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a b s t r a c t 

A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void 

distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are con- 

sidered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and 

bounding from above the corresponding dissipation potential à la Gurson. The second approach consists 

in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding 

dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a peri- 

odic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier 

Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law 

creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement be- 

tween all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies 

arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different 

asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crys- 

tal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some de- 

ficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates 

based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere 

assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, 

even for relatively strong plastic anisotropies. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Some engineering alloys employed in nuclear reactors can nu-

cleate intragranular voids when exposed to prolonged neutronic ir-

radiation (e.g., Garner, 2012 ). In the concomitant presence of high

temperatures and mechanical stresses, the voids may subsequently

grow by creep deformation to the extent of compromising the

mechanical integrity of the material. Experimental and numerical

studies on the viscoplasticity of single crystals have shown that

crystal anisotropy can have a significant impact on the void growth

process (e.g., Crépin et al., 1996; Yerra et al., 2010; Srivastava and

Needleman, 2013 ). This has motivated recent effort s to incorporate

crystal anisotropy into constitutive models for viscoplastic voided

solids. One of the first proposals was made by Han et al. (2013) .
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hese authors confected a yield function for voided cubic crystals

y combining elements from the linear-comparison homogeniza-

ion approach of de Botton and Ponte Castañeda (1995) for crys-

alline solids and the limit analysis of Gurson (1977) for isotropic

olids. The model was further improved by introducing Tvergaard-

ype parameters that were adjusted with finite-element calcula-

ions for periodic solids. One of these parameters impacts the pre-

ictions for high stress triaxialities by directly rescaling the hydro-

tatic mean stress. An alternative yield function was subsequently

roposed by Paux et al. (2015) . These authors regularized the

ishop–Hill polyhedron of the crystalline matrix and exploited the

imit analysis of Benzerga and Besson (2001) for Hill-type solids.

s in the previous case, however, the hydrostatic mean stress was

escaled to improve predictions for high stress triaxialities. A more

omprehensive constitutive model, allowing for any crystal sym-

etry and incorporating power-law viscoplasticity as well as void

hape effects, was proposed by Mbiakop et al. (2015) . The model is

ased on the linear-comparison approach of de Botton and Ponte

astañeda (1995) with an ad-hoc class of comparison creep com-

liances suitably chosen so that, once again, predictions for purely
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t  
ydrostatic loadings reduce to certain reference values. More re-

ently, Song and Castañeda (2017) made use of a more sophisti-

ated linear-comparison approach to derive a fairly general con-

titutive model incorporating deformation-induced microstructural 

hanges. This approach includes an iterative procedure that serves

o improve the predictions at high stress triaxialities. It is thus ev-

dent that hydrostatic loadings are of particular relevance to the

evelopment of constitutive models of this sort. Motivated by this

bservation, we report a detailed analysis of a viscoplastic single

rystal containing an isotropic distribution of voids and deforming

nder remote hydrostatic stresses, which could serve as a reference

or adjusting more general constitutive models. Additional interest

n this analysis stems from the fact that hydrostatic loadings usu-

lly exacerbate differences between competing theories and, fur-

hermore, allow analytical treatment. Three different approaches

re considered. 

The first approach consists in idealizing the voided crystal as a

ollow sphere assemblage and then bounding from above the as-

ociated dissipation potential by evaluating the relevant functional

t spherical velocity fields. This approach was initially proposed by

urson (1977) to model void growth in isotropic plastic solids, and

as been extensively employed since then in more general con-

exts by numerous investigators in view of its accuracy and sim-

licity (see Benzerga and Leblond, 2010 and references therein).

he vast majority of such works have retained the assumption of

ocal isotropy presumably because the resulting bounds turn out to

e exact only when this condition holds. Strictly, however, Gurson’s

pproach does apply to locally anisotropic solids as well ( Benzerga

nd Besson, 2001; Paux et al., 2015 ), even though its accuracy is

xpected to deteriorate with increasing plastic anisotropy. Assess-

ng this expectation is one of the objectives of the present work. 

The second approach consists in idealizing the voided crystal

s a sequential laminate of infinite rank obeying an isotropic lam-

nation sequence initially proposed by de Botton (2005) in a two-

imensional context and later generalized by Idiart (2008) , and

omputing the associated dissipation potential exactly. While ge-

metrically unrealistic at first sight, these sequentially laminated

icrostructures have been found to realistically mimic a wide va-

iety of two-phase material systems including viscoplastic voided

olids (e.g., Idiart, 2008; Danas et al., 2008 ). Interestingly, these

equential laminates exhibit the exact same response as a hol-

ow sphere assemblage under hydrostatic loading when the poros-

ty distribution and local response are both isotropic ( Idiart, 2007;

008 ). In contrast to Gurson’s approach, however, this approach

ields an exact result for sequentially laminated systems even

hen the matrix is locally anisotropic; it is therefore expected to

e more accurate, especially for highly anisotropic crystals. Assess-

ng this expectation is another objective of the present work. 

Finally, the third approach consists in idealizing the voided

rystal as a periodic medium with a complex unit cell, and com-

uting the mechanical fields numerically via a Fast Fourier Trans-

orm (FFT) algorithm proposed by Moulinec and Suquet (1994) .

he FFT method makes direct use of microstructural images and

s particularly suitable for investigating strongly nonlinear ma-

erial responses that can lead to severe localization of the me-

hanical fields (e.g., Idiart et al., 2006; Idiart et al., 2009 , and

rennerat et al., 2012 ), as expected in the present work. These nu-

erical results are adopted as benchmarks to assess the accuracy

f the other two approaches. 

. Problem formulation 

.1. Local properties 

We consider a representative volume element (RVE) of the

oided crystal containing a statistically uniform distribution of
oids whose characteristic size is much smaller than that of the

VE. The crystalline matrix is identified as phase r = 1 while the

oids are collectively identified as phase r = 2 . Viscoplasticity is

ost conveniently studied by adopting an Eulerian description of

otion. Thus, we consider a generic stage of deformation where

he domains occupied by the crystalline matrix, the voids, and the

VE are �(1) , �(2) and � = �(1) ∪ �(2) , respectively. The distribu-

ion of voids is taken to be isotropic. 

The crystalline matrix is assumed to deform by multi-glide

long K slip systems following a purely viscoplastic response char-

cterized by a convex dissipation potential w such that the Cauchy

tress σ and Eulerian strain rate D tensors are related by 

= ∂ D w ( D ) . (1)

n the case of power-law standard viscoplasticity, the dissipation

otential is given by 

 ( D ) = sup 

σ
[ σ · D −u ( σ) ] with u ( σ) = 

K ∑ 

k =1 

τ (k ) 
0 

˙ γ0 

n + 1 

∣∣∣∣σ · μ(k ) 

τ (k ) 
0 

∣∣∣∣n +1 

, 

(2) 

here the stress potential u is the Legendre dual of w . In this last

xpression, n ≥ 1 is the creep exponent, ˙ γ0 is a reference strain

ate, and τ (k ) 
0 

> 0 is the flow stress of the k th slip system with

chmid tensor μ(k ) = n 

(k ) 
�s m 

(k ) , normal vector n 

( k ) , and flow

irection m 

( k ) . Henceforth, �, �s and �d will denote the tensor

roduct, its symmetric part, and its deviatoric part, respectively.

n this work we restrict attention to families of slip systems such

hat the crystal response exhibits cubic symmetry. Note that the

chmid tensors are traceless and therefore the potential (2) char-

cterizes an incompressible response. Furthermore, note that the

tress potential u is homogeneous of degree n + 1 and 1 in σ and

˙ 0 , respectively, and therefore the dissipation potential w is homo-

eneous of degree 1 + 1 /n and −1 /n in D and ˙ γ0 . 

Power-law viscoplasticity is particularly appropriate for investi-

ating the effect of nonlinearity and crystal anisotropy in a wide

ange of material behaviors. The limiting cases n = 1 and n → ∞
orrespond to linearly viscous and rate-independent plastic behav-

ors, respectively. In the former case, the dissipation potential be-

omes 

 ( D ) = 

{
1 
2 

D d · L D d if tr D = 0 , 

+ ∞ otherwise , 
(3) 

here D d is the deviatoric part of D and L =
 

∑ K 
k =1 (τ

(k ) 
0 

/ ̇ γ0 ) 
−1 μ(k ) 

� μ(k ) ] −1 is an incompressible viscosity

ensor. In the latter case, the dissipation potential becomes 

 ( D ) = 

{ 

sup 

σd ∈P 
σd · D d if tr D = 0 , 

+ ∞ otherwise , 
(4) 

here the set P = 

{ 

σd ∈ T d : | σd · μ(k ) | ≤ τ (k ) 
0 

, k = 1 , . . . , K 

} 

rep-

esents the strength domain of the crystalline matrix, and T d is the

et of deviatoric symmetric second-order tensors. Since the bound-

ry of this strength domain is a polyhedron in the space of devia-

oric stresses, the supremum in (4) must be attained at a vertex of

he polyhedron. Thus, we can also write 

 ( D ) = 

{
max 
σd ∈V 

σd · D d if tr D = 0 , 

+ ∞ otherwise , 
(5) 

here V denotes the set of vertices of the strength domain. 

.2. Effective properties 

The macroscopic response of the voided crystal is defined as

he relation between the volume averages of the Cauchy stress and
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Eulerian strain-rate fields over the RVE. Formally, it can be char-

acterized by an effective dissipation potential ˜ w such that (e.g.,

Castañeda and Suquet, 1998 ) 

σ̄ = ∂ D̄ ˜ w ( ̄D ) , ˜ w ( ̄D ) = (1 − f ) min 

D ( x ) ∈K( ̄D ) 

1 

| �(1) | 
∫ 
�(1) 

w ( D ( x ) ) d �, 

(6)

where f = | �(2) | / | �| is the volume fraction occupied

by the voids, i.e. the porosity, and K( ̄D ) is the set

of kinematically admissible strain-rate fields K( ̄D ) ={
D : � → T : D ( x ) = ∇ �s u ( x ) in � ∧ u = D̄ x on ∂�

}
. 

In view of the assumed isotropy of the void distribution, the

effective potential ˜ w inherits the cubic symmetry from the local

potential w . A hydrostatic stress σ̄ = σ̄m 

I thus produces a spherical

strain rate D̄ = D̄ m 

I . In this case, the effective constitutive relation

(6) reduces to 

σ̄m 

= 

1 

3 

∂ D̄ m ˜ w h ( ̄D m 

) where ˜ w h ( ̄D m 

) = 

˜ w ( ̄D m 

I ) . (7)

In the case of power-law viscoplasticity, the effective potentials ˜ w

and ˜ w h also inherit the homogeneity of degree 1 + 1 /n and −1 /n

in D̄ and ˙ γ0 from the local potential w . Therefore, we express the

hydrostatic effective potential ˜ w h as 

˜ w h ( ̄D m 

) = 

˙ γ0 ̃  σh 

1 + 1 /n 

∣∣∣∣3 ̄D m 

˙ γ0 

∣∣∣∣1+1 /n 

, (8)

where ˜ σh denotes an effective flow stress which depends on non-

linearity n , porosity f , flow stresses τ (k ) 
0 

and Schmid tensors μ( k ) ,

but not on D̄ m 

and ˙ γ0 , and completely characterizes the response

of the voided crystal under hydrostatic loading. In the following

sections we adopt different models to generate estimates for this

effective property and to study the influence of the various mate-

rial parameters on the effective response. 

3. Hollow-sphere assemblages 

3.1. Power-law viscoplasticity 

Following an approach initiated by Gurson (1977) , the represen-

tative volume element is taken here to be an assemblage of an infi-

nite number of homothetic hollow spheres filling up the entire vol-

ume (see, for instance, G ̌ar ̌ajeu et al., 20 0 0 ). For this microgeome-

try, a velocity field corresponding to a homogeneous radial expan-

sion of all spheres is kinematically compatible. An upper bound for

the effective dissipation potential can thus be obtained by evaluat-

ing the local potential within any given sphere at a velocity field

of the form 

u ( x ) = D̄ m 

b 3 

r 2 
ξ, (9)

where b is the radius of the sphere, r = | x | , ξ = x / | x | , and x is

the position vector relative to the center of the sphere. The local

strain-rate is then given by 

D ( x ) = −3 ̄D m 

b 3 

r 3 
ξ �d ξ. (10)

Thus, the effective dissipation potential is bounded from above

by 

˜ w h ( ̄D m 

) ≤ (1 − f ) 
1 

(4 / 3) π(b 3 − a 3 ) 

∫ 
S 

∫ b 

a 

w 

(
3 ̄D m 

b 3 

r 3 
ξ �d ξ

)
r 2 d r d S( ξ) , (11)

where S is the unit sphere and a is the void radius so that f =
(a/b) 3 . In view of the homogeneity of w in D , the radial integra-

tion, and the power-law form (8) of the effective potential, we have
hat 

˜ h ≤ αHSA (n ) n 

(
f −1 /n − 1 

)
, (12)

here 

HSA (n ) = 

n + 1 

n 

˙ γ 1 /n 
0 

〈
w 

(
ξ �d ξ

)〉
. (13)

n this last expression, 〈·〉 = (4 π) −1 
∫ 

S · d S( ξ) represents an ori-

ntational average over the unit sphere. Alternatively, this function

an be written in terms of the dual potential as 

HSA (n ) = 

n + 1 

n 

〈 

sup 

σd ∈T d 

[ 

σd · ( ξ �d ξ) −
K ∑ 

k =1 

τ (k ) 
0 

n + 1 

∣∣∣∣σd · μ(k ) 

τ (k ) 
0 

∣∣∣∣n +1 
] 〉 

. 

(14)

n turn, this expression can be simplified by exploiting the homo-

eneity of degree n + 1 in σd of the dual potential. Indeed, evalu-

ting the objective function at λσd and optimizing with respect to

we obtain 

HSA (n ) = 

〈 

sup 

σd ∈T d 

| ξ · σd ξ| n +1 
n [∑ K 

k =1 τ
(k ) −n 

0 

∣∣σd · μ(k ) 
∣∣n +1 ] 1 

n 

〉 

. (15)

ote that the objective function in this last expression is homo-

eneous of degree zero in σd , and consequently the admisible set

an be restricted to tensors of fixed norm. Expressions (12) –(15)

rovide a Gurson-type estimate for the hydrostatic flow stress of a

oided cubic crystal. The estimate exhibits the same functional de-

endence on porosity as Gurson’s estimate for a von Mises voided

olid (cf. Michel and Suquet, 1992 ), and depends on the plastic

nisotropy of the crystal only through the prefactor αHSA ( n ). 

.2. Linear viscosity 

When the creep exponent is n = 1 , the bound (12) for the hy-

rostatic flow stress yields the following bound for the viscous

ompressibility ˜ κ = ˙ γ −1 
0 

˜ σh : 

˜ ≤ ˙ γ −1 
0 αHSA (1) 

1 − f 

f 
, (16)

here the prefactor αHSA (1) is given by 

˙ −1 
0 αHSA (1) = 

2 

15 

K · L , (17)

nd K is the standard fourth-order incompressible projection ten-

or. 

.3. Ideal plasticity 

In the limit n → ∞ , the upper bound (12) becomes 

˜ h ≤ −βHSA ln f, (18)

here 

HSA = lim 

n →∞ 

αHSA (n ) = 

〈
sup 

σd ∈P 
ξ · σd ξ

〉
(19)

xpressions (18) and (19) provide a Gurson-type estimate for the

ydrostatic strength of a voided cubic crystal. This estimate recov-

rs that of Paux et al. (2015) for face-centered cubic crystals with

ll slip strengths equal, and that of Gurson (1977) for von Mises

oided solids. 
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.4. Deficient crystals 

When the set of Schmid tensors μ( k ) has less than five linearly

ndependent systems and does not span the entire set of devia-

oric tensors T d the crystal cannot accommodate an arbitrary de-

ormation and is said to be deficient. In this case, the estimate

14) can be shown to be infinitely large. This is because if a crys-

al is deficient there are tensors in T d that are orthogonal to all

chmid tensors, and therefore the supremum in (14) becomes un-

ounded. Indeed, let μ0 be one such tensor, so that μ0 · μ(k ) = 0

or k = 1 , . . . , K. Restricting the admissible set in (14) to the subset

f tensors of the form 

d = λξ · μ0 ξ μ0 (20) 

e obtain the lower bound 

HSA (n ) ≥ n + 1 

n 

sup 

λ∈ R 
λ
〈 (

ξ · μ0 ξ
)2 

〉 
. (21) 

iven that the orientational average in this expression is strictly

ositive, the supremum over λ is unbounded and therefore 

HSA (n ) = + ∞ . (22)

hus, the estimate (14) based on hollow-sphere assemblages pre-

icts that any deficient voided crystal is rigid under hydrostatic

oading. 

. Infinite-rank sequential laminates 

.1. Power-law viscoplasticity 

Following Idiart (2008) , the representative volume element is

aken here to be a sequential laminate of infinite rank. A sequen-

ial laminate is an iterative construction obtained by layering lam-

nated materials (which in turn have been obtained from lower-

rder lamination procedures) with other laminated materials, or

irectly with the homogeneous phases that make up the multi-

hase solid, in such a way as to produce hierarchical microstruc-

ures of increasing complexity. The rank of the laminate refers to

he number of layering operations required to reach the final se-

uential laminate. Two-phase sequential laminates of the matrix-

nclusion type can be formed by layering at every step a two-

hase laminate with the matrix phase. In this work we adopt the

sotropic lamination sequence proposed by Idiart (2008) . The re-

ulting dissipation potential is given by 

˜ 
 ( ̄D ) = 

ˆ w ( ̄D , − ln f ) (23) 

here the function ˆ w ( D , τ ) is solution to the initial-value

amilton-Jacobi equation 

 τ ˆ w + 

ˆ w + 

〈 
sup 

a 

[
∂ D ˆ w · ( a �s ξ) − w ( D + a �s ξ) 

]〉 
= 0 , 

ˆ w ( D , 0) = 0 . (24) 

n view of the incompressibility of the matrix phase, the argument

f w in this equation must be traceless. Thus, the optimal a must

e of the form 

 = −tr D ξ + a ⊥ , (25) 

here a ⊥ is orthogonal to ξ. Thus, 

 τ ˆ w + ̂

 w + 

〈
sup 

a ⊥ ∈A ⊥ ( ξ) 

[
∂ D ˆ w · (−tr D ξ � ξ + a ⊥ �s ξ) 

−w (−tr D ξ �d ξ + D d + a ⊥ �s ξ) 
]〉

= 0 , (26) 

here A ⊥ ( ξ) = 

{
a ⊥ ∈ R 

3 : a ⊥ · ξ = 0 
}

. The function ˆ w inherits

he cubic symmetry of the local potential w ; therefore, it is such
hat 

 D ˆ w (D m 

I , τ ) = 

1 

3 

∂ D m ˆ w (D m 

I , τ ) I ≡ 1 

3 

∂ D m ˆ w h (D m 

, τ ) I , (27) 

here ˆ w h (D m 

, τ ) 
. = ˆ w (D m 

I , τ ) . In view of this property,

q. (26) can be integrated along spherical strain rates (i.e., D d = 0 ).

hus, the function ˆ w h is solution to the reduced Hamilton-Jacobi

quation 

 τ ˆ w h + 

ˆ w h − D m 

∂ D m ˆ w h −
〈

inf 
a ⊥ ∈A ⊥ ( ξ) 

w (−3 D m 

ξ �d ξ + a ⊥ �s ξ) 

〉
= 0 , ˆ w h (D m 

, 0) = 0 . (28) 

he function ˆ w h also inherits the homogeneity of degree 1 + 1 /n

nd −1 /n in D and ˙ γ0 of the local potential w . Thus, it can be writ-

en as 

ˆ 
 h (D m 

, τ ) = 

ˆ σh (τ ) ̇ γ0 

1 + 1 /n 

∣∣∣∣3 D m 

˙ γ0 

∣∣∣∣1+1 /n 

. (29) 

pon inserting this expression into (28) we obtain an ordinary dif-

erential equation for the function ˆ σh (τ ) : 

 τ ˆ σh −
1 

n 

ˆ σh − αLAM 

(n ) = 0 , ˆ σh (0) = 0 , (30) 

here the function αLAM 

( n ) is given by 

LAM 

(n ) = 

1 + n 

n 

˙ γ 1 /n 
0 

〈
inf 

a ⊥ ∈A ⊥ ( ξ) 
w ( ξ �d ξ + a ⊥ �s ξ) 

〉
. (31) 

ntegration of (30) yields 

ˆ h (τ ) = αLAM 

(n ) n 

(
e τ/n − 1 

)
, (32) 

nd recalling that ˜ σh = ˆ σh (− ln f ) we finally obtain 

˜ h = αLAM 

(n ) n 

(
f −1 /n − 1 

)
. (33) 

his expression provides an estimate for the hydrostatic flow stress

f a voided cubic crystal. The functional dependence on poros-

ty is exactly the same as that obtained in the previous section

or hollow-sphere assemblages, but the prefactor αLAM 

( n ) is differ-

nt from αHSA ( n ). In fact, it is evident from expressions (13) and

31) that αLAM 

( n ) ≤αHSA ( n ). 

For computational purposes it is convenient to write the func-

ion αLAM 

in terms of the dual stress potential as 

LAM 

(n ) = 

1 + n 

n 

〈
inf 

a ⊥ ∈A ⊥ ( ξ) 
sup 

σd ∈T d 

[
σd · ( ξ �d ξ + a ⊥ �s ξ) 

−
K ∑ 

k =1 

τ (k ) 
0 

n + 1 

∣∣∣∣σd · μ(k ) 

τ (k ) 
0 

∣∣∣∣n +1 
] 〉 

. (34) 

he infimum condition with respect to a ⊥ in this expression re-

uires that σd ξ || ξ; thus, 

AM 

(n ) 

= 

1 + n 

n 

〈 

sup 

σd ∈T || ( ξ) 

[ 

σd · ( ξ �d ξ) −
K ∑ 

k =1 

τ (k ) 
0 

n + 1 

∣∣∣∣σd · μ(k ) 

τ (k ) 
0 

∣∣∣∣n +1 
] 〉 

, 

(35) 

here T || ( ξ) = 

{
σd ∈ T d : σd ξ || ξ}. Once again, this expression

an be simplified by evaluating the objective function at λσd and

ptimizing with respect to λ; we obtain 

LAM 

(n ) = 

〈 

sup 

σd ∈T || ( ξ) 

| ξ · σd ξ| n +1 
n [∑ K 

k =1 τ
(k ) −n 

0 

∣∣σd · μ(k ) 
∣∣n +1 ] 1 

n 

〉 

. (36) 

ote that the objective function in this last expression is homoge-

eous of degree zero in σd , and consequently the admissible set

an be restricted to tensors of fixed norm. 
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Fig. 1. Unit cells with isotropic dispersions of voids with radius r = 0 . 05 L and two 

porosity levels: (a) f = 0 . 01 , (b) f = 0 . 1 . 
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4.2. Linear viscosity 

When the creep exponent is n = 1 , the estimate (33) for the

hydrostatic flow stress yields the following estimate for the viscous

compressibility: 

˜ κ = ˙ γ −1 
0 αLAM 

(1) 
1 − f 

f 
, (37)

where the prefactor αLAM 

(1) is given by 

˙ γ −1 
0 αLAM 

(1) = 

2 

15 

K · L −
〈

A 22 A 

2 
1 + A 11 A 

2 
2 − 2 A 12 A 1 A 2 

A 11 A 22 − A 

2 
12 

〉
. (38)

In this last expression, A i j = ( ξ � ξi ) · L ( ξ � ξ j ) , A i = ( ξ �d ξ) ·
L ( ξ � ξi ) , and { ξ1 , ξ2 , ξ} is an orthonormal basis for R 

3 . The sec-

ond term in this expression arises due to the constraint σd ξ|| ξ in

the definition of the set T || ( ξ) . If the viscosity tensor L is isotropic,

this term vanishes and the predictions based on sequential lami-

nates and hollow sphere assemblages agree exactly. If the viscosity

tensor L is anisotropic, by contrast, the second term is negative

and αLAM 

(1) < αHSA (1). 

4.3. Ideal plasticity 

In the limit n → ∞ , the estimate (33) becomes 

˜ σh = −βLAM 

ln f, (39)

where 

βLAM 

= lim 

n →∞ 

αLAM 

(n ) = 

〈 

sup 

σd ∈P || ( ξ) 

ξ · σd ξ

〉 

(40)

in view of (35) . In this last expression, P || ( ξ) ={
σd ∈ P : σd ξ || ξ}. 

4.4. Deficient crystals 

In the case of deficient crystals with less than three linearly in-

dependent slip systems, the estimate (34) can be shown to be in-

finitely large. Indeed, let μ1 , μ2 and μ3 be three linearly indepen-

dent deviatoric tensors that are orthogonal to all Schmid tensors

of the deficient crystal, so that μi · μ(k ) = 0 for k = 1 , . . . , K, and

consider deviatoric tensors of the form 

σd = λ ξ · [ f 1 ( ξ) μ1 + f 2 ( ξ) μ2 + f 3 ( ξ) μ3 ] ξ

×
[

f 1 ( ξ) μ1 + f 2 ( ξ) μ2 + f 3 ( ξ) μ3 

]
, (41)

where the functions f i are given by 

f 1 ( ξ) = ( ξ2 · μ2 ξ)( ξ1 · μ3 ξ) − ( ξ1 · μ2 ξ)( ξ2 · μ3 ξ) , (42)

f 2 ( ξ) = ( ξ1 · μ1 ξ)( ξ2 · μ3 ξ) − ( ξ2 · μ1 ξ)( ξ1 · μ3 ξ) , (43)

f 3 ( ξ) = ( ξ1 · μ2 ξ)( ξ2 · μ1 ξ) − ( ξ1 · μ1 ξ)( ξ2 · μ2 ξ) , (44)

and the vectors ξi are such that { ξ1 , ξ2 , ξ} constitutes an orthonor-

mal basis for R 

3 for a given ξ. The tensors (41) are such that

ξ1 · σd ξ = ξ2 · σd ξ = 0 and therefore belong to T || ( ξ) . Thus, restrict-

ing the admissible set in (34) to the subset of tensors of that form

we obtain the lower bound 

αLAM 

(n ) ≥ n + 1 

n 

sup 

λ∈ R 
λ
〈 (

ξ · [ f 1 ( ξ) μ1 + f 2 ( ξ) μ2 + f 3 ( ξ) μ3 ] ξ
)2 

〉 
. 

(45)

Given that the orientational average in this expression is strictly

positive, the supremum over λ is unbounded and therefore 

αLAM 

(n ) = + ∞ . (46)
hus, the estimate (34) based on sequential laminates predicts that

ny deficient voided crystal with less than three linearly indepen-

ent systems is rigid under hydrostatic loading. It is emphasized,

owever, that this analysis does not carry over to deficient crys-

als with three or more linearly independent systems. In that case,

here are less than three linearly independent deviatoric tensors

hat are orthogonal to all Schmid tensors of the deficient crys-

al, and consequently a subset of tensors analogous to (41) is not

vailable. 

. Periodic media 

.1. The microstructure 

The representative volume element is taken here to be a pe-

iodic medium with cubic unit cells. In order to assess the sensi-

ivity of the effective properties to the particular void distribution,

e consider unit cells with a single void at the center as well as

ith multiple voids isotropically distributed. Unit cells containing

ultiple voids are generated following a similar procedure to that

f Vincent et al. (2014) . First, a cubic cell of side length L is filled

ith N spheres following a random process constrained by a non-

verlapping condition. All spheres have the same radius R and oc-

upy a volume fraction of 0.35. Secondly, spherical voids of radius

 are introduced at the center of each sphere. Each void and its

urrounding shell of matrix constitute an elementary pattern. The

otal porosity is given by f = (4 / 3) π(r/L ) 3 N. Thus, the void radius

 is selected so that the desired porosity level is produced with

 reasonable number of patterns N . Representative unit cells are

hown in Fig. 1 . 

.2. An FFT algorithm 

The mechanical fields within the unit cell are computed by

eans of a Fast-Fourier transform (FFT) algorithm originally pro-

osed by Moulinec and Suquet (1994) and implemented in the

omputer code CraFT following Suquet et al. (2012) . This algorithm

olves a regularized version of the Euler-Lagrange equations asso-

iated with (6) , as given by 

iv σ = 0 , ˙ σ = C 

(
D − D 

v p )
, D 

v p = 

∂u 

∂ σ
( x , σ) , 

D = ∇ �s u , u = D x + u # in �# , (47)

long with periodic conditions on the boundary of the unit cell

# for the velocity field u # . In these expressions, the stress po-

ential u is given by (2) 2 in the matrix domain and is infinite

ithin the voids, C is a fourth-order elasticity tensor that can

e arbitrarily chosen, and the overdot denotes time differentia-

ion. The specimens are assumed to be initially unstressed and are

ubject to a fixed macroscopic strain-rate. Under these conditions,
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Table 1 

Prefactors αHSA and αLAM , normalized by τ 0 , for weakly anisotropic 

crystals with various creep exponents n . 

fcc bcc ionic 

αHSA αLAM αHSA αLAM αHSA αLAM 

n = 1 0.733 0.651 0.367 0.321 0.316 0.298 

n = 2 1.266 1.165 0.898 0.815 0.767 0.746 

n = 3 1.500 1.397 1.191 1.093 1.011 0.990 

n = 5 1.700 1.597 1.468 1.357 1.239 1.215 

n = 10 1.859 1.743 1.685 1.557 1.418 1.386 

n → ∞ 2.038 1.864 1.859 1.736 1.604 1.525 

Table 2 

FFT predictions for the hydrostatic flow stress ̃  σh , normalized by τ 0 , 

of periodic fcc crystals with τ (k ) 
0 

= τ0 , f = 0 . 01 and n = 10 , and var- 

ious microgeometries. Values for the random microgeometries cor- 

respond to 256 3 voxels, while the value for the single void at the 

center was obtained by interpolation, so that all values correspond 

to discretizations of 13 voxels per void radius. 

seed 1 seed 2 seed 3 single void 

9.701 9.674 9.667 9.649 
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q. (47) are integrated in time without evolving the microstruc-

ure by means of a Runge–Kutta(3)2 FSAL method (e.g., Bogaki and

hampine, 1989 ) until the elastic strain rates become negligible

nd the mechanical fields approach those of the purely viscoplastic

roblem (6) . At each step of the time integration, the mechanical

elds are determined by a fixed point algorithm that iterates until

he convergence criterion is met. This algorithm makes use of an

FT subroutine that discretizes the unit cell into a regular cubic ar-

ay of voxels. Details on the procedure can be found, for instance,

n Idiart et al. (2006) . 

To characterize the hydrostatic response of power-law vis-

oplastic crystals, the direction of macroscopic stress is pre-

cribed as purely spherical following a procedure described in

ichel et al. (1999) , the spherical part of the macroscopic strain

ate is set to a fixed value D m 

> 0 , and the mechanical fields deep

n the plastic range are determined. Then, the average hydrostatic

tress σ̄m 

over the unit cell is computed and the hydrostatic flow

tress is finally obtained from the relation 

˜ h = σ̄m 

∣∣∣∣ ˙ γ0 

3 D m 

∣∣∣∣1 /n 

, (48) 

hich follows from (7) and (8) . The calculations reported in

ection 6 have been carried out by setting D m 

= 90 0 0 −1 s −1 and

˙ 0 = 1s −1 , and identifying the elasticity tensor C with that of a

tainless steel. It is emphasized, however, that the hydrostatic flow

tress (48) is indifferent to the particular values employed for

hese parameters. Calculations were carried out using the so-called

basic scheme” which ensures strain compatibility, along with con-

ergence criteria on the prescribed direction of the macroscopic

tress and the local equilibrium condition. 

. Results and discussion 

The above models are used in this section to generate predic-

ions for the following three types of crystalline solids: 

• Face-centered cubic (fcc) solids that deform plastically on a set

of four slip planes of the type {111} along three slip directions

(per plane) of type 〈 110 〉 , which constitute a set of twelve slip

systems ( K = 12 ). 

• Body-centered cubic (bcc) solids that deform through slip along

the 〈 111 〉 directions on the {110} and {112} planes, which con-

stitute a set of twenty-four slip systems ( K = 24 ). 

• Ionic solids that deform plastically on three different families

of slip systems: {110} 〈 110 〉 , {100} 〈 110 〉 , {111} 〈 110 〉 . They will

be referred to as A, B and C families, respectively. The A fam-

ily consists of six systems, among which two are linearly in-

dependent and can accommodate only normal components of

strain rate —relative to the cubic axes of the crystal. The B

family consists of six systems, among which three are linearly

independent and can only accommodate shear components of

strain rate —relative to the cubic axes of the crystal. Because of

the orthogonality of the A and B systems, the two families to-

gether provide five independent slip systems so that a general

isochoric deformation can be accommodated. The C family, in

turn, consists of the same twelve slip systems of an FCC crys-

tal. Thus, the three families together consist of twenty-four slip

systems ( K = 24 ). 

.1. Weakly anisotropic crystals 

In this subsection we consider fcc, bcc and ionic crystals with
(k ) 
0 

= τ0 for all k . These are all crystals exhibiting a relatively weak

lastic anisotropy. Moreover, in view of the isotropic symmetry of

oid dispersion and macroscopic loading, the overall plastic dissi-

ation is equipartitioned among all slip systems. 
We begin by comparing the prefactors αHSA ( n ) and αLAM 

( n ) as-

ociated with hollow-sphere assemblages and sequential laminates,

or the various plastic anisotropies. Table 1 reports numerical val-

es of these prefactors for typical values of the creep exponent n ,

hile Fig. 2 (a) shows plots for the prefactors for the entire range

f n . Details on the various numerical techniques employed in their

omputation are given in Appendix A . As anticipated in Section 4 ,

equential laminates are always softer than hollow-sphere assem-

lages. The differences, however, are not substantial: they are in

he order of 10% for most cases and do not exceed 15%. In the case

f ideally plastic crystals, both estimates predict prefactors in the

ange between 3/2 and 2 for the three crystal symmetries. 

Next, we consider full-field simulations for periodic media. A

ensitivity study is first carried out to determine the influence of

he void dispersion and the FFT discretization size on the results.

he main parameter governing convergence of the FFT results is

ctually the number of voxels lying within the voids. To select this

umber, FFT simulations with various discretization sizes (16 3 , 32 3 ,

4 3 , 128 3 , 256 3 ) were carried out for an fcc crystal with porosity

f = 0 . 01 , creep exponent n = 10 , and a unit cell containing a sin-

le void at the center. Fig. 2 (b) shows the hydrostatic flow stress

ersus number of voxels. The results suggest that discretizations

elivering at least 13 voxels per void radius provide a reasonable

ompromise between accuracy and computational demand. Conse-

uently, the random unit cells employed in the sequel were dis-

retized into 256 3 voxels and the radius of the voids was set to

 = 0 . 05 L so that the number of voxels per void radius satisfies the

bove criterion. The hydrostatic flow stress of three such unit cells

enerated from different random seeds are reported in Table 2 .

he table also reports the value that would be obtained with a

nit cell containing a single void at the center with a radius of 13

oxels, which was obtained by interpolating the values reported in

ig. 2 (b). The four values are seen to be very similar: relative dif-

erences amount to less than 1%. Similar results have been found

or other values of porosity up to ten percent. Thus, the hydro-

tatic flow stress seems to be relatively insensitive to the details of

oid dispersion, at least for monodisperse distributions with low to

oderate porosity levels. In view of these results, the FFT results

eported below correspond to one particular dispersion rather than

o an average over various dispersions. 

The estimates and the full-field simulations are confronted in

ig. 3 . Plots for the effective flow stress are given versus creep

xponent and porosity, for the three types of plastic anisotropies.

verall, the estimates are seen to be in good agreement with the
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Fig. 2. Results for weakly anisotropic crystals with τ (k ) 
0 

= τ0 for all slip systems: (a) prefactors αLAM and αHSA as a function of creep exponent ( n ) for fcc, bcc and ionic 

crystals; (b) Hydrostatic flow stress ˜ σh of an fcc unit cell with a single void at the center, porosity f = 0 . 01 and creep exponent n = 10 , as a function of FFT discretization 

size. 
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simulations for the entire range of material parameters considered,

including large values of the creep exponent. Thus, the simulations

confirm the trend ˜ σh ∼ n ( f −1 /n − 1) predicted by the estimates. It

is recalled that this is the same trend exhibited by Gurson-type

estimates for von Mises voided solids. The simulations also agree

with the estimates in that the fcc crystals are stronger than the

bcc and ionic crystals, as expected from the fact that the former

crystals have the smaller number of slip systems. Also included

in Fig. 3 (a) are the finite-element results of Han et al. (2013) and

of Mbiakop et al. (2015) for single- and monodisperse-voided fcc

crystals, respectively. These results are seen to be entirely consis-

tent with the present results for low porosity levels up to f = 0 . 05 ,

thus confirming the low sensitivity of the hydrostatic flow stress to

details of the void dispersion. 

We conclude this discussion by recalling that the sequential

laminates considered in this work attain the linear upper bound of

Hashin and Shtrikman (see Idiart, 2008 ), which constitutes a rigor-

ous upper bound on the hydrostatic flow stress of all crystals with

an isotropic void dispersion and creep exponent n = 1 . Estimates

based on hollow sphere assemblages are thus seen to violate this

bound. 

6.2. Strongly anisotropic crystals 

We now consider voided crystals with strong plastic anisotropy.

In particular, we consider ionic crystals deforming by slip along the

A and B families only. The flow stress of each family is denoted

by τ A 
0 and τ B 

0 . Given the increased computational demand of the

FFT simulations for these material systems, the discretization size

was reduced to 128 3 and the void radius was set to a larger value

( r = 0 . 08 L ) in order to preserve the number of voxels per void ra-

dius in the order of ten. For the larger plastic anisotropies, the

convergence criteria were retained but the time steps had to be

refined. 

Fig. 4 shows plots for the hydrostatic flow stress versus slip

contrast, for the choice f = 0 . 01 and various creep exponents. We

begin by noting that the FFT results show a monotonic increase

of the hydrostatic flow stress with increasing slip contrast, as ex-

pected, albeit with different asymptotic behavior depending on the
amily of slip systems exhibiting the stronger flow stress. When
B 
0 

> τ A 
0 

the FFT results seem to grow linearly with the ratio τ B 
0 
/τ A 

0 
or all values of n , but when τ A 

0 
> τ B 

0 
they seem to grow sublin-

arly with the ratio τ A 
0 /τ

B 
0 for all values of n and even asymptote

o a finite value as τ A 
0 
/τ B 

0 
→ ∞ . It should be recalled that as these

atios tend to infinity the crystal becomes plastically deficient: the

imit τ B 
0 → ∞ corresponds to a crystal deforming along slip sys-

ems belonging to the A family only, which has two linearly inde-

endent systems, while the limit τ A 
0 

→ ∞ corresponds to a crys-

al deforming along slip systems belonging to the B family only,

hich has three linearly independent systems. Thus, the FFT re-

ults suggest that voided crystals with two linearly independent

ystems may be rigid under hydrostatic loading, while those with

hree linearly independent systems may dilate. Interestingly, this is

n line with a recent study on voided polycrystals based on linear-

omparison homogenization techniques ( Nervi and Idiart, 2015 ).

n the other hand, theoretical predictions and finite element sim-

lations for hexagonal voided crystals with complex unit cells pro-

ided in Mbiakop et al. (2015) suggest that crystals with three lin-

arly independent systems may be rigid under hydrostatic load-

ng. However, spherical loadings in the context of hexagonal voided

rystals do not possess the same significance as in the context of

ubic voided crystals, since the ensuing deformation is not spher-

cal. Unfortunately, all these full-field simulations are numerically

emanding, making it difficult to conclusively infer the predicted

esponse of deficient voided crystals by extrapolation. 

In any case, the comparisons provided in Fig. 4 clearly show

hat estimates based on sequential laminates can be significantly

ore accurate than estimates based on hollow-sphere assemblages

nce the plastic anisotropy is strong. This is a consequence of the

ifferent asym ptotic behaviors exhibited by these two estimates

s the slip contrast tends to infinity. On the one hand, estimates

ased on hollow-sphere assemblages are seen to grow linearly

s either slip ratio τ A 
0 
/τ B 

0 
and τ B 

0 
/τ A 

0 
tend to infinity; it was al-

eady shown in Section 3.4 that these estimates indeed become

nbounded whenever the crystal is deficient. On the other hand,

stimates based on sequential laminates grow linearly with the ra-

io τ B 
0 
/τ A 

0 
but sublinearly with the inverse ratio τ A 

0 
/τ B 

0 
. Moreover,

n the latter case, their growth rate seems to decrease with in-
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Fig. 3. Predictions for the hydrostatic flow stress ˜ σh of weakly anisotropic voided crystals, normalized by τ 0 , as a function of porosity f and creep exponent n : (a) & (b) fcc 

crystals, (c) & (d) bcc crystals, (e) and (f) ionic crystals. 
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creasing creep exponent, and for the larger values of n they seem

to asymptote to a finite value as τ A 
0 /τ

B 
0 tends to infinity, in stark

contrast with estimates based on hollow-sphere assemblages. It

was already shown in Section 4.4 that these estimates become un-

bounded whenever a deficient crystal has less than three linearly

independent systems. The estimates shown in Fig. 4 (b) suggest that

this may not be the case for deficient crystals with three or more

linearly independent systems, in line with the FFT results. Unfor-

tunately, this qualitative agreement with the FFT results is not ac-

companied by a quantitative agreement at the largest values of slip

contrast where the response is likely to become very sensitive to

the details of the microstructure. In this connection, it is recalled

that the sequential laminates exhibit a uniform strain-rate field

within the voided phase ( Idiart, 2008 ) and can therefore deliver

overly strong predictions for situations where the strain-rate field

tends to localize along paths seeking out the voids ( Idiart et al.,

20 06; 20 09 ). 

Regardless of the limiting behavior of the various predictions

for deficient crystals, it is concluded that, overall, estimates based

on sequential laminates are superior to Gurson-type based on

hollow-sphere assemblages and predict the hydrostatic response of

cubic voided crystals with reasonable accuracy, even for relatively

strong plastic anisotropies. Whether these estimates remain accu-

rate for more general loading conditions is currently under inves-

tigation. 
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Appendix A. Numerical computation of the prefactors αHSA and

αLAM 

To compute the prefactor αHSA as given by (14) we carry out

the integration over the unit sphere by letting ξ be the radius vec-

tor of a spherical coordinate system, adopting the polar and az-

imuth angles of that system as integration variables, and making
se of Gaussian quadrature with 30 points per integration variable.

o carry out the supremum over σd ∈ T d at each point ξ on the

nit sphere, we express the elements of the set T d as 

d = 

5 ∑ 

α=1 

σαηα, (A.1)

here the ηα constitute a Woo basis of the form 

1 = 

1 √ 

6 

(2 ξ � ξ − ξ1 � ξ1 − ξ2 � ξ2 ) , 

2 = 

1 √ 

2 

( ξ1 � ξ1 − ξ2 � ξ2 ) , 

3 = 

√ 

2 ξ1 �s ξ2 , η4 = 

√ 

2 ξ1 �s ξ, η5 = 

√ 

2 ξ2 �s ξ. 

ere, { ξ1 , ξ2 , ξ} is the natural basis of the spherical coordinate

ystem employed. The objective function is then maximized with

espect to the components σα by means of the Powell method

uilt in the library OPTIMIZE (SciPy project) for PYTHON. In the

imit n → ∞ , the constrained minimization in the prefactor βHSA ,

s given by (19) , is performed by the method of Constrained Opti-

ization By Linear Approximation (COBYLA) also implemented in

he library OPTIMIZE. 

The prefactors αLAM 

and βLAM 

, as given by (35) and (40) , are

valuated in a similar fashion, except that in view of the definition

f the set T || ( ξ) , the elements σd are decomposed as (A.1) with

4 = σ5 = 0 . Thus, the function αLAM 

is numerically simpler to

ompute than the function αHSA . 
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