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Abstract

With the advancement of personalized cancer immunothera-
pies, new tools are needed to identify tumor antigens and evaluate
T-cell responses in model systems, specifically those that exhibit
clinically relevant tumor progression.Key transgenicmousemod-
els of breast cancer are generated and maintained on the FVB
genetic background, and one suchmodel is the mouse mammary
tumor virus-polyomavirus middle T antigen (MMTV-PyMT)
mouse—an immunocompetent transgenic mouse that exhibits
spontaneous mammary tumor development and metastasis with
high penetrance. Backcrossing the MMTV-PyMT mouse from the
FVB strain onto a C57BL/6 genetic background, in order to
leverage well-developed C57BL/6 immunologic tools, results in

delayed tumor development and variable metastatic phenotypes.
Therefore, we initiated characterization of the FVB MHC class I
H-2q haplotype to establish useful immunologic tools for eval-
uating antigen specificity in the murine FVB strain. Our study
provides the first detailed molecular and immunoproteomic
characterization of the FVB H-2q MHC class I alleles, including
>8,500 unique peptide ligands, a multiallele murine MHC pep-
tide prediction tool, and in vivo validation of these data using
MMTV-PyMT primary tumors. This work allows researchers to
rapidly predictH-2peptide ligands for immune testing, including,
but not limited to, the MMTV-PyMT model for metastatic breast
cancer. Cancer Immunol Res; 6(6); 636–44. �2018 AACR.

Introduction
The success of cancer immunotherapies has shed considerable

light on the ability of the host immune system to survey and
eliminate aberrant tumor cells. Pivotal to such therapies is the
ability of the immune system to specifically recognize the tumor, a
process that occurs at the immunologic synapse when the T-cell
receptor (TCR) of cytotoxic T lymphocytes (CTLs) binds to tumor-
specific intracellular peptides presented by major histocompati-
bility complex (MHC) class I molecules. Such peptides can
be derived from pathogen, host, or mutated-self proteins, the
latter being classified as tumor neoantigens. Recognition of
these peptide–MHC (pMHC) complexes by TCRs is a prerequisite
for T-cell activation and tumor cell elimination. This mechanism
is so critical to antitumor immunity that successful CTL responses
against tumor neoantigens can induce long-term remission in a
subset of patients with melanoma (1, 2). Unfortunately, many
cancers, including breast cancers, have low mutation burdens

and/or "cold" immunologic microenvironments and, so far, have
responded poorly to immunotherapy (3). Thus, advanced tools,
such as immune-competent mouse models of breast cancer, are
needed for studying how antigen-specific CTL responses are
regulated in breast and other cancers.

The mouse mammary tumor virus-polyomavirus middle T
antigen (MMTV-PyMT) transgenic mouse is widely used for
studying breast cancer because tumors arise with high penetrance,
spontaneously metastasize to the lungs, and exhibit clinically
relevant histology in the FVB/NJ background (4). Other well-
established breast cancer models (MMTV-Neu, MMTV-c-Myc,
MMTV-Wnt1) are also found in the FVB strain, in large part due
to the technical feasibility of introducing transgenes into this
strain (5). Given the centrality of the FVB mouse to in vivo breast
cancer studies, the ability to track antigen-specific T-cell responses
would be transformative to the utility of these murine models.
Here, we address this issue by combining proteomics and in silico
MHC immunology technology to develop a tool that allows
accurate prediction of tumor peptides presented on MHC class
I in the FVB mouse.

Peptides that are recognized by T cells, termed T-cell epitopes,
vary depending on which class I MHC molecule presents the
peptide. Murine strains possess different class I haplotypes with
different peptide binding preferences (6). Inmice, the class IMHC
a-chain proteins are encoded by H-2K and H-2D. In FVB and
BALB/c mouse strains, a duplication event of the H-2D locus
spawned the pseudogene H-2L, although the physiologic rele-
vance of this duplication remains unknown (7). Because of this,
we have focused our efforts on H-2K and H-2D peptide predic-
tion. The FVB strain expresses theH-2q haplotype and, despite the
preponderance of FVB mice in disease models, the MHC peptide
binding motifs of the H-2q molecules are understudied (8). To
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address this paucity of data and the difficulties in studying
immune responses in the FVB strain, we DNA sequenced the
cDNA forms ofH-2Dq andH-2Kq gene transcripts and transfected
H-2Dq and H-2Kq gene constructs to facilitate high-throughput
proteomic identification of >8,500 peptides presented by MHC
molecules of the H-2q haplotype. These data allowed us to
develop an online mouse H-2 pan-specific prediction tool—that
is, a prediction tool encompassing theH-2b,H-2d,H-2k, andH-2q

haplotypes.
A pan-specific neural network method that uses pooled data

from multiple MHC molecules, as opposed to a single allele,
greatly improves predictive power and accuracy (9). We have also
shown that amodel integrating peptide binding affinity data with
eluted ligand data achieves highly improved predictive perfor-
mance when it comes to the identification of eluted ligands and
T-cell epitopes (10). Thus, the H-2Dq and H-2Kq peptide elution
data were combined with peptide binding and eluted ligand data
from other murine haplotypes (H-2b, H-2d, H-2k). The resulting
prediction tool is tailored to the "q" haplotype but allows cancer
immunobiologists to accurately predict peptides of other murine
class I haplotypes. We named this tool "NetH2pan," as an exten-
sion of our other published predictive tools (NetMHCpan). Prior
to this, NetMHCpan was the only murine prediction tool avail-
able for the H-2q haplotype. NetMHCpan, however, could only
predict H-2q ligands based on MHC sequence homology to other
haplotypes. NetH2pan improves upon this tool by incorporating
eluted peptide data from theH-2q haplotype. To validate this pan-
specific algorithm, we eluted >2,000 H-2q peptides from class I
MHC on MMTV-PyMT primary tumor cells, identifying peptides
derived from 27 cancer-associated source proteins. We confirmed
that the NetH2pan prediction tool successfully predicts cancer-
associated tumor peptide ligands with high fidelity (top 1%),
providing a significant improvement to current murine peptide
prediction tools. The combined molecular, proteomic, and
in silicoMHC strategies described here empower a new generation
of cancer immunotherapy research in murine models of breast
cancer.

Materials and Methods
H-2K and H-2D sequencing of the FVB strain

High-resolution MHC typing was performed by Sequence
Based Typing (SBT) at theUniversity ofOklahomaHealth Science
Center CLIA/ASHI-accredited HLA typing laboratory on FVB
mouse spleens. Extracted RNA (converted to cDNA) was ampli-
fied with two pairs of primers specific for the 5' and 3' UTRs of
H-2K and H-2LD loci. H-2L and H-2D coamplification was
dissected using locus-specific sequencing primers. Primers and
nucleotide/protein sequences have been deposited to GenBank
(accession numbers MF352192 and MF352193).

Cell lines, transfection, and production of MHC complexes for
elution studies

HeLa cells were purchased fromATCC, immediately expanded,
and frozen per manufacturer's instructions. 721.221 cells were a
kind gift fromDr. TedHansen (WashingtonUniversity, St. Louis).
HeLa and 721.221 cells were authenticated by in-house HLA-
typing and confirmed with knownHLA types of the original cells.
Cells were reauthenticated after transfection with soluble MHC
(sMHC) constructs and prior to seeding in roller bottles. Soluble
MHC constructs were generated as previously described with the

addition of a very low-density lipoprotein receptor (VLDLr)
purification tag (11). 721.221 and HeLa cells were stably trans-
fected with the sMHC by nucleofection per the manufacturer's
cell-line optimized protocols (nucleofection kits R and V, Lonza),
G418 drug selection for 10 days, and subcloned by single-cell
sorting. sMHC-producing clones were identified using a capture
enzyme-linked immunosorbent assay (ELISA) with anti-VLDLr
(CRL-2197 hybridoma, ATCC) as the capture antibody and
anti-b2-microglobulin (DAKO) as the detection antibody, and
developed with o-phenylenediamine dihydrochloride (Sigma).
Transfected cells were seeded into 48 roller bottles and sMHC-
containing supernatant was collected. sMHC was purified from
the supernatant using affinity chromatography with an antibody
to VLDLr as published (12). Complexes were eluted from the
column in 0.2 N acetic acid and immediately processed for
isolation of the peptide ligands

Liquid chromatography–mass spectrometry (LC-MS) of H-2Dq

and H-2Kq peptides
Peptide ligands were eluted as described previously (1, 11).

Briefly, peptides were separated frompurifiedMHCwith acid boil
followed by 3-kDa ultrafiltration (Merck Millipore). Peptides
were fractionated with reverse phase-high performance liquid
chromatography (RP-HPLC) and then analyzed by LC-MS.
Nano-scale LC was performed with an Eksigent nano-LC-400
with an Eksigent autosampler (AB SCIEX). Fractions were com-
bined with internal retention time (iRT, Biognosys) peptides
before injection. Eluate was ionized with a NanoSpray III ion
source (AB Sciex), and MS1 and MS2 fragment spectra were
obtained in data-dependent acquisition (DDA) mode using a
SCIEX TripleTOF 5600. Peptide sequences were obtained from
spectra using PEAKS 8.0 (Bioinformatics Solutions) at a 5% FDR.
Oxidation (M,H,W), deamidation (N,Q), sodium adducts (D, E,
C-term), acetylation (N-term), pyro-glu from Q, and cysteinyla-
tion (C) were used as variable modifications. The UniProt data-
base with Homo Sapiens or Mus Musculus taxonomy and iRT
peptides were used as a reference library for fragments. Identified
sequences have been deposited to the IEDB (submission IDs
1000724, 1000726, and 1000727, www.IEDB.org).

Training a pan-specific murine MHC ligand prediction method
Assembling a panel of peptide–H-2 binding and elution data. The
amino-acid sequences of the H-2Dq and H-2Kq molecules were
aligned to a reference database of MHC sequences to determine
the pseudosequence of MHC residues in direct contact with the
peptide, as described in detail previously (13). Both for H-2Dq

and H-2Kq elution data sets, potential contaminants, and false
positives (1%–5% of the ligands) were filtered out using
GibbsCluster (14), applying the default parameters suggested for
MHC I ligands of variable length. Binding affinity and ligand
elutiondata for seven additionalmurineMHCmolecules (H-2Db,
Dd, Kb, Kd, Kk, Ld, and Lq) were obtained from the IEDB (15), and
consisted of 9,625 pMHC binding affinity measurements and
3,310 eluted ligands of length 8 to 11 residues. Binding affinity
values aff in IC50 nmol/Lwere rescaled using the relationship t¼ 1
� log(aff)/log(50,000), ensuring that target values fell between 0
and 1 (16). Because elution experiments only report positive
peptides, negative instances must be generated artificially: for
each H-2 molecule, the peptide length with the highest number
N of observed ligands was determined, introducing then a flat
distribution of 10 � N random natural peptides for each of the
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lengths 8, 9, 10, and11as artificial negatives. Each trainingpoint is
therefore represented by a triplet consisting of (i) the peptide
sequence; (ii) the MHC pseudosequence associated with the
peptide; and (iii) the target value, either as a rescaled binding
affinity or as a binary value (one for observed ligand, zero for
artificial negative).

Neural network training. A neural network ensemble was trained
in 5-fold cross-validation as described (9), extending the architec-
ture of the neural network with a second output neuron (10). This
addition allows combining heterogeneous training data by utiliz-
ing the first output neuron (and its connections from the hidden
layer) for binding affinity examples, and the second output neuron
to predict ligands. Because the weights between input and hidden
layers are shared between the two data types,motifs can be learned
and reinforcedwithin andbetweendata types.All otherparameters
were consistentwith thearchitecture ofNetMHCpan-3.0:networks
were initialized with 10 alternative random configurations of
weights, using a single hidden layer composed of either 56 or
66 neurons and representing peptides and pseudosequences using
BLOSUM encoding (9). Up to one insertion and two deletions
were allowed to accommodate peptides of lengths 8 to 11 to a
common alignment core of nine amino acids. Additional features
encoded as input to the networks included the length of the
insertion/deletion (if any) and the length of the peptide. The
training set for H-2Dq included only the ligands derived from
HeLa cells; ligands eluted from 721.221 cells were reserved as an
independent set to evaluate the performance of the predictor.

Predictive performance was calculated in terms of area under
the ROC curve (AUC) and in positive predictive value (PPV). In
line with previous work, the predictions on the ligand data sets
were compared against a decoy set of 999 natural random pep-
tides for each positive instance, equally distributed across the four
peptide lengths 8, 9, 10, and 11 (17). For cross-validation experi-
ments, the partitions of positive examples were maintained
unaltered, whereas negative examples were replaced with the
999 random decoys per positive example. The PPV was then
calculated as the fraction of true positives among the top 0.1%
ligands predicted by the method.

Length and motif preferences of H-2 molecules. For each MHC
molecule included in the model, 400,000 random natural pep-
tides (100,000 for each of the lengths 8, 9, 10, 11) were submitted
to the neural networks and ranked by ligand prediction score. The
relative frequency of each peptide length among the top 1%
scoring peptides was then used to draw the ligand length profile
characterizing each H-2 molecule. Similarly, the same top 1%
scoring peptides were used to generate sequence motifs of
the MHC molecules included in the model using the software
Seq2Logo (18). For the analysis of the peptide cleavage prefer-
ences, ligands were mapped back to the nonredundant Uni-
ProtKB/Swiss-Prot database (19) to retrieve their source protein
sequences. Enrichment scores M in the peptide flanking regions
were then calculated as M ¼ log2(Fi,A/EA), where Fi,A is the
frequency of amino acid A at position i, and EA is the expected
frequency for amino acid A calculated on all source proteins
containing at least one ligand.

Mice
Female, 5-to-8-week-old FVB/NJ (Jackson Laboratories stock

number 001800) and MMTV-PyMT (Jackson Laboratories stock

number 002374) mice were purchased from The Jackson Labo-
ratories. All animal work was in accordance with policies at
the University of Utah, and all studies were approved by the
University of Utah IACUC committee. MMTV-PyMT tumor cells
were harvested from MMTV-PyMT transgenic mice, collagenase
digested, and implanted into cleared mammary fat pads accord-
ing to standard procedures (20). Tumors were measured weekly
and size was calculated using length and width calliper measure-
ments in the ellipsoid formula (Tumor volume ¼ 1/2(length �
width2)). Mice were euthanized when tumors reached a maxi-
mumof 2 cm3 and tumors were flash frozen in liquid nitrogen for
peptide extraction.

Peptide identification from MMTV-PyMT tumors
Anti–H-2Dq (28-14-8S hybridoma, ATCC) and anti–H-2Kq

(34-1-2S hybridoma, ATCC) were used to generate H-2q immu-
noaffinity columns by coupling to CNBR-activated Sepharose 4
Fast Flow (GE Healthcare). Peptides were extracted based on a
previously published protocol (Supplementary Fig. S1; ref. 21).
Whole tumors were flash frozen in liquid nitrogen, cryogenically
milled (MM400, RETSCH), suspended in lysis buffer containing
octylphenoxy poly(ethyleneoxy)ethanol (IGEPAL; Sigma) and
cOmplete EDTA-free protease inhibitor cocktails (Roche), and
clarified by ultracentrifugation. Filtered lysate was passed over
sequential anti-H-2Dq and H-2Kq columns. Peptides were
eluted in acid and boiled, isolated by RP-HPLC, and analyzed
by LC/MS using DDA mode for de novo peptide identification as
described above. The UniProt database with Mus Musculus
taxonomy was used as a reference library. Peptide results can be
accessed through the IEDB (submission ID1000724, http://www.
iedb.org).

Results
Characterization of H-2q haplotype

We began by sequencing the class I MHC H-2q loci with high-
resolutionMHC typing. The sequencing strategy used here ampli-
fied the regionsflanked by the 5' and 3'UTRs forH-2K andH-2L/D
genes of the FVB/NJ strain. Locus-specific oligonucleotide primers
were used to separate the H-2D sequence from H-2L. The ampli-
fication primers and nucleotide sequences for H-2Dq and H-2Kq

have been deposited into GenBank (accession numbers
MF352192 and MF352193). The H-2L locus, although expressed
in the "q" haplotype, is present only in a fewMHChaplotypes (6),
andwe therefore chose to characterize onlyH-2Dq andH-2Kq. The
resulting sequences for H-2q loci differed by 2 and 1 amino acids
fromprevious reports forH-2Kq andH-2Dq, respectively, afinding
that is expected given strain-to-strain variation and improved
sequencing techniques. Having determined the sequence of
H-2Dq and H-2Kq, we proceeded to identify peptides presented
by the "q" haplotype.

Using the MHC class I H-2Kq and H-2Dq sequences, we
designed sMHC constructs that lacked the transmembrane
domain and incorporated a VLDLr purification tag. Engineered
purification tags (e.g., VLDLr) eliminated the need for allele-
specific antibodies (28-14-8S and 34-1-2S) that may cross-react
with other alleles within the same haplotype, allowing isolation
of only the peptide:MHC complexes of interest. For alleles in
which the motif is not yet characterized, such an approach
allowed the characterization of the correct motifs with high
confidence. sMHC-bound peptidomes accurately represent the
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full-length, membrane-bound peptidomes with comparable
binding motifs, peptide lengths, predicted binding antigens, and
putative source antigens (22). Based on these findings, sMHC is a
valuable and physiologically relevant tool for studying the
immune peptidome. Tagged, soluble forms of H-2Kq and H-2Dq

were separately transfected into theMHCclass I–negative 721.221
cell line, and high producing single-cell clones were obtained.
Soluble H-2Dq was also transfected into HeLa cells to provide
additional unique H-2Dq peptides. Multiple attempts for a high
producing 721.221-H-2Kq were made, but protein expression
dwindled with each expansion impeding soluble H-2Kq produc-
tion in these cells. Peptide–MHC complexes from the supernatant
of high-producing clones were purified by anti-VLDLr immunoaf-
finity columns, and peptides were liberated from the MHC by
boiling in acidic conditions. Two-dimensional nano-LC-MS/MS
yielded 8500H-2Dq and481H-2Kqdifferent peptides, permitting
the visualization of H-2Dq and H-2Kq binding motifs, ligand
length distributions, and source protein distribution (Fig. 1).
These peptide sequences and their source proteins are available
through the Immune Epitope Database (IEDB; submission IDs
1000726 and 1000727, http://www.iedb.org). The high number
of unique H-2Dq peptides was due to higher H-2Dq expression in

transfected 721.221 and HeLa cells than in H-2Kq transfected
721.221 cells alone. Physiologic differences in allele expression,
peptide diversity, and binding motifs can all contribute to fewer
H-2Kq ligands when compared with H-2Dq.

Analysis using Seq2Logo revealed an MHC binding motif for
each allele (Fig. 1A and B; ref. 18). H-2Dq favored proline at P2
and hydrophobic residues at PO, whereasH-2Kq favored acidic P2
residues and a hydrophobic PO (Fig. 1A and B). The ligand length
preference differed substantially between the two loci whereby
H-2D preferred 9-mers and H-2K bound predominately 8-mers
(Fig. 1C). These ligands were derived from 4,000 source proteins,
and most source proteins provided a single peptide (Fig. 1D).

Generation of a prediction model for murine MHC class I
Pooling this large set ofH-2Dq andH-2Kq ligandswith publicly

available H-2 ligand elution and binding affinity data, we gen-
erated a pan-specific predictionmodel applicable to nine different
mouse MHCmolecules. This combination of multiple molecules
and data types produced a consistently high performance in terms
of AUC for the prediction of binding affinity (BA) and ligand
likelihood (EL), even for alleles for which only one data type was
available (Table 1). Of particular interest for this study, the

Figure 1.

Soluble MHC elution identifies H-2Dq and H-2Kq ligands. A and B, Peptide binding motif for H-2Dq and H-2Kq (derived from the subset of 9-mer and 8-mer
ligands, respectively). C, Ligand length distribution (normalized to the most prevalent length: 8-mer for H-2Kq, 9-mer for H-2Dq. D, Source protein analysis of H-2q

peptides (normalized to the most frequent number of peptides per protein). Graphs C–D were generated with 3,500 721-H-2Dq ligands and 500 721-H-2Kq ligands.
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predictor obtains a remarkably high cross-validated AUC¼ 0.993
for H-2Dq. An alternative useful performance metric is the PPV,
which measures the fraction of true positives in the top Pp %
predicted ligands. Because each MHC molecule is expected to
present approximately 1 of 1,000 peptides in the proteome, the
PPVwas calculated on the top Pp¼ 0.1% predictions. The PPV for
the five H-2 alleles characterized by ligand data varied between
35.7% and 61.1%, with an average of 49.8% (Supplementary
Table S1; refs. 15, 17). The model maintains a high predictive
performance on H-2Dq ligands eluted from another cell line
(721.221) that were not included in the original training set
(AUC¼ 0.944, PPV¼ 59.7%). Ligands detected in both the HeLa
and 721.221 cell lines (see Supplementary Fig. S2) were excluded
from this validation. When both affinity and ligand elution data
were available for a given allele, the combined model did not
benefit from the added binding affinity data to predict eluted
ligands, compared with a model only trained on eluted ligands
(Table 1). However, in cases in which only binding affinity or
eluted ligand data were available for a given allele, the combined
approach had the advantage of complementing one data type
with the other, using a single, unified model. The prediction tool
can be accessed at http://www.cbs.dtu.dk/services/NetMHCpan-
4.0/NetH2pan/.

The eluted and predicted binding motifs for H-2Kq and H-2Dq

both show a preference for hydrophobic residues in the PO F
pocket (Fig. 1A and B; Fig. 2A and B). This hydrophobic amino
acid preference is highly conserved amongst murine and human
MHC and is essential for stability within theMHC class I–binding
cleft (23). The second anchor for H-2Dq is a proline at the P2 B
pocket. H-2Kq, on the other hand, favors peptides with acidic
residues at the P2 anchor. The preference for acidic residues at P2
could not be captured by networks trained without H-2Kq eluted
ligands. Despite the ability of pan-specific methods to infer
binding motifs by similarity to other alleles, dissimilar molecules
canbehard to predict. As a rule of thumb, the pan-specificmethod
described here performed accurately for alleles with a distance D
(measured in terms of the pseudosequence similarity) to the
training data lower than 0.1 (24). In the absence ofH-2Kq training
data, the minimum distance for H-2Kq was D¼ 0.33, with H-2Kk

being the closest allele in the training data. This observation
underscores the importance of collecting experimental elution
data across the whole MHC sequence space. Peptides with acidic
anchors have limited diversity, which might also explain the low
yield of H-2Kq peptides in our experiments.

An important feature of neural networks trained on peptides
of variable length is their ability to assimilate the ligand length
preferences of MHC molecules (25). Accounting for MHC-
dependent length preferences has important implications when
scanning for potential ligands in epitope discovery. In this
respect, the model shows that H-2Kq has a marked preference
for 8-mers (Fig. 2C), reflecting the distribution directly
observed in the elution experiments (Fig. 1C). This tendency
is similar to the length preference for H-2Kb, both as predicted
by our model and as described in the literature (26). H-2Dq has
a more canonical peptide length distribution, centered on 9-
mers and to a lesser extent on 10-mers and 11-mers (Fig.
1C, 2C). These data confirm that the prediction tools accurately
represent the eluted peptide data and that this pan-specific
approach can identify subtle differences in length and anchor
preferences of the murine MHC I.

Cytoplasmic proteins targeted for degradation undergo anti-
gen processing (defined by proteasomal cleavage, trimming by
cytosolic peptidases, and N-terminal processing by endoplas-
mic reticulum aminopeptidases). Given this, we hypothesized
that certain residues would be favored in the source protein
regions directly surrounding the MHC-presented ligands. Anal-
ysis of flanking source protein sequences revealed a preference
for methionine (M) at N-1, whereas proline (P) was disfavored
at both termini (N � 1, C þ 1; Fig. 2D). Positively charged
residues (R, K) appeared to be enriched at C þ 1, C þ 2,
whereas negatively charged residues (D, E) were depleted in
these positions. The source proteins of H-2 ligands extracted
from the IEDB (Fig. 2E, element-wise correlation PCC ¼ 0.559)
and in previously reported peptide cleavage signatures (17)
had similar patterns. To test whether these cleavability prefer-
ences could improve the identification of H-2 ligands, we
retrained NetH2pan, including the 5-residue regions flanking
the ligands as additional input features. We did not observe a
significant impact of cleavability preferences in cross-validated
performance, with average AUC increasing slightly from 0.945
(model without flanking sequences) to 0.947 (with flanks),
and PPV decreasing from 49.8% to 49.1% (Supplementary
Table S2). On the H-2Dq evaluation set from 721.221 cells,
AUC increased from 0.944 to 0.945, and PPV from 59.7% to
60.5%. Although signatures of peptide processing were found
consistently across data sets and MHC alleles, their contribu-
tion thus did not appear to be beneficial to improving ligand
prediction.

Table 1. Cross-validated performance in AUC for prediction methods trained on binding affinity data only (BA), eluted ligands only (EL), and a combination of both
data types (NetH2pan)

Binding affinity data Eluted ligands
Allele N Positive BA NetH2pan N Positive EL NetH2pan

H-2Db 3,775 730 0.943 0.945 22,616 806 0.981 0.981
H-2Dd 413 47 0.902 0.902 0 0 NA NA
H-2Dq 0 0 NA NA 83,107 4,107 0.995 0.993
H-2Kb 3,977 1,338 0.920 0.922 21,509 1,774 0.936 0.933
H-2Kd 843 295 0.859 0.858 24,148 730 0.968 0.968
H-2Kk 371 176 0.847 0.855 0 0 NA NA
H-2Kq 0 0 NA NA 8,121 361 0.930 0.855
H-2Ld 243 50 0.939 0.951 0 0 NA NA
H-2Lq 3 2 NA NA 0 0 NA NA

NOTE: For binding affinity measurements, positive instances are defined as having an IC50 affinity < 500 nmol/L. For elution assays, the total number of data points
(N) includes the positives (i.e., the observed ligands) and a uniform distribution of artificial negatives generated as described in Materials and Methods. This tool
predicts two properties of each peptide: binding affinity or eluted ligand likelihood. For binding affinity evaluation, the binding affinity predictionswere used, and for
eluted ligands, the eluted ligand likelihood predictions.
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Tumor antigen discovery validation of the NetH2pan
algorithm

Finally, we sought to validate the NetH2pan prediction tool on
ligands directly eluted from primary murine tumors as a com-
plementary method to eliminate any bias introduced by the
sMHC approach. The ability of NetH2pan to predict peptides
presented on full-length H-2Dq and H-2Kq via physiologic anti-
gen processing would provide important validation of this tool.
Because aberrancies to MHC class I presentation vary among
tumor models, and functions as a mechanism of tumor immune
evasion, we confirmed class I MHC expression on >60% of

EpCAMþ primary tumor cells using flow cytometry (Supplemen-
tary Fig. S3). These percentages correlate with global MHC I
transcript expression in healthy mammary tissue and secondary
lymphoid organs in mice (27). Compared with splenocytes,
tumor cells exhibited heterogeneous MHC class I protein expres-
sion (Supplementary Fig. S3E).Wenext purified class IMHC from
the 5 g of murine tumors; we were able to purify >2,000 H-2q

ligands fromMMTV-PyMT tumors. Thesefindings suggest that the
ability for MMTV-PyMT tumors to thrive in the FVB mouse
does not result from a lack of peptide presentation, but likely
other T-cell–dampening mechanisms that require further

Figure 2.

Binding motifs predicted by the neural network model. A, H-2Dq shows a strong preference for proline at P2 and enrichment of hydrophobic/aromatic amino
acids at PO. B,H-2Kq requires acidic residues at P2 and hydrophobic amino acids at PO. C, Predicted ligand length preferences for the nine H-2 alleles included in the
model, calculated from a large set of random natural peptides. D–E, Amino-acid enrichment in the source protein regions flanking the ligands, derived from
soluble MHC ligands generated in this study (D) and fromH-2 ligands extracted from the IEDB (E). Values in the heatmaps areM¼ log2(F/E), where F is the observed
frequency and E is the expected frequency in the source proteins containing ligands. The element-wise correlation between the heat maps D and E is PCC¼ 0.559.
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exploration. Therefore, neoantigen discovery paired with peptide
prediction remains highly relevant.

Peptide:MHC complexes were extracted from MMTV-PyMT
tumors pooled from sevenmice, based on a previously published
protocol (Supplementary Fig. S1; refs. 21). Whole tumors were
flash frozen in liquid nitrogen, cryogenically milled, and sus-
pended in lysis buffer. Lysateswere clarifiedbyultracentrifugation
and passed over sequential H-2Dq and H-2Kq columns. Peptides
were eluted by acid boil, and the yield of MHC was quanti-
fied by the b-2-microglobulin peak in first dimension HPLC
(pH 2.85). Peptides were fractionated and analyzed by LC/MS
using DDA (H-2Dq and H-2Kq) for de novo peptide identification.
Full-length purification relied on two H-2q immunoaffinity col-
umns (28-14-8S and 34-1-2S). Previous literature suggests that
the 28-14-8S antibody can cross-react with both H-2Dq and
H-2Lq. To prevent the coelution of H-2Dq and H-2Lq peptides
fromundermining our analysis, we used the sequence available in
the public domain for H-2Lq (GenBank AAA39573.1) and com-
pared it with the sequence obtained for H-2Dq. We indeed
find differences in the residues contained in the H-2 peptide-
binding domain. These differences suggest subtle variation in the

predicted ligands of H-2Dq and H-2Lq, allowing eluted peptides
to be sorted using the Gibbs Cluster analysis. Only the peptides
matching the H-2Dq motif generated from the sMHC approach
were used to validate NetH2pan. Additionally, we found that
34-1-2S also recognized H-2Dq, because LC/MS analysis solved
H-2Dq peptides and H-2Dq heavy chains in the eluate. Peptides
eluted from 34-1-2S columns were subjected to Gibbs Cluster
analysis aswell. Because of the cross-reactivity and the strictH-2Kq

motif, 40-fold fewer H-2Kq peptides were identified when com-
pared with H-2Dq (Supplementary Table S3).

The list of tumor-presented peptides is accessible through
IEDB, and specific MS/MS spectra are available upon request
(submission ID 1000724, http://www.iedb.org). Using the
H-2q peptides extracted fromPyMT tumors, two dominantmotifs
emerged (Fig. 3A and B) that were nearly identical to the
sMHC eluted and predicted motifs (Figs. 1 and 2). Of the
2,000 tumor-eluted peptides, 27 cancer-associated source pro-
teins were identified and used to test the prediction performance
of NetH2pan versus NetMHCpan-3.0 (Fig. 3C; Supplementary
Table S4). These 27 source proteins include oncogenes, tumor
suppressors, and common biomarkers, but are not canonical

Figure 3.

H-2q peptides from MMTV-PyMT
tumors validate prediction methods.
A–B, H-2q binding motifs for peptides
directly eluted from tumors, C,
Comparison of predictions for
presented cancer-associated peptides
with NetMHCpan; �� , P ¼ 0.0013
(binomial test). D–F, Select H-2Dq

peptide MS/MS spectra of cancer-
associated source proteins eluted from
tumors: macrophage inhibitory factor
(MIF), epithelial cell adhesionmolecule
(EpCAM), and hepatocyte growth
factor receptor (MET) oncogene.
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"tumor antigens." The spectra of 3 (of 27) cancer-associated
peptides, macrophage inhibitory factor (MIF), epithelial cell
adhesion molecule (EpCAM), and hepatocyte growth factor
receptor (MET), are shown to illustrate the unambiguous prote-
omic data obtained directly from tumors (Fig. 3D–F). The source
protein sequenceswere subjected toNetH2pan andNetMHCpan-
3.0 peptide predictions, then the identified eluted peptide was
compared with the resulting predicted peptides. Pooling all
sequences of the cancer-associated proteins containing at least
oneH-2Dq ligand and digesting them in all possible 8- to 11-mers
resulted in a total of 86,340 peptides. The 32 observed H-2Dq

ligands constituted 0.04% of the total pool of 86,340 potential
ligands, a number not too distant from the 0.1% estimate
assumed in earlier studies (17, 28). Among the top 32 ligands
predicted byNetH2pan, 11 were true positives (PPV¼ 34.4%). In
contrast, none of the top 32 ligands predicted byNetMHCpan-3.0
were true positives. In sum, NetH2pan outperformed NetMHC-
pan on the peptide predictions, providing improved predicted
binding affinities (rank scores; Fig. 3C). Of the 33 peptides, 32
were predicted within the top 3%, with the median absolute rank
being 3. In comparison, NetMHCpan predictions had a median
absolute rank of 38. This means that when using NetH2pan,
researchers are likely tofind the true ligands by synthesizing only 3
predicted peptides, in contrast to the 38 required using the earlier
NetMHCpan tool.

Discussion
In summary, we sequenced the MHC class I loci of FVB mice,

produced and isolated their MHC class I proteins, and generated
an MHC class I binding motif for the FVB "q" haplotype. Over
8,500 ligands were eluted, allowing us to design a prediction tool
for antigens of interest. This tool, "NetH2pan," improves on
previous "NetMHCpan"methods by utilizing both binding affin-
ity and elution mouse H2 data to generate its predictions, repre-
senting a sophisticated peptide modeling tool for mice. To con-
firm this, peptides directly identified on MMTV-PyMT primary
tumors served as a validation of the predictive power of NetH2-
pan. This immunopeptidomics study represents the first MHC
peptide characterization and prediction for the "q" haplotype and
for MMTV-PyMT tumors. Our data also facilitate improved pre-
dictions of peptide presentation in other commonly used murine
strains, including C57/BL6 and BALB/c.

Antigen-specific T-cell responses have been difficult to study
in breast cancer because the antigens are poorly characterized in
mouse models with high penetrance of breast cancer. Our goal
was to enable studies of antigen-specific responses in models of
spontaneous tumor development and metastasis, which are
often on the FVB background. Here, the identification of
ligands directly eluted from tumors identifies MMTV-PyMT

tumor-presented peptides, although immunogenicity studies
must be undertaken to validate ligands as T-cell targets. This
approach is not confined to a single antigen or murine strain, as
we have provided a method improved from the NetMHCpan
tool to predict peptides across several MHC class I haplotypes.
In this way, NetH2pan will be particularly useful for cancer
neoepitope prediction from tumor-specific mutations identi-
fied via whole-exome-sequencing (WES) data in C57/BL6
tumor models, as the H-2b predictions are now more likely to
generate truly presented peptides (29). This WES-tumor neoan-
tigen-peptide prediction pipeline has been adopted and suc-
cessfully used to treat human melanoma patients (1). When
used appropriately and in combination with WES data from
tumors, NetH2pan can predict CD8 T-cell immune epitopes
with fewer false positives. More work must be done to char-
acterize which of these peptides are unique to the tumor and
capable of activating CTLs. These studies are now feasible in
more murine cancer models. The prediction model developed
in this study is publicly available online as a webserver at
http://www.cbs.dtu.dk/services/NetMHCpan-4.0/NetH2pan.
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