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h i g h l i g h t s

• The Lotka–Volterra system leads to periodic solutions.
• The Lindstedt–Poincaré method removes secular terms in the perturbation series.
• The perturbation series exhibits finite convergence radius.
• The convergence radius can be obtained by Padé and Hermite–Padé approximants.
• Large-order perturbation calculations are necessary for such application.
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a b s t r a c t

We apply the Lindstedt–Poincaré method to the Lotka–Volterra
model and discuss alternative implementations of the approach. By
means of an efficient systematic algorithm we obtain an unprece-
dented number of perturbation corrections for the two dynamical
variables and the frequency. They enable us to estimate the radius
of convergence of the perturbation series for the frequency as a
function of the only model parameter. The method is suitable for
the treatment of systems with any number of dynamical variables.

© 2018 Published by Elsevier Inc.

1. Introduction

In the last three decades there has been some interest in the application of perturbation theory
to nonlinear dynamical systems such as the Lotka–Volterra (LV) model. Murty et al. [1] applied
perturbation theory to a three-species ecological systemandobtained the first perturbation correction
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to the population of each species. However, they did not take into account that the secular terms
spoil the approximate result that will not exhibit the expected periodic behaviour. Grozdanovski
and Shepherd [2] applied the well-known Lindstedt–Poincaré method to remove secular terms
and obtained the first two perturbation corrections to a two-species system. Consequently, their
approximate results exhibit the expected periodic behaviour. Navarro [3] also applied the Lindstedt–
Poincaré method to the same two-species system and obtained periodic approximate expressions of
second order. This author proposed a symbolic algorithm for the computation of periodic orbits but
surprisingly did not show results of larger order. Navarro and Poveda [4] applied Navarro’s approach
to a three-species system and derived perturbation corrections of first and second order for the
populations of the three species for some particular values of the model parameters. All these studies
lead to the conclusion that the Lindstedt–Poincaré method gives reasonable results for some model
parameters and suggest that the techniquemay be useful for the analysis of more realistic and related
nonlinear dynamical problems.

Unfortunately Grozdanovski and Shepherd [2] did not explicitly indicate the initial conditions
chosen for the solution of the first-order differential equations that provide the corrections at every
perturbation order. Since their strategy is not clearly delineated it is difficult to derive a systematic ap-
proach for the calculation of perturbation corrections of greater order. On the other hand, Navarro [3]
and Navarro and Poveda [4] put forward a systematic symbolic algorithm but they did not appear to
exploit it to obtain perturbation corrections of large order. Besides, their presentation of the algorithm
appears to be rather obscure for anybody who is not familiar with such technique.

The aim of this paper is the analysis of the approach proposed by Grozdanovski and Shepherd [2]
with the purpose of deriving a systematic method for the calculation of perturbation corrections of
any order to the LV model. Such results may give us some clue about the convergence properties of
the perturbation series. In addition to it we investigate the possibility of generalizing the method for
the treatment of more realistic systems with more than two degrees of freedom.

The LV model is well known to be a rather oversimplified and unrealistic model for the analysis
of an ecological system. However, in spite of its simplicity it exhibits many features of more realistic
models and appears to be a good benchmark for testing approximate methods. If an approach fails to
give reasonable results for the LVmodel it is undoubtedly bound to fail inmore realistic cases that lead
to more complicated dynamical equations. For this reason it makes sense to carry out a perturbation-
theory calculation of sufficiently large order and determine the radius of convergence of the resulting
series.

In Section 2 we outline the LV model and compare alternative implementations of the Lindstedt–
Poincaré approach. In Section 3 we put forward a generalization of the method that enables one to
treat all the previously discussed cases. In Section 4 we carry out a large order calculation of the
perturbation corrections and estimate the radius of convergence of the perturbation series for the
frequency. Finally, in Section 5 we outline the application of the method to more general and realistic
dynamical systems and draw conclusions.

2. The Lindstedt–Poincaré method

In this section we briefly discuss the LV model and delineate the application of the Lindstedt–
Poincaré technique. For concreteness we will follow Grozdanovski and Shepherd [2] because their
treatment of the dynamical equations is clear and straightforward.

2.1. The model

The dynamical equations for the model are

Ẋ(T ) = X(T ) [a − bY (T )] , Ẏ (T ) = Y (T ) [cX(T ) − d] , (1)

where a, b, c and d are positive parameters and the point indicates derivative with respect to time.
The physical meaning of the parameters is not relevant for present purposes because we are mainly
interested in the success of the perturbation approach. Besides, most probably nobody will apply the
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LV model to an actual ecological system today because it is quite unrealistic. The interested reader
may resort to the papers cited above for more information [1–4] (and the references cited therein).

We can get rid of some model parameters by means of the following transformations of the
independent and dependent variables

t = aT , x(t) =
c
d
X(T ), y(t) =

b
a
Y (T ). (2)

The resulting equations

ẋ(t) = x(t) − x(t)y(t), ẏ(t) = α [−y(t) + x(t)y(t)] , (3)

depend on just one parameter α = d/a.
There is a stationary point at x = 1 and y = 1. Therefore, if we define

x(t) = 1 + ϵξ (t), y(t) = 1 + ϵη(t), (4)

the resulting dynamical equations will depend on the perturbation parameter ϵ

ξ̇ (t) = −η(t) − ϵξ (t)η(t), η̇(t) = α [ξ (t) + ϵξ (t)η(t)] . (5)

In order to apply the Lindstedt–Poincaré method we define the dimensionless time

τ = ωt, (6)

where ω is the unknown frequency of oscillation. In this way we have

ωξ̇ (τ ) = −η(τ ) − ϵξ (τ )η(τ ), ωη̇(τ ) = α [ξ (τ ) + ϵξ (τ )η(τ )] . (7)

Following Grozdanovski and Shepherd [2] we are using the same symbols ξ and η for the solutions
of Eqs. (5) and (7). Besides, we have chosen a dot to indicate the derivative with respect to either
t or τ . Although this practice may be unwise when one is studying a practical problem and wants
to reconstruct X(T ) and Y (T ) from ξ (τ ) and η(τ ) it is harmless in the present case because our aim
is to show how to obtain perturbation corrections of large order and study the convergence of the
perturbation series.

2.2. Perturbation equations

We now assume that ϵ is a sufficiently small parameter and apply perturbation theory in the usual
way

ξ (τ ) =

∞∑
j=0

ξj(τ )ϵ j,

η(τ ) =

∞∑
j=0

ηj(τ )ϵ j,

ω =

∞∑
j=0

ωjϵ
j. (8)

From the equations of order zero (ϵ = 0) we obtain

ξ0(τ ) = A cos(τ + φ), η0(τ ) =
√

αA sin(τ + φ), (9)

and ω0 =
√

α. On inserting the expansions (8) into Eqs. (7) it is not difficult to show that the
perturbation corrections are solutions to

ξ̇n = −
1

√
α

ηn + Fn, n = 1, 2, . . . ,
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η̇n =
√

αξn + Gn

Fn = −
1

√
α

n−1∑
j=0

ξjηn−j−1 −
1

√
α

n∑
j=1

ωjξ̇n−j,

Gn =
√

α

n−1∑
j=0

ξjηn−j−1 −
1

√
α

n∑
j=1

ωjη̇n−j. (10)

2.3. Systematic approach

The purpose of this subsection is to derive general expressions for the solutions to the perturbation
equations (10) that enable us to develop a systematic algorithm for the calculation of corrections of
sufficiently large order.

Neither Grozdanovski and Shepherd [2] nor Navarro [3] consider the initial conditions of the
perturbation corrections ξn(τ ) and ηn(τ ) explicitly. Here we choose

ξn(0) = 0, ηn(0) = 0, n > 0, (11)

because they greatly facilitate the calculation of A and φ from x(0) and y(0):

x(0) = 1 + ϵA cos(φ), y(0) = 1 + ϵA
√

α sin(φ). (12)

Note that, given x(0) and y(0) we obtain the product ϵA and φ. Later on we will show why A always
appears associated to the perturbation parameter ϵ in this particular way.

In order to solve Eqs. (10) we rewrite them in matrix form

Ẇn = K · Wn + Rn,

Wn =

(
ξn
ηn

)
, Rn =

(
Fn
Gn

)
,

K =
1

√
α

(
0 −1
α 0

)
, (13)

so that the solution is simply given by

Wn(τ ) =

∫ τ

0
exp [(τ − s)K] · Rn(s) ds, (14)

where

exp (τK) =
1

√
α

(√
α cos(τ ) − sin(τ )

α sin(τ )
√

α cos(τ )

)
. (15)

Note that Eq. (14) is consistent with the initial conditions (11).
In order to identify the resonant terms that would give rise to secular terms we rewrite the first-

order differential equations as second order ones; for example

ξ̈n = −ξn + Ḟn −
1

√
α
Gn. (16)

Therefore, we set ωn so that∫ 2π

0

[
Ḟn(τ ) −

1
√

α
Gn(τ )

]
sin(τ + φ) dτ = 0,∫ 2π

0

[
Ḟn(τ ) −

1
√

α
Gn(τ )

]
cos(τ + φ) dτ = 0. (17)

These equations are a generalization of the Lemma 1 in the paper by Grozdanovski and Shepherd [2]
and the proposal of Navarro [3]. It is worth noting that the same value ofωn satisfies both Eqs. (17).We
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are not aware of a rigorous proof of this result but we can test it by means of our calculations of large
order. This point was not discussed in the earlier papers on the application of the Lindstedt–Poincaré
method tomultidimensional systems [2–4] probably because they did not try to obtain a set of explicit
equations for a systematic application of the approach.

Unfortunately, the perturbation corrections obtained in this way are considerably more compli-
cated than those derived by Grozdanovski and Shepherd [2]. For example, at first order we obtain

ξ1(τ ) = A2
[
sin (φ)

4
−

√
α cos (3φ)

12
−

sin (3φ)

12
−

√
α cos (φ)

4

]
sin(τ + φ)

+
A2√α

6
sin[2(τ + 2φ)]

+ A2
[√

α sin (3φ)

12
−

cos (φ)

4
−

cos (3φ)

12
−

√
α sin (φ)

4

]
cos(τ + φ)

+
A2

3
cos[2(τ + φ)],

η1(τ ) = A2
[

α sin (3φ)

12
−

√
α cos (3φ)

12
−

√
α cos (φ)

4
−

α sin (φ)

4

]
sin(τ + φ)

+
A2√α

6
sin[2(τ + φ)]

+ A2
[

α cos (3φ)

12
+

√
α sin (3φ)

12
+

α cos (φ)

4
−

√
α sin (φ)

4

]
cos(τ + φ)

−
A2α

3
cos[2(τ + φ)]. (18)

The coefficients of sin[2(τ + 2φ)] and cos[2(τ + 2φ)] agree with the ones derived earlier by those
authors and the remaining terms are necessary to satisfy the initial conditions (11). We also find
that ω1 = 0 removes the resonant terms. The perturbation corrections derived by Navarro [3] with
somewhat different initial conditions appear to be simpler but they are restricted to α = 1.

The perturbation corrections of second order are so complicated that we do not show them here.
Besides, ω3 is nonzero and a rather cumbersome function of α and φ:

ω3 =
A3√α (α + 1) cos (3φ)

144
−

A3α (α + 1) sin (3φ)

144

+
A3√α (α + 1) cos (φ)

48
+

A3α (α + 1) sin (φ)

48
. (19)

The occurrence of rather too complicated perturbation corrections appears to be the price that one
has to pay for obtaining the simpler equations (12) for the calculation of ϵA and φ.

At first sight the dependence of ωn on the phase φ may appear to be the consequence of a
wrong calculation. However, we have verified that present solutions already satisfy the perturbation
equations and comparison with numerical results reveals a good agreement. For example, Fig. 1
compares the curve η(ξ ) for α = 1, ϵA = 0.1 and φ = π/4 calculated by perturbation theory of
zeroth and second order and an accurate numerical result. We appreciate that the addition of the
perturbation corrections shown above already improves the analytical results. In the next subsection
we will explain the reason for the discrepancy between our expressions and those of Grozdanovski
and Shepherd [2] in a more transparent way.

2.4. The straightforward Fourier expansion

The purpose of this subsection is merely to show why it is possible to obtain many different
solutions at every order of perturbation theory. Wemay solve the differential perturbation equations
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Fig. 1. Curve η(ξ ) calculated bymeans of perturbation theory of order zero (dashed, green line), up to second order (continuous,
red line) and numerically (blue points) for α = 1, ϵA = 0.1 and φ = π/4.

(10) by inserting Fourier expansions of the form

ξn(τ ) =

n+1∑
j=1

a(n)1j sin[j(τ + φ)] +

n+1∑
j=0

b(n)1j cos[j(τ + φ)],

ηn(τ ) =

n+1∑
j=1

a(n)2j sin[j(τ + φ)] +

n+1∑
j=0

b(n)2j cos[j(τ + φ)]. (20)

For the first order we obtain (we omit the superscript for simplicity)

a11 +
b21
√

α
= 0, b11 −

a21
√

α
= 0,

a12 =
A2√α

6
, b12 =

A2

3
, a22 =

A2√α

6
, b22 = −

A2α

3
. (21)

We appreciate that if we choose a11 = b21 = b11 = a21 = 0 we obtain exactly the results of
Grozdanovski and Shepherd [2]. However, there is an infinite number of perfectly valid solutions
that emerge from arbitrary choices of a11, b21, b11 and a21 provided that they satisfy the ratios
b21
a11

= −
a21
b11

= −
√

α. One of such possible solutions is that shown above that satisfies the boundary
conditions (11). The solutions derived by the authors justmentioned seem to be the simplest ones and
are thereforemost convenient for large-order calculations.We should find suitable general conditions
to produce such simple results at every order of perturbation theory.

3. Generalization of the systematic approach

In the preceding sections we discussed two possible solutions: those that lead to the simple
initial conditions (12) and those that are considerably simpler but lead to somewhat complicated
initial conditions. The problem at hand is that we have not yet specified the initial conditions for
the perturbation equations that lead to the latter. Simpler solutions are obviously most convenient
for the calculation of analytic perturbation corrections of large order because they will render the
computation algorithm more efficient and less time and memory consuming.
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Fortunately, it is not difficult to make the general approach of Section 2.3 more flexible so that it
yields results that are as simple as those of Grozdanovski and Shepherd [2].We simply choose general
initial conditions of the form

ξn(0) = an, ηn(0) = bn. (22)

Now the solution to the matrix perturbation equations (13) is given by

Wn(τ ) = exp (τK) ·

(
an
bn

)
+

∫ τ

0
exp [(τ − s)K] · Rn(s) ds, (23)

and we can choose the arbitrary real numbers an and bn so that the pair of solutions at order n is
as simple as possible. In what follows we simply set them so that the coefficients of sin(τ + φ) and
cos(τ + φ) in ξn(τ ) vanish (we can, of course, choose ηn(τ ) instead). More precisely, an and bn are
solutions to the equations∫ 2π

0
ξn(τ ) sin(τ + φ) dτ = 0,

∫ 2π

0
ξn(τ ) cos(τ + φ) dτ = 0. (24)

It is obvious that in this way the solutions ξn(τ ) and ηn(τ ) are completely determined.
To first order we obtain

a1 = A2
[√

α sin (2φ)

6
−

α cos (2φ)

3

]
,

b1 = A2
[√

α sin (2φ)

6
−

α cos (2φ)

3

]
, (25)

consistent with the results of Grozdanovski and Shepherd [2] for ξ1(τ ) and η1(τ ).
To second order we have

a2 = A3
[√

α cos (2φ)

16 sin (φ)
+

(3 − α) cos (3φ)

32
−

√
α cos (4φ)

16 sin (φ)

]
,

b2 = A3
[

α cos (φ)

12
+

√
α (1 − α) sin (φ)

24
−

α cos (3φ)

8

+

√
α (1 − 3α) sin (3φ)

32

]
, (26)

and

ξ2 = A3
{√

α

8
sin[2(τ + φ)] +

(3 − α)

32
cos[2(τ + φ)]

}
,

η2 = A3
{√

α (1 − α)

24
sin(τ + φ) +

√
α (1 − 3α)

32
sin[2(τ + φ)]

+
α

12
cos(τ + φ) −

α

8
cos[2(τ + φ)]

}
. (27)

These solutions are different from those of Grozdanovski and Shepherd [2] but all of them satisfy the
perturbation equations. We would have obtained exactly their results if we had chosen a2 and b2 that
make the coefficients of sin(τ + φ) and cos(τ + φ) in η2(τ ) vanish. We just did it in this way to stress
the ambiguity of the results already outlined above in Section 2.4. Note that if we substitute ηn(τ )
for ξn(τ ) in Eqs. (24) we modify the, in principle arbitrary, initial conditions for the solutions to the
perturbation equations (10). In either case we have ω3 = 0.

The perturbation corrections of third order are given by the coefficients (we again omit the
superscripts)

a12 =
A4√α (α − 11)

864
, a14 =

A4√α (125 − 13α)

2160
,
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b12 =
A4 (α + 7)

432
, b14 =

A4 (13 − 20α)

540
,

a22 =
A4√α (25α + 13)

864
, a24 =

A4√α (13 − 125α)

2160
,

b22 =
A4α (5α − 1)

432
, b24 =

A4α (13α − 20)
540

. (28)

From all these results we obtain

ω4 = −
A4√α

(
5α2

+ 34α + 29
)

6912
, (29)

that was not calculated by earlier authors as far as we know.
Assisted by available computer algebra software we have calculated ξ1 , ξ2, . . ., ξ7, η1, η2, . . .,

η7 interactively and our analytical results suggest that ω2n+1 = 0, n = 0, 1, . . . for the boundary
conditions (22) given by (24). Here we just show the next two perturbation corrections to the
frequency:

ω6 =
A6√α

(
97α3

− 645α2
− 2925α − 2183

)
3317760

,

ω8 =
A8√α

(
102293α4

+ 188228α3
− 763890α2

− 2581852α − 1732027
)

14332723200
. (30)

We want to point out that up to this point we have carried out the calculation order by order
interactively (that is to say:without programming the equations for the calculation of the perturbation
corrections). Obviously, this strategy is unsuitable for the calculation of large order we are interested
in. However, even in this rather inefficient way we derived perturbation corrections of order larger
than those shown by Navarro [3] who proposed a symbolic algorithm for this purpose.

In closing this section we want to make a couple of considerations about the perturbative solution
of this model. To begin with, note that we can rewrite Eq. (7) as

ω
d
dτ

(
ξ

A

)
= −

η

A
− Aϵ

ξ

A
η

A
,

ω
d
dτ

(η

A

)
= α

[
ξ

A
+ Aϵ

ξ

A
η

A

]
. (31)

Therefore, we can obtain ξ (τ , ϵ, A) = Aξ (τ , Aϵ, 1) and η(τ , ϵ, A) = Aη(τ , Aϵ, 1) from the solutions
to the perturbation equations for A = 1 and perturbation parameter a = ϵA. This transformation is
convenient because wewill not have A in the analytic solutions to the perturbation corrections which
results in the use of less computer memory. Note that Grozdanovski and Shepherd [2] also defined
the parameter a to write their expressions for x(t) and y(t) in a more compact way. However, they did
not appear to exploit this fact in a systematic way.

4. Large-order calculations

In this section we will show that the algorithm discussed in Section 3 is actually useful for the
calculation of perturbation corrections of sufficiently large order and will exploit the fact that the
perturbation equations (13) and (23), supplemented by (17) and (24), are suitable for programming in
available computer algebra systems. For concreteness and simplicitywewill focus on the perturbation
series for the frequency

ω = 1 +

∞∑
j=1

cj(α)a2j, cj = ω2j, a = ϵA, (32)

and will try to determine its radius of convergence.



P. Amore, F.M. Fernández / Annals of Physics 396 (2018) 293–303 301

In general, the radius of convergence rc of the power-series expansion

f (z) =

∞∑
j=0

cjz j, (33)

is determined by the singularity zs of the function f (z) closest to the origin: rc = |zs|. There are many
ways of estimating the singularities of an unknown function from its known power-series expansion.
One of them is given by the Padé approximants [5]

f [K , L, z] =
PK (z)
QL(z)

,

PK (z) =

K∑
j=0

pjz j,

QL(z) =

L∑
j=0

qjz j, (34)

where the coefficients pj and qk are chosen so that

f [K , L, z] =

K+L+1∑
j=0

cjz j + O
(
zK+L+2) . (35)

It is commonly assumed that the stable zero ofQ (z) (asK and L increases) closest to the origin provides
an estimate of zs.

In some cases it is more convenient to resort to quadratic Hermite–Padé approximants [5]

PK (z)(f [K , L,M, z])2 + QL(z)f [K , L,M, z] + RM (z) = 0,

PK (z) =

K∑
j=0

pjz j,

QL(z) =

L∑
j=0

qjz j,

RM (z) =

M∑
j=0

rjz j, (36)

where the coefficients pj, qk and rm are chosen so that

f [K , L,M, z] =

K+L+M+1∑
j=0

cjz j + O
(
zK+L+M+2) . (37)

In this case the singularity closest to the origin is a stable root of

QL(z)2 − 4PK (z)RM (z) = 0. (38)

With the algorithm of Section 3 we have been able to obtain cj = ω2j for j = 1, 2, . . . , 22 as
analytical functions of α. By means of diagonal Padé (K = L) and Hermite–Padé (K = L = M)
approximants we estimated rc(α) for the expansion variable z = a2. Fig. 2 shows a good agreement
between both types of approximants.We appreciate that the radius of convergence is amonotonously
decreasing function of the model parameter α. In a recent paper Amore et al. [6] calculated the radius
of convergence of the frequency of the van der Pol oscillatorwith unprecedented accuracy bymeans of
Hermite–Padé approximants constructed from the Lindstedt–Poincaré series with an extremely large
number of terms. We are therefore confident of the accuracy of present results.
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Fig. 2. Radius of convergence of the series for the frequency as function of α. The dashed and continuous lines are results from
Padé and Hermite–Padé approximants.

As an additional verification of the accuracy of our results we have carried out a perturbation
calculation of order 62 for α = 1 and obtained rc = 3.462532 and rc = 3.457033 with Hermite–
Padé approximants f [7, 7, 7, z] and f [10, 10, 10, z], respectively. On the other hand, the diagonal Padé
approximants exhibit a stable pole close to the origin at z = 3.5. Based on these results we can safely
conclude that rc(1) ≈ 3.46.

As mentioned before Navarro [3] developed a symbolic algorithm for the computation of the
Lindstedt–Poincaré perturbation corrections and applied it to the LV model but did not show any
results beyond second order. As far as we know there is no perturbation calculation in the literature
of order as high as the one shown here. The usefulness of such calculation is obvious because it
enables us to estimate the practical range of utility of the Lindstedt–Poincaré perturbation theory
for the treatment of dynamical systems. In the case of the LV model we clearly appreciate that this
approximation is not valid if the initial populations x(0) and y(0) are such that |ϵA| > rc(α).

5. Further comments and conclusions

In this paper we have developed a systematic method for the application of the Lindstedt–
Poincaré perturbation theory to the LV model. In particular we discussed the initial conditions for
the perturbation equations that were not taken into account explicitly in earlier papers [2,3]. Present
analysis reveals that one can obtain an infinite number of solutions to the perturbation equations and
the choice of one of them depends solely on convenience. Here weweighted the possibility of simpler
expressions for the calculation of the parameters ϵA and φ on the one side against the simplicity of
the solutions on the other. In the latter case we obtained perturbation corrections of considerably
larger order than those derived earlier [2,3]. From them we could estimate the radius of convergence
of the perturbation series for the frequency. This result is important for the estimation of the range
of validity of the approximate perturbation solutions to the dynamical equations. It shows that the
resulting analytical expressions are bounded to fail for some initial conditions.

Present approach can be easily generalized to periodic nonlinear systems of any number of
dynamical variables. For example, if we can rewrite the perturbation corrections to the dynamical
equations in the form

Ẇn = K · Wn + Rn, (39)

where K is an N × N matrix and Wn and Rn are N−dimensional column vectors, then the solution to
the perturbation equation of order n is given by

Wn = exp (τK)Vn +

∫ τ

0
exp [(τ − s)K]Rn(s) ds, (40)
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where Vn is an N−dimensional column vector with arbitrary elements that we choose in order to
obtain the simplest solutions. In order to carry out this calculation we just need exp(τK) but its
construction is a textbook exercise [7].
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