1), V2(q) = −Zδ(q − 1), (8)

and

U1(q) = kδ(q + 1), U2(q) = kδ(q − 1), (9)

where k is an adjustable parameter.
Note that

f1(q) =
√
ke−k|q+1|, f2(q) =

√
ke−k|q−1|, (10)

are eigenfunctions of T + U1 and T + U2, respectively. The MOLCAO consists of using the variational
ansatzϕ(q) = c1f1(q)+c2f2(q). Because of symmetrywe know that c1 = ±c2 and the two approximate
(unnormalized) Rayleigh–Ritz solutions are given by

ϕ± = f1 ± f2, (11)

with which we obtain the approximate energies

ϵ± =
⟨ϕ±|H |ϕ±⟩

⟨ϕ±| ϕ±⟩
=

H11 ± H12

1 ± S12
, (12)

where

H11 = −
k2

2
+ (k − Z)k − Zke−4k,

H12 = −
k2

2
S12 + (k − Z)ke−2k

− Zke−2k,

S12 = ⟨f1| f2⟩ = (2k + 1) e−2k. (13)

The optimal parameter k for each of the states can be obtained as a root of the variational condition
∂ϵ±/∂k = 0. Here we solve each variational condition for Z(k) that we then substitute into the
corresponding ϵ± in order to obtain ϵ±(k) . The result is

Z =
ke2k

e2k + 1
, ϵ+ = −

k2

2
, (14)

for the ground state and

Z =
ke2k

e2k − 1
, ϵ− = −

k2

2
, (15)

for the excited one. Note that thewell knownMOLCAO yields the exact energies of the delta-potential
molecule (7). The parameter k plays the role of an effective nuclear charge that depends on Z(m, a, λ).
On the other hand KEP only provides an approximate result for the ground state and, according to the
authors, does not give the excited state at all: ‘‘Here the minus sign is excluded because it yields an
unbound state’’[1].

The second example is trivial and we just outline it for completeness. In the case of a charged
harmonic oscillator in a strong magnetic field the resulting potentials V1(ρ) and V2(ρ), ρ2

= x2 + y2,
are harmonic. Therefore, V (ρ) = V1(ρ) + V2(ρ) is harmonic and the Schrödinger equation exactly
solvable. Clearly, in this case there is no need of an approximate method and solving the Schrödinger
equation for T + V is as simple as solving the one for each Ti + Vi.

The third example, the hydrogen-molecule ion, is by farmore interesting. In principle, we can view
(4) as a sort of oversimplified one-dimensional version. Apparently, the authorswrite theHamiltonian
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Fig. 1. Ground state (σg1s) and first-excited state (σu1s) of theH+

2 molecule. Continuous lines and filled circles indicateMOLCAO
and Gaussian [3] results.

in the Born–Oppenheimer approximation and atomic units as

H = −
1
2
∇

2
−

1
r1

−
1
r2
, (16)

and split the energy as

T = T1 + T2, T1 = −
1
2α

∇
2, T2 = −

1
2

(
1 −

1
α

)
∇

2, (17)

where α is a function of the internuclear distance R =
⏐⏐r⃗1 − r⃗2

⏐⏐. Here the notation becomes confusing
because the authors also write ri =

⏐⏐r⃗ − r⃗i
⏐⏐ and r⃗1 + r⃗2 = 0. Note that these vector expressions are

inconsistent.
The authors claimed that they applied KEP with a linear combination of 1s and 2s solutions to

the equations Hiψin = Einψin, i = 1, 2, and obtained reasonably accurate results. Unfortunately,
they forgot to say how they determined the dependence of α on R. If they resorted to the variational
principle, then the resulting approach is a variant ofMOLCAOwith four atomic orbitals and an effective
nuclear charge related to α. In other words, it would be a Rayleigh–Ritz method with a nonlinear
variational parameter. If, on the other hand, they just set α in order to fit the Gaussian results [3] then
such an application of KEP is of no practical utility.

According to the authors, the simplest MOLCAO discussed by Levine [4] yields poor results. It is
not clear to us how they carried out such calculation. The fact is that if one takes into account the
variational effective nuclear charge proposed in that book the results are considerably more accurate
(see the pedagogical article by Castro et al. [5] for more details). Fig. 1 shows the ground-state and
first-excited-state energies as functions of R, together with the more accurate results reported by
Bowen and Linnett [3]. It is clear that although MOLCAO is not extremely accurate it is in fact much
more accurate thanMineo and Chao suggested. Besides, it should be taken into consideration that the
simplest MOLCAO is based on a minimal basis set of two 1s orbitals, one on each nucleus, while the
approach suggested by Mineo and Chao uses two atomic orbitals on each nucleus. In addition to it,
the MOLCAO is completely self consistent because the effective nuclear charge is determined by the
variational method [4,5], whereas there is no indication whatsoever about how the adjustable KEP
parameter α(R) was set. It is also worth noting that the simplest MOLCAO yields also the first excited
state, whereas Mineo and Chao only obtained the ground state by means of KEP. A straightforward
MOLCAO with two 1s and two 2s atomic orbitals with suitable effective nuclear charges is expected
to yield considerably more accurate results.

4. Conclusions

In this commentwe have shown that KEP is thewell known Rayleigh–Ritz variationalmethodwith
an overcomplete basis set. Our results indicate that MOLCAO with an effective variational nuclear
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charge gives the two energy eigenvalues of the delta-potential version of the H+

2 molecule. On the
other hand, KEP only provides an approximation to the ground state that deteriorates as λ increases.
It is curious that in this case the authors did not try a splitting strategy similar to the one employed
in the case of the actual H+

2 molecule. The second application of KEP is quite unnecessary because the
straightforward exact solution of the Schrödinger equation is considerably simpler. The H+

2 molecule
in the Born–Oppenheimer approximation, although the simplest nonrelativistic molecular model, is
a better test. Unfortunately, the authors resorted to a confuse notation and inconsistent equations
relating the variables used in their calculation.What is evenworse, they did not give any indication of
how they determined the adjustable KEP parameter that appears to be the key for obtaining suitable
results. We have shown that the simplest MOLCAO calculation with a minimal basis set and an
effective nuclear charge is considerably more accurate than the one the authors used for comparison
with their KEP. Besides, the variational MOLCAO is completely self consistent while the authors’ KEP
calculation is based on a parameter adjusted in some unknown way.
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