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ABSTRACT

The progress in flow-injection (FI) on-line separation and preconcentra-

tion employing knotted reactors (KRs) as a sorption medium for organo-

metallic complexes associated to atomic spectrometry techniques is

reviewed in this article, focusing the attention on the more frequently

complexing agents used. In the last years, the KR has demonstrated to

be an excellent alternative in the FI on-line preconcentration procedures;

the on-line preconcentration and separation of different metallic species

on the inner walls of the KR have been developed utilizing diverse

organic and inorganic reagents. The choice of complexing reagents, the

coupling of the FI preconcentration system to atomic spectrometry tech-

niques, and the application of the methodologies developed to different

samples are discussed.

Key Words: Knotted reactors; Preconcentration; Flow-injection;

Atomic spectrometry techniques.
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1. INTRODUCTION

The combination of flow-injection (FI) coupled to preconcentration and

separation methodologies has demonstrated to have a great potential for

enhancing the selectivity and sensitivity of atomic spectrometric techniques,

such as flame atomic absorption spectrometry (FAAS), electrothermal

atomic absorption spectrometry (ETAAS), inductively coupled plasma-

optical emission spectrometry (ICP-OES), and inductively coupled

plasma-mass spectrometry (ICP-MS). Sample introduction flow rates of the

FI systems are usually compatible with the continuous working mode of

these techniques and permit on-line operation using relatively simple

interfaces.

During the last years, an important number of publications have reported

the successful use of knotted reactors (KRs) made from polytetrafluoroethy-

lene (PTFE) tubing for the FI on-line preconcentration and separation of

metals, with previous complex formation and subsequent elemental-specific

detection by means of different atomic spectrometric techniques. In spite of

the relatively low selectivity of the collection medium, usually, sufficient

selectivity can be attained by an appropriate complexing reagent and optimiz-

ation of the experimental conditions.

The retention mechanism in KRs involves changes in the flow direction

caused by the knots, creating a secondary flow with some centrifugal force

that pushes the particles toward the tubing walls. The KRs made from open

tubings produce significantly lower back pressures than packed columns at

similar flow-rates, so that higher sample loading rates are readily applicable.

The KRs also offer almost unlimited lifetime as well as stability in sorption

properties. However, an important limitation of KRs is relatively low retention

of sorbed complexes. Typically, retention values in the range of 40–50% are

obtained with these preconcentration devices. Nevertheless, this does not

lower the overall efficiency of the preconcentration system owing to the

much larger flow-rates allowable.

The use of KRs for the on-line sorption preconcentration combined with

FAAS determinations was first reported by Fang et al.[1] Afterwards, Sperling

et al.[2] and Yan et al.[3] extended the use of such sorption media to appli-

cations for on-line preconcentration with ETAAS by adding some improve-

ments to the manifold, such as the addition of a washing step to the

preconcentration procedure just after sample loading in the KR, which is

aimed at removing residual matrices; and the use of an air flow for both

removal of the washing solution and driving the eluate into the graphite tube.

On-line coprecipitation involving collection of precipitates on a PTFE or

Microline KR was proposed by Fang et al.[4] as an effective preconcentration

means for ETAAS. The on-line coprecipitation systems exhibit, generally,
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higher tolerance to coexisting base metals can be an important benefit in

applications when interferences from such origin are difficult to overcome.

Works developed in Hansen’s group[5–7] have demonstrated the possibility

of coupling on-line KR coprecipitation to the FI hydride generation (HG)-

atomic absorption spectrometry (AAS) systems employing inorganic copre-

cipitation with carrier reagents and ensuing dissolution in a dilute inorganic

solvent. The elegant aspect of these procedures is that the inorganic precipi-

tates are easily dissolved in diluted acid, which is also the appropriate

medium for the developing HG reaction. The retention of a hydrophilic inor-

ganic coprecipitate requires the KR to be made of a hydrophilic material, such

as cross-linked ethyl vinyl acetate Microline tubing.[5–7]

In this work, the widespread use of KRs in the on-line preconcentration

systems coupled to atomic spectrometric techniques is revised and discussed

with particular attention to the application of the most common reagents

employed for developing complexing and/or coprecipitating reactions. The

preconcentration and separation procedures by using KRs for real samples

analysis (environmental, biological, and geological ones) are presented in

this article.

2. COMPLEXING AND COPRECIPITATING

REAGENTS

Due to the relatively low selectivity of the KR, usually, sufficient selec-

tivity can be attained by the use of an appropriate reagent. Additionally, the

low retention capacity of KRs is highly improved by the right selection of a

complexing and/or coprecipitating reagent that interact in a more efficient

manner with the material of which KRs are made.

Therefore, hydrophobic reagents are suitable for hydrophobic materials,

whereas hydrophilic reagents are the right choice for hydrophilic materials.

In the literature, several works have reported the use of organic and inorganic

reagents for the preconcentration and separation of metallic and non-metallic

elements on the inner walls of a KR. The selection of an adequate reagent,

principally, depends on its chemical properties and its potential interaction

with the analyte of interest. The most widely used reagents for metal

preconcentration in KR have been so far diethyldithiocarbamate (DDTC),

ammonium pyrrolidine dithiocarbamate (APDC), diethyldithiophosphate

(DDPA), 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP),

8-Hydroxyquinoline (HQ), hexamethylenedithiocarbamate (HMDTC), lantha-

num hydroxide, 1-phenyl-3-methyl-4-benzoylypyrazol-5-one (PMBP), and

dithione, among others.
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2.1. 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol

2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol has beenusedas a reagent

in the spectrophotometric determination of numerous metallic ions,[8–11]

although precautions had to be taken in order to avoid the precipitation of the

corresponding chelate in aqueous media, such as the addition of a surfactant

agent. This fact suggests that in the absence of a surfactant 5-Br-PADAP

could be a suitable reagent for the preconcentration of various metals on KR.

Several on-line preconcentration systems implemented with KR using

2-(5-bromo-2-pyridylazo)-5-diethylaminophenol as complexing reagent of

metal ions have been developed in our research group. Among them, vana-

dium(V) was retained as V(V)–5-Br-PADAP complex on the inner surface

of a KR. Decomposition of the organometallic complex and further elution

of the analyte were performed by using a diluted solution of nitric acid with

subsequent elemental-specific detection by ultrasonic nebulization (USN)

coupled to ICP-OES.[12] The manifold presented provided a sensitivity

enhancement factor of 180 with respect to ICP-OES using pneumatic nebuli-

zation (15 for USN and 12 for KR).

In addition, Zn–5-Br-PADAP complex was effectively adsorbed on the

inner walls of a KR made of PTFE.[13] This system of preconcentration

permits the zinc determination in river water samples in concentrations of the

order ofmgL21. The determinations showed good reproducibility and accuracy.

Interestingly, an on-line mercury preconcentration and analysis system by

using AAS and FI with cold vapor generation was performed in Ref.[14] The

results of thiswork demonstrated the possibility of using 5-Br-PADAP for precon-

centration of Hg, since the Hg–5-Br-PADAP complex was effectively adsorbed

on the inner surface of a KR. Coupling of the KR to the cold vapor generation

systemwas possiblewithoutmajormodifications relative to conventional systems.

Likewise, Cd has been preconcentrated as Cd–5-Br-PADAP complex in

wine and honey samples and the analyte has been determined by USN-ICP-

OES and FAAS, respectively.[15,16] In the second case mentioned above, the

complex adsorbed on a KR was eluted with ethanol as it is known that an

organic solvent could significantly improve the sensitivity of FAAS. On the

other hand, the use of an organic solvent with ICP-OES detection was not

possible, since the high instability generated in the ICP can eventually lead

to its extinction.

An on-line Co preconcentration and determination system using a KR

implemented in a FI system associated to ICP-OES with USN was also devel-

oped in our group.[17]

The Co was retained as the complex Co–5-Br-PADAP at pH 8.2. The Co

complex was removed from the KR with diluted HNO3. A total enhancement

factor of 140 was obtained with respect to ICP-OES using pneumatic
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nebulization (14.8 for USN and 9.5 for KR). The method was successfully

applied to the determination of Co in drinking water samples.

Similarly, Sc was retained as the Sc–5-Br-PADAP complex; it was

removed from the KR with nitric acid, and then it was determined by USN-

ICP-OES.[18] The flexibility of adopting different sample loading times to

attain different enhancement factors is one of the advantages of the use of

the mentioned method.

Figure 1 F1shows a general schematic manifold used for metal preconcen-

tration on the inner walls of a KR. In Table 1 T1, the most significant figures of

merit achieved by means of the use of KR in an on-line preconcentration pro-

cedures and its application to real samples are presented.

2.2. 8-Hydroxyquinoline

8-Hydroxyquinoline, 2-methyl-8-hydroxyquinoline (CH3-HQ), 5,7-

dichloro-2-methyl-8-hydroxyquinoline (Cl2-CH3-HQ), 5,7-dibromo-8-hydro-

xyquinoline (Br2-HQ), 5-sulfo-7-iodo-8-hydroxyquinoline (ferron), and

Figure 1. Schematic diagram of the instrumental setup. (R): Complexing or coprecipi-

tating reagent; (S): sample; (E): eluent; (W): waste; (P1, P2): peristaltic pumps; (KR):

knotted reactor; (V): injection valve. Valve positions: (a) sample loading; (b) injection.
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5-sulfo-8-hydroxyquinoline (SO3H-HQ) were compared as chelating reagents

for on-line sorption preconcentration of cobalt in a KR precoated with the

reagent.[19] The results obtained with the different HQ derivatives revealed

the properties of the chelating reagent responsible for the processes taking

place in the KR. The influence of hydrophobicity, acidity, stability of the

cobalt chelate, and type of substituents in the HQ ring system on the separate

steps of the FI preconcentration procedure were discussed in this work.

According to the performance characteristics of the different HQ derivatives,

the most important parameters for on-line preconcentration in a KR are the

hydrophobicity of the reagent and the stability of the chelate complex

formed with the analyte. The best performance characteristics obtained for

the CH3-HQ system indicate that suitable chelating reagents for on-line

KR precoating preconcentration scheme should be hydrophobic for their sorp-

tion on the hydrophobic walls of KR and should form a stable complex with

the analyte to favor its chemosorption on the KR surface modified by the

immobilized reagent.

2.3. Ammonium Pyrrolidine Dithiocarbamate

Ammonium pyrrolidine dithiocarbamate is a well-known group reagent,

suitable for the preconcentration of heavy metal ions from weakly acidic or

neutral solutions. In APDC molecule, there are N and S atoms responsible

for the complexation mechanism.

An efficient online co-precipitation system coupled to a FI technique for

cobalt, nickel, and cadmium using Fe-APDC as complexing reagent was

reported by Fang et al.[20] The precipitate was dissolved by methyl isobutyl

ketone (MIBK) and directly introduced into the FAAS instrument.

In a different study, a FI online sorption preconcentration system has been

synchronously coupled to an ETAAS system for the selective determination of

(ultra)trace amounts of Sb(III) in water.[3] The determination was achieved by

selective complexation of Sb3þ with APDC at a wide range of sample acidity

and sorption of the complex onto the inner walls of a PTFE KR. Quantitative

elution was achieved with 35mL of ethanol and subsequent ETAAS detection.

In order to minimize dispersion and reduce the eluent volume required for the

elution, an air flow was used to drive the eluent and to deliver all the eluate

into an unpreheated polycrystalline graphite tube without a platform. An intro-

duction of an efficient wash step before elution with the additions of APDC to

the wash medium permitted the use of simple aqueous standards for direct

calibration in the analysis of seawater. The accuracy of the proposed

method was demonstrated by analyzing synthetic mixtures and spiked

seawater.
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Additionally, Adams et al.[21] have developed a method for the determi-

nation of thallium in river sediment by FI on-line sorption preconcentration in

a KR coupled to ETAAS. The Tl3þ-pyrrolidinedithiocarbamate complex

formed in strongly acidic medium was sorbed on the inner walls of a PTFE

KR reactor and quantitatively eluted with 45mL of ethanol. The ETAAS

determination was performed in parallel with the preconcentration of the

next sample. The adsorption efficiency was 51%. The accuracy of the

method was demonstrated by the analysis of a certified reference material.

A FI-ETAAS method was developed for the determination of ultra-trace

amounts of cobalt in natural waters.[22] The preconcentration was achieved

by online complexation of cobalt with APDC and subsequent sorption of

the complex onto the inner walls of a KR. In this work, in order to reduce

the eluate volume and to minimize dispersion, an air flow was used to

drive the eluent for the elution of the adsorbed analyte and dispel the eluate

into the graphite tube.

Nielsen and Hansen[23] have reported a work which describes the precon-

centration and determination of ultra-trace amounts of Cr(VI) via on-line reac-

tion with APDC and formation of the Cr(VI)–PDC complex. The

preconcentration was performed by adsorption on the inner wall of a KR.

The complex was eluted with a monosegmented discrete zone of ethanol,

and the analyte was quantifled by ETAAS. The operation of the FI-system

and the ETAAS detector were synchronously coupled.

A FI system with on-line sorption preconcentration of copper, nickel, and

manganese with APDC or 8-hydroxyquinoline in a PTFE KR using FI tech-

niques was developed.[24] APDC offered better performance characteristics

than HQ for the preconcentration of copper and nickel but could not be

employed for manganese. This may be related to the higher stability of their

pyrrolidinedithiocarbamate complexes in comparison with the quinolinate

complexes, resulting in higher adsorption efficiency and permitting efficient

washing of the system, and the higher selectivity of complexation in acidic

medium where pyrrolidinedithio-carbamates are formed in comparison with

the pH region quinolinate formation. For manganese, HQ gave a better per-

formance than APDC, which could be explained by its stronger affinity to

oxygen-containing than to sulfur-containing reagents. The application of the

KR sorption preconcentration system using HQ for the determination of

copper, nickel, and manganese in biological samples reveals that satisfactory

analytical results can be obtained even with an adsorption efficiency of about

15%.

KRs have also been employed in fully automated preconcentration

systems. Velasco-Arjona and co-workers[25] have described an automated

robotic method for sample pretreatment developed for copper determination

in environmental and in biological materials at the low mg/kg level.
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The robotic station performing the preliminary operations as weighing of

sample and acid digestion was coupled with the FI on-line sorption preconcen-

tration of the pyrrolidine dithiocarbamate chelate of copper on the walls of a

PTFE KR and subsequent ETAAS determination of copper. The accuracy of

the method was demonstrated by the analysis of environmental and biological

certified reference materials.

A FI on-line sorption preconcentration method for the electrothermal

AAS determination of platinum was developed.[26] The pyrrolidine dithiocar-

bamate complexes of either Pt4þ or Pt2þ, formed in 0.7mol L21 HNO3, is

adsorbed on-line on the inner walls of a PTFE KR and subsequently eluted

with methanol. The high sensitivity of the method permitted to monitor the

platinum level in the blood of patients treated with platinum-containing

drugs using very small sample volumes, which makes it particularly suitable

for clinical analysis when only small samples can be obtained.

It has to be pointed out that the employment of KRs for separation and

preconcentration of elemental species developed by non-chromatographic

methodologies. An interesting method has been developed for determination

of (ultra)trace amounts of As(III) and As(V) in water by FI on-line sorption

preconcentration and separation coupled with ICP-MS by using a KR.[27]

The determination of As(III) was achieved by selective formation of the

As(III)–pyrrolidine dithiocarbamate complex, its adsorption onto the inner

walls of the PTFE-KR, elution with a nitric acid solution, and detection

by ICP-MS. Total inorganic arsenic was determined after prereduction of

As(V) to As(III) in a 1% (m/v) L-cysteine–0.03mol L21 HNO3 media.

The concentration of As(V) was calculated by difference between the total

inorganic arsenic and As(III). The method was applied to the speciation

analysis of inorganic arsenic in porewaters. It should be noted that no con-

version in the oxidation states of the two arsenic species is mentioned in

this work.

A rapid, robust, sensitive, and selective time-based FI on-line solvent

extraction system interfaced with ETAAS is described for analyzing ultra-

trace amounts of Cr(VI) by Hansen et al.[28] The sample was initially mixed

on-line with isobutyl methyl ketone (IBMK). The Cr(VI) was complexed by

reaction with APDC, and the non-charged Cr(VI)–PDC chelate formed was

extracted into IBMK in a KR made from PTFE tubing. The organic extractant

was separated from the aqueous phase by a gravity phase separator with a

small conical cavity and delivered into a collector tube, from which 55mL

of the organic concentrated were subsequently introduced via an air flow

into the graphite tube of the ETAAS instrument. The operation of the FI-

system and the ETAAS detector are synchronously coupled. The proposed

method was successfully evaluated by analyzing a NIST Cr(VI)-reference

material, synthetic seawater, and waste waters, and waste water samples from
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an incineration plant and a desulfurization plant, respectively. Afterwards,

Nielsen and Hansen[29] have described a two time-based FI preconcentration

procedures for the analysis of ultra-trace level concentrations Cr(VI). While

the first approach exploits preconcentration by an on-line formation and

extraction into MIBK of the non-polar complex formed of Cr(VI) ions with

APDC, the second one is based on the formation of the same complex com-

pound and adsorption of it in an incorporated KR which is subsequently

eluted by a discrete volume of ethanol. In both cases, the detection of the

analyte in the eluent is executed by ETAAS. Using a syringe pump based

FI-system, FIAIab-3500, the communication discusses and emphasizes the

performance of these on-line preconcentration/separation procedures. The

developed systems were applied for the assay of Cr(VI) in a NIST reference

material with good recoveries in both instances.

Benkhedda and co-workers[30] have developed a very sensitive and selec-

tive procedure for the determination of cobalt in natural waters by on-line FI

sorption preconcentration of metal chelate complexes on the walls of a PTFE

KR coupled to ETAAS determination. Several complexing reagents were

compared for this system [APDC, 8-hydroxyquinoline, 1-phenyl-3-methyl-

4-benzoylpyrazol-5-one, and 2-nitroso-1-naphthol-4-sulfonic acid (NNA)].

PMBP offered the best performance characteristics for the preconcentration

of Co and methanol was used as eluent. The efficient sorption of PMBP on

the KR (49.6%) may be attributed to the large conjugated system involving

three rings, phenyl, benzoyl, and pyrazole. The ring systems of HQ, NNA,

and APDC (quinoline, naphthalene, and pyrrolidine, respectively) are

smaller in comparison with those of PMBP and are correspondingly less effi-

ciently sorbed. The interference caused by Al(III) was overcome by the use of

fluoride as a masking agent, whereas the interferences from Cu, Fe(II), and

Fe(III) were masked by thiourea. Also, Benkhedda and co-workers[31] have

described a method for on-line sorption preconcentration in KR of traces of

Cu, Ni, Sb, Co, Ag, Cd, Mo, In, and Pb in biological materials and natural

water samples and their determination by axial inductively coupled plasma

time-of-flight mass spectrometry (ICP-TOFMS) with USN. The ability to

collect complete mass spectra at a high frequency (more than 20,000 complete

mass spectra per second) makes ICP-TOFMS nearly ideal for the detection of

FI (transient) signals. The analytes were complexed with APDC from acidic

solutions in the flow system and sorbed onto the KR. The relatively small

volume of methanol used as eluent, along with the employment of an ultra-

sonic nebulizer with membrane desolvation, minimizes the problems pro-

duced by the introduction of organic solvents into the plasma.

A method has been developed for the speciation of Fe(III) and Fe(II) by

on-line coupling of FI separation and preconcentration with ICP-MS.[32]

Selective determination of Fe(III) in the presence of Fe(II) was made possible
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by on-line formation and sorption of the Fe(III)–PDC complex in a PTFE KR.

The concentration of Fe(II) was obtained as the difference between Fe(IIIþ

II) and Fe(III) concentrations. A retention efficiency of 80% was obtained.

The method was successfully applied to the determination of trace dissolved

Fe(III) and Fe(II) in local tap water, river water, and groundwater samples.

A comparison of using an open tubular PTFE KR and a column reactor

packed with PTFE beads was developed by Hansen et al.[33] A FI on-line sorp-

tion preconcentration procedure utilizing a packed column reactor and com-

bined with ETAAS is proposed for the determination of low levels of

Cr(VI) in water samples. PTFE beads packed in a mini-column is used as

sorbent material. The complex formed between Cr(VI) and APDC is sorbed

on the PTFE beads, and is subsequently eluted by an air-monosegmented dis-

crete zone of absolute ethanol (35mL), the analyte being quantified by

ETAAS. The preconcentration procedure using the proposed column signifi-

cantly enhances the preconcentration efficiency as compared with the precon-

centration approach incorporating an open tubular PTFE KR. Comparing the

two procedures for equal surface sorption area, the advantages of using a

packed column are observed in terms of limit of detection, enrichment

factor (EF), and retention efficiency.

Similarly, a comparison of the preconcentration efficiency expressed as

EF in KR and serpentine reactors (SR) for FI sorption and preconcentration

for the off-line determination of Cd(II), Ni(II), Co(II), Cu(II), Pb(II), Zn(II),

Mo(VI), Cr(VI), and W(VI) with ICP-MS was investigated by Liawruangrath

and co-workers.[34] The preconcentration was carried out by the formation of

metal–pyrrolidine dithiocarbamate complex in an acidic solution and

sorbed onto the inner wall of the PTFE reactors. The EFs were determined

as the ratio between the analyte intensities after preconcentration using the

reactors and that obtained without using the reactors. Comparing the two

procedures for the equal reactor length (150 cm), the higher EFs obtained

by using KR were observed for all elements. The results obtained indicate

that the KR is preferable to use for the FI sorption preconcentration system

over the SR.

Jiang and Yan[35] have developed a novel methodology for the determi-

nation of trace mercury in environmental and foods samples by online coup-

ling of FI displacement sorption preconcentration in a KR to ETAAS.

The developed methodology involved the online formation of copper pyrroli-

dine dithiocarbamate (CuPDC), presorption of the resulting Cu-PDC onto the

inner walls of the KR, and selective retention of the analyte Hg(II) onto the

inner walls of the KR through online displacement reaction between Hg(II)

and the presorbed Cu-PDC. The retained analyte was subsequently eluted

with ethanol and online detected by ETAAS. No additional chemical modi-

fiers for the stabilization of mercury were required in the present system
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owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage

was necessary due to the effective removal of the matrices.

A novel on-line FI multiplexed sorption preconcentration procedure with

repetitive sample injections was developed.[36] In contrast to previous FI pre-

concentration systems, the proposed multiplexed preconcentration procedure

evenly divides a single longer sample injection step into several shorter sub-

steps while the total preconcentration time is still kept constant. To demon-

strate its merits, the proposed FI on-line KR multiplexed sorption

preconcentration system was combined with FAAS for determination of

trace lead in water, tea, and herb medicines. The lead in the sample solution

on-line reacted with APDC, and the resultant analyte complex was sorbed

on the inner walls of the KR. The residual sample solution was then

removed from the KR with an air flow. The above two steps were repeated

eight times with a total preconcentration time of 120 sec. The sorbed

analyte was eluted from the KR with diluted HCl for on-line FAAS detection.

The present multiplexed preconcentration procedure with eight repetitive

sample injections for a total preconcentration time of 120 sec gave a retention

efficiency of 92%, twice than that obtained by one single sample injection

preconcentration (47%).

Yan and co-workers[37] have reported a FI on-line sorption preconcentra-

tion and separation in KR coupled to hydride generation atomic fluorescence

spectrometry (HG-AFS) for speciation of inorganic arsenic in natural water

samples. The method involved on-line formation of the As(III)–pyrrolidine-

dithiocarbamate complex, its adsorption onto the inner walls of the KR,

elution with HCI, and detection by HG-AFS. Total inorganic arsenic was

determined after prereduction of As(V) to As(III) with 1% m/v L-cysteine.

The concentration of As(V) was calculated by the difference of the total inor-

ganic arsenic and As(III). Potential factors that affect adsorption, rinsing,

elution, and hydride generation were investigated in detail. The low cost,

easy operation, and high sensitivity are the obvious advantages of the

present system. The developed method was also successfully applied to the

speciation of inorganic arsenic in local natural water samples.

2.4. Diethyldithiophosphate

Yan and Adams[38] describe, in their paper, a robust and selective FI on-

line separation and preconcentration procedure for the ETAAS determination

of lead in biological and environmental samples. DDPA was chosen as the

complexing agent since it is more selective for lead in the presence of other

heavy metals than the dithiocarbamates. With the use of diethyldithio-

phosphate as complexing agent and citric acid as masking agent, the analyte
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complex was selectively formed and sorbed on the inner walls of a PTFE KR.

The complex Pb–DDP was eluted from the KR with a discrete volume of

ethanol and the eluate was directly introduced into the graphite tube by an

air flow. DDPA was chosen as the complexing agent since it is more selective

for lead in the presence of other heavy metals than the dithiocarbamates. In

this work, the adsorbed Pb-DDP complex was found to be easily removed

with diluted nitric acid or ever deionized water, probably due to the instability

of the Pb–DDP complex. During the KR rinsing, the authors have reported the

necessity to add appropriate amounts of DDPA and citric acid to the rinsing

solution in order to prevent analyte loss. Also, DDPA has been used for the

preconcentration of bismuth on the inner walls of a KR by Ivanova and co-

workers.[39] DDPA was chosen as chelating reagent in this work due to its

stability in the acidic medium in which the bismuth complex is formed. The

complex Bi-DDP was quantitatively eluted from the KR with hydrochloric

acid and the eluate was directly introduced into a pyrolytically graphite

tube. The results obtained demonstrate the feasibility of using an on-line

KR sorption preconcentration ETAAS system for the determination of

bismuth in sediment and cod muscle samples.

In addition, Ivanova and co-workers[40] have employed diethyldithiophos-

phate as complexing agent for the preconcentration of cadmium and lead and

their determination in blood by ETAAS. The analyte complexes were selec-

tively adsorbed on the KR and eluted from the 100 cm KR with methanol.

DDPA was chosen as the chelating reagent in this work due to stability in

acidic medium and high selectivity for lead and cadmium in the presence of

alkali, alkaline earth, and heavy metal ions. Compared with FI-ETAAS, the

present system offers higher enhancement factors and lower detection limits.

A further advantage over the latter method is the on-line purification of the che-

lating reagent, which allows the use of a concentrated reagent and washing sol-

ution without any appreciable blank. The performance of the method permitted

its successful application to the monitoring of (ultra) trace cadmium and lead

concentrations in blood.

2.5. Diethyldithiocarbamate

A new on-line preconcentration FAAS system for trace cadmium deter-

mination was developed based on sorption of soluble metals complexes on

the walls of a PTFE KR using FI techniques.[1] Cadmium complexed with

sodium DDTC was sorbed on the inner walls of the reactor and eluted on-

line by IBMK. The retention efficiency was 81% at a sampling loading rate

of 5.2mLmin21. Thiourea and ascorbic acid/phenanthroline were used to
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overcome interferences from copper and iron, respectively. The system was

applied to the determination of cadmium in biological materials.

Fang et al.[41] have proposed a FAAS determination of silver in geological

materials using a FI system with on-line preconcentration by coprecipitation

with DDTC. The analyte was preconcentrated and separated from the bulk

of the matrix by on-line coprecipitation with the Fe(II)–DDTC complex in

the presence of 1,10-phenanthroline in a FI system. The precipitate was col-

lected in a KR without using filter. The precipitate was dissolved in IBMK

and introduced directly into the nebulizer–burner system of an AAS. 1,10-

Phenanthroline was added to the sample solution to mask large concentrations

of iron(II).

Moreover, a FI online adsorption preconcentration FAAS system for the

determination of Cu was developed by Fang et al.[42] The Cu-DDTC chelate

was adsorbed on the walls of a PTFE KR. The sorbed species was eluted by

IBMK and air segmentation between sample and eluent was employed to

avoid mixing of the neighboring phases under fast elution rates. The

method was applied successfully to the determination mgL21 amounts of

Cu in drinking water and sea water and mg g21 amounts of Cu in rice.

In addition, a FI on-line sorption preconcentration electrothermal atomic

absorption spectrometric system for fully automatic determination of lead in

water was investigated by Welz et al.[2] This FI manifold has been developed

with the aim of reducing the eluate volume and minimizing dispersion. The

Pb-DDTC complex was adsorbed on the inner walls of a KR made of PTFE

tubing. After that, an air flow was introduced to remove the residual solution

from the KR and the eluate delivery tube, and then the adsorbed analyte

chelate was quantitatively eluted into a delivery tube with 50mL of ethanol.

An air flow as used to propel the eluent from the eluent loop through the

reactor and to introduce all the ethanolic eluate onto the platform of the trans-

versely heated graphite tube atomizer, which was preheated to 808C. The
adsorption efficiency was 58%, and the enhancement factor was 142.

On the other hand, a preliminary implementation of FI on-line precipi-

tation with ICP-MS was applied to the determination of Cu in certified

estuarine water by Beauchemin et al.[43] A solution of sodium DDTC

(NaDDTC) in ammonium acetate was used as precipitant, which was mixed

online with samples. The precipitate was collected in a KR/filter system,

and subsequently dissolved using nitric acid for the delivery to ICP-MS.

The KR/filter system was heated to enhance the precipitation and dissolution

processes.

Similarly, Beauchemin et al.[44] have described a FI on-line precipitation

system coupled to ICP-MS and it was applied to the determination of Cr, Mn,

Fe, Co, Ni, and Cu in certified estuarine water. NaDDTC was used as

group-selective precipitant. Analyte preconcentration and separation from

120040194_ASR_039_000_R1_060904 Techset Composition Ltd, Salisbury, U.K.—120040194

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

KRs and their Role in FI On-line Preconcentration Systems 19



the matrix in NaDDTC is indeed more selective than the precipitation of

hydroxides for the analysis of sea-water since it does not react with Na, Ca,

or Mg. A solution of NaDDTC in ammonium acetate (at pH 6.75) was

mixed with samples on-line to ICP-MS. The precipitates were collected in a

KR-filter system, washed with deionized distilled water, and then dissolved

in diluted nitric acid (containing 10mgL21 Ga as an instrumental drift

monitor) for delivery to ICP-MS. The KR/filter system was heated (at

around 708C) to enhance the precipitation and dissolution processes. An exter-
nal calibration using aqueous standards in 1% HNO3 provided results in good

agreement with the certified values (with a correction for drift). The proposed

approach features two novelties for ICP-MS: the use of an organic precipitant

without any coprecipitation carrier; and heating the KR–filter system to

enhance the precipitation and dissolution processes.

Jiang et al.[45] have described a novel FI on-line displacement/sorption
preconcentration and separation techniques coupled with FAAS for the deter-

mination of trace copper in complicated matrices. The methodology involved

on-line formation of lead diethyldithiocarbamate (Pb–DDTC), presorption of

the resultant Pb–DDTC onto the inner walls of the KR, retention of the

analyte Cu(II) on the inner walls of the KR through a displacement reaction

between Cu(II) and the sorbed Pb-DDTC (because the stability of Cu–

DDTC is greater than Pb–DDTC) and elution of the retained analyte with

ethanol for FAAS detection. Interference from co-existing ions with lower

stability DDTC complexes relative to Pb–DDTC were eliminated without

need for any masking reagents in the proposed system. The developed

system was successfully applied to interference free determination of trace

copper in a variety of environmental and biological materials with high con-

tents of co-existing heavy metals.

On the other hand, Liu and co-workers[46] developed an on-line coprecipi-

tation system with DDTC–Ni(II) coupled to FAAS for the determination of

trace Cu, Pb, Cd, and Fe in environmental and biological samples. Metal

ions were on-line co-precipitated with DDTC–Ni(II) in diluted HNO3, the

precipitate was collected in a KR, and it was then dissolved in IBMK. The

concentrated zone was transported directly into the nebulizer–burner

system of a FAAS. Enhancement factors of 60, 58, 65, and 59 were obtained

for Cu, Pb, Cd, and Fe, respectively. The developed method was applied to

determination of the metals in waters and environmental reference material

of soil, and biological reference materials of mussel and human hair. Satisfac-

tory results were obtained.

A FI on-line adsorptive preconcentration system with a KR for FAAS

determination of trace Pb in water was developed by Jin and co-workers.[47]

The lead chelate of DDTC formed online was concentrated by adsorption

on the inner wall of a KR made of PTFE tubing. The sorbed lead species
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was eluted with MIBK and directly transported to the nebulizer of FAAS. The

manifold allowed for a system of one peristaltic pump and one injection valve

to perform automatic preconcentration–elution. Interferences from common

diverse ions such as Cu2þ and Fe3þ were removed by addition of 0.5%

ascorbic acid, 0.1% o-phenanthroline and 1% thiourea into the test solution.

The developed method has been applied to the determination of trace lead

in various water samples.

Moreover, a FI on-line coprecipitation system operating at high acidity

and coupled with FAAS for trace lead determination was proposed by Jin

and Chen.[48] Pb2þ was coprecipitated with Zn–DDTC in 0.5mol L21 HCl.

The precipitates were collected in a KR, and then eluted and transferred

into the AAS nebulizer with MIBK. The method was successfully used for

the determination of trace Pb in human hair and water samples.

A novel on-line coprecipitation–preconcentration system with DDTC–

Cu(II) being used as a carrier for the flame atomic absorption spectrometric

determination of trace cadmium, lead, and nickel was developed.[49] Sample

solutions, spiked with Cu2þ and acidified with hydrochloric acid, were

merged on-line with DDTC solution in a “T” connector upstream of a KR.

The analytes were coprecipitated with DDTC–Cu(II) and collected on the

inner wall of the KR. The collected species were eluted with IBMK, and

the effluent was transported directly into the nebulizer. The method has

been successfully applied to the determination of trace cadmium, lead, and

nickel in various water samples and a standard reference soil.

Afterward, Mao and co-workers[50] developed an on-line coprecipi-

tation–preconcentration system with DDTC chelate of copper as the copre-

cipitate carrier coupled to FAAS for the determination of trace silver. Ag

was on-line coprecipitated with DDTC-Cu(II) and the precipitate was col-

lected in a KR. The precipitate was then dissolved by IBMK and transported

directly into the nebulizer–burner system of a FAAS. The developed method

has been successfully applied to the determination of trace amount of silver in

geological samples.

An on-line Pb preconcentration and the determination system

implemented with ICP-OES combined with a FI method with USN was

studied by Salonia et al.[51] The lead was retained as the Pb–DDTC

complex at pH 9.5. The lead complex was eluted from the KR with diluted

hydrochloric acid. A total enhancement factor of 140 was obtained with

respect to ICP-OES using pneumatic nebulization (14.8 for USN and 9.5 for

KR). The manifold presented provided a 65% recovery of the Pb–DDTC

complex from the KR. The preconcentration system together with USN per-

mitted lead determination in tap water samples in which its concentration

was in the mg L21 range. The determination showed good reproducibility

and accuracy.
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2.6. Diethylthiourea

N,N-dialkyl-N0-benzoylthioureas have been found particularly successful

for the selective preconcentration of Platinum Group Metals even from

strongly interfering matrices. Owing to the low solubility of these reagents

in water, they have been used as aqueous-alcoholic solutions.

An ICP-TOF-MS with ultrasonic nebulization combined on-line with a

FI system for the determination of Pt, Rh, and Pd in biological fluids and

road dust was reported by Adams et al.[52] Simultaneous and selective pre-

concentration of the three analytes was performed by sorption of their com-

plexes formed on-line with diethylthiourea (DET) on the inner walls of a

PTFE KR. A quantitative elution was achieved using methanol acidifled

with HNO3. Special attention was paid to the study of the adverse

effects of potentially interfering species present in the matrix. Under

optimum conditions of preconcentration, nebulization, and detection, detec-

tion limits in the sub ng L21 range, 0.54, 0.36, and 2.12 ng L21 for Pt, Pd,

and Rh, respectively were obtained. The main advantages of this approach

are the complete separation from the matrix and especially for Pd and Pt

the enrichment achieved, enabling interference free determination at low

ngL21 levels.

2.7. Dithione

In dithione molecule there are four N atoms and one S atom. The reac-

tion between heavy metal ions and this chelator is the total results of ammo-

niation and sulfuration. Many heavy metal ions, which are inclined to form

specific sulfides, will be able to be extracted by dithione. These ions often

have “d” electron orbit unfilled (such as Cu, Co, Cd, Ni, Pt, etc.) or have 10

“d” electrons (such as Zn, Pd, Bi, Hg, In, etc.). Besides, the increase of

coordinating atoms in chelators leads to the increase of chelating ability

with metal ions.

A procedure using dithione as chelator in a FI-KR-FAAS system to

determine trace amounts of Cu, Cd, Zn, Co in biological standard

samples has been described by Shuyu and co-workers.[53] Regarding the

possibility of interferences elimination, alkali, and alkaline earth elements,

which could not chelate with dithione, were separated from the objective

metals and the competition between trace metals was avoided due to the

strong chelating ability of dithione. In this work, three chelating reagents

(APDC, NaDDTC, and dithione) were also compared. Dithione showed

the better results due to its capacity to overcome interferences and reach

higher concentration factors.
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2.8. Lanthanum Hydroxide

A method for the determination of chromium in environmental samples

by FAAS with FI on-line coprecipitation was developed by Fang et al.[54]

Cr(III) was preconcentrated and separated from potential interferents by on-

line coprecipitation with lanthanum hydroxide. The precipitate was collected

on the walls of a KR without filtration, eluted with hydrochloric acid and intro-

duced into the nebulizer–burner system of the spectrometer. The reagents

1,10-phenanthroline and sulfosalicylic acid were added to the sample solution

to eliminate interferences from Fe(II), Zn(II), and Al(III). In this work, the

speciation of Cr(III) and Cr(VI) in water samples was achieved by reducing

Cr(VI) to Cr(III) for the determination of total Cr, and omitting the reduction

for Cr(III) determinations. The proposed method was applied to the analysis of

chromium in human hair and water. Similarly, Zou and co-workers[55] have

proposed a FI on-line coprecipitation. The FAAS system for the determination

of Cr(III) and Cr(VI) with lanthanum hydroxide. The methodology developed

was applied to the determination of chromium in natural waters with good

results.

In a different study, Tao and Hansen[5] have described a methodology for

the on-line preconcentration of ultra-trace amounts of Se(IV) by coprecipi-

tation with lanthanum hydroxide on the inner walls of a knotted Microline

reactor. The analyte under study was determined by HG-AAS. Satisfactory

results were obtained for the analysis of Se(IV) in tap and well-water

samples. Likewise, Hansen and co-workers[6] developed a second part of

the above work, in which the sample and the coprecipitating agent (lanthanum

nitrate) are mixed online and merged with an ammonium buffer solution,

which promotes precipitation and quantitative collection on the inner walls

of an incorporated knotted Microline reactor.

Nielsen and co-workers[7] developed a time-based FI procedure for the

determination of ultra-trace amounts of As(III) by HG-AAS with on-line pre-

concentration by coprecipitation with lanthanum hydroxide or hafnium

hydroxide. The sample and coprecipitating agent were mixed on-line and

merged with the ammonium buffer solution, which promoted a controllable

and quantitative collection of the generated hydroxide on the inner walls of

the Microline knotted reactor incorporated into the FI-HG-AAS system.

2.9. Hexamethylenedithiocarbamate

A FI on-line coprecipitation system has been coupled to ETAAS for

the determination of trace amounts of cadmium and nickel in whole

blood digests by Fang and Dong.[4] Cd and Ni were coprecipitated with the
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Fe(II)–hexamethylenedithiocarbamate complex on the walls of a KR without

using a filter. The precipitate was dissolved in IBMK and stored in a PTFE

tube before introduction onto the platform of a graphite furnace carried by a

stream of HMDTC reagent. EFs of 16 and 8 were obtained for cadmium

and nickel, respectively, using 20 and 40 sec precipitation collection times.

Recoveries of cadmium and nickel in blood digests were 103% and 106%,

respectively.

In an early work developed by Welz et al.,[56] a procedure for the copre-

cipitation of lead in the presence of high concentrations of iron, originally

described as a batch process, was modified and adapted to on-line preconcen-

tration using a FI system FAAS. Lead was coprecipitated quantitatively with

the Fe(II)–HMDTC complex and collected in a KR made of Microline tubing

without using a filter. The precipitate was dissolved in IBMK and introduced

directly into the nebulizer–burner system of FAAS. An EF of 20 and an

enhancement factor of 66 were obtained for a coprecipitation time of

30 sec. The results obtained for the determination of lead in reference

materials (blood and bovine liver) demonstrated the applicability of the pro-

cedure to the analysis of biological materials.

2.10. Ion-Pairing Reagents

By FI on-line preconcentration of the ion-pair of the negatively charged

cobalt-nitroso-R-salt complex with the tetrabutylammonium cation on the

KR, an accurate and precise method for the ETAAS determination of cobalt

in biological samples and natural waters was developed.[57] The FI on-line

sorption preconcentration of ion-pairs on the inner walls of the KR was

shown to be an effective approach for trace element preconcentration in

ETAAS. It provides possibilities for analyte preconcentration as a charged

complex compensated by a suitable counter-ion. The effect of potential inter-

ferents encountered in biological samples and natural waters on the precon-

centration and determination of cobalt was studied under the optimum

chemical and FI conditions. The results showed a good tolerance to interfer-

ences. A better tolerance was achieved by the addition of a suitable

masking agent.

On the other hand, a rapid, sensitive, accurate, and precise FAAS method

is described for the determination of cadmium in mussels by Yebra and

co-workers.[58] The method is based on the continuous precipitation of

cadmium as an ion-pair between tetraiodocadmate and quinine (tetraiodocad-

mate reacts with several alkaloids by their protonated tertiary nitrogens to

form white or yellow ion-pairs insoluble in water and soluble in alcohol),

the precipitate was retained on a filter device, and then it was dissolved

120040194_ASR_039_000_R1_060904 Techset Composition Ltd, Salisbury, U.K.—120040194

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

Cerutti, Wuilloud, and Martinez24



with ethanol. The method demonstrates high tolerance to interferences, and

the data obtained are in agreement with the certified value of a selected refer-

ence material. This procedure was applied to the determination of cadmium in

mussel samples from estuaries in Galicia (Spain).

2.11. Sodium Hydroxide

A simple strategy for preconcentration of metal species in KRs consists in

the precipitation of metal ions as their insoluble hydroxides. This can be easily

achieved in the presence of an strong base such as sodium hydroxide. A

general rapid on-line preconcentration method for the determination of trace

metals coupled to FAAS or ion chromatography (IC) with spectrophotometric

detection is described by Cámara et al.[59] The method was based on the on-

line precipitation of metal hydroxides with sodium hydroxide and their dissol-

ution in a small volume of nitric acid solution.

2.12. Ammonia

A FI on-line filterless precipitation–dissolution system for the FAAS

determination of trace lead in water samples was described by Yan et al.[60]

On-line precipitation of trace Pb was achieved by merging the sample solution

with an NH3 solution. The resultant precipitates were collected onto the inner

walls of the KR without filtration. A flow of nitric acid was introduced to dis-

solve the precipitates and to deliver the analyte for online FAAS detection.

With the proposed methodology the concentration of lead in a certified refer-

ence material (GBW 08607, River Water) was 0.96+ 0.04mg g21 using

simple aqueous standards for calibration. These results were in good agree-

ment with the certified value. This method was successfully applied to the

determination of trace lead in a variety of real water samples.

A fully automated FI on-line filterless precipitation–dissolution system

developed for ICP-MS determination of (ultra)trace REE in environmental

and geological samples have been described by Yan and co-workers.[61] A

PTFE KR was used as a filterless collector. On-line precipitation of REE

was achieved by mixing the sample with an ammonia buffer solution. The

resulting precipitates were collected on the inner walls of the KR without

filtration. A flow of diluted nitric acid was introduced to dissolve the collected

precipitates and to transport the analyte to the ICP-MS system. Group REE

preconcentration was achieved with separation from alkali and alkaline

earth elements at pH 8.3–9.0. The accuracy of the method was demonstrated

by analyzing a number of geological and environmental standard reference
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materials. The method was also applied to determination of ultra-trace REE in

porewater samples.

Burguera and co-workers[62] have developed a work for the determination

of beryllium in natural and waste waters using on-line FI preconcentration by

precipitation–dissolution with the ETAAS determination. Beryllium was pre-

cipitated quantitatively with NH4OH–NH4Cl and collected in a knotted tube

of Tygon without using a filter. The precipitate was dissolved with nitric acid

and a sub-sample was collected in a capillary of a sampling arm assembly, to

introduce 10mL volumes into the graphite tube by means of positive displace-

ment with air through a time-based injector. The detection limit (3 sec) of

25 ng L21 in the sample solution was obtained. The integrated system

permits fully automated operation, avoiding time-consuming manual work,

and enhancing the reproducibility and precision of the determination of beryl-

lium. The results obtained for the determination of beryllium in certified refer-

ence materials demonstrate the applicability of the procedure to the analysis of

natural waters.

2.13. 1-Phenyl-3-methyl-4-benzoylpyrazol-5-one

A new scheme was developed for the FI on-line sorption preconcentration

of copper and manganese in a KR precoated with the chelating reagent

1-phenyl-3-methyl-4-benzoylpyrazol-5-one by Benkhedda and co-workers.[63]

This system offers several advantages in comparison with the conventional

preconcentration scheme involving on-line merging of the sample and chela-

ting reagent solution: higher sensitivity owing to the more favorable con-

ditions of analyte preconcentration on the “immobilized” reagent, better

optimization of the separated processes of reagent sorption on the KR and

analyte preconcentration, no analyte losses due to adsorption of chelate com-

plexes on the tubing outside the KR and no need of a prefill step between

samples of different analyte concentration. The chelating reagent 1-phenyl-

3-methyl-4-benzoylpyrazol-5-one was chosen due to it forms complexes

with more than 40 metal ions and has found numerous applications in trace

element separation and preconcentration by solvent extraction. This is the

first work in which this reagent was used for FI on-line sorption preconcentra-

tion. The accuracy of the method was demonstrated by the analysis of certified

reference materials.

Likewise, Benkhedda and co-workers[64] have reported a FI on-line sorp-

tion system, for the preconcentration and separation in a KR coupled with

ICP-TOFMS for the fast, selective, and sensitive determination of ultra-

trace concentrations of rare earth elements in environmental waters. The on-

line preconcentration and separation of the REEs is achieved by sorption of
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the REE complexes formed on the inner walls of a PTFE KR precoated with

the chelating reagent PMBP at a pH of 9.6. The analytes were eluted and trans-

ported to the ICP-TOFMS system with HNO3, using ultrasonic nebulization.

The REEs are effectively preconcentrated and separated from the major

matrix constituents—alkali and alkaline earth elements. The stable and reliable

operation of the preconcentration system may be related to the practically

unlimited lifetime of the KR. Using ICP-TOFMS as a detector for FI analysis,

22 isotopes were simultaneously measured in a transient peak without affect-

ing the time of analysis, which is mainly determined by the duration of the

preconcentration process.

3. CONCLUSIONS

An increasing number of works implementing KRs for the on-line precon-

centration of metals has been observed in the last few years. This has been

justified from the several advantages shown by using KRs such as, high

enrichment or preconcentration factors, facility of KRs construction, and

possibility of automation, among others. The on-line separation/preconcen-
tration systems employing KRs for retention of organometallic compounds

are highly efficient and dynamic in terms of the different possibilities of com-

plexing/coprecipitating reagents.

Despite the high operational flexibility that KRs allow to on-line precon-

centration/separation systems, it can be consider that the reagents used are

still limited to a few mainly organic compounds. Therefore, different alterna-

tives and possibilities are opened for the elemental separation and preconcen-

tration with KRs and a continuous development of this area can be predicted.
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