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Abstract Weshow that a systemof four particles in a one-dimensional boxwith a two-
particle harmonic interaction can by described by means of the symmetry point group
Oh . Group theory proves useful for the discussion of both the small-box and large-box
regimes. We apply perturbation theory and obtain the corrections of first order for the
lowest states. We carry out a simple Rayleigh–Ritz variational calculation with basis
sets adapted to the symmetries of the system. We also obtain alternative variational
results for the first three lowest energy levels that are more suitable for larger box
sizes.

Keywords Four particles in a box · Symmetry group · Perturbation theory ·
Variational approach · Small box · Large box

1 Introduction

During the last decades there has been great interest in the model of a harmonic
oscillator confined to boxes of different shapes, sizes and dimensions. Such model
has been suitable for the study of several physical problems ranging from dynamical
friction in star clusters to magnetic properties of solids and impurities in quantum
dots (see [1,2] for a review of the relevant literature on the subject). In addition to
it, systems of few identical particles in one dimension have proved to exhibit a rich
phenomenological structure resembling that of realistic systems [3–6]. In two recent
papers Amore and Fernández discussed the problems posed by two [1] and three
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[2] particles confined in a one-dimensional box with impenetrable walls that interact
throughharmonic forces. They found that a straightforward application of group theory
considerably facilitates the analysis of the solutions to the Schrödinger equation. In
particular, an accurate Rayleigh–Ritz variational calculation revealed that the energies
of the three-particle model as functions of the box length exhibit a most interesting
pattern of avoided crossings between pairs of states of the same symmetry [2].

The purpose of this paper is to discuss the case of four particles in a one dimen-
sional box that also interact through harmonic forces. The reason for choosing such
interaction is that it has proved quite useful in the past (see the references in [2]) and
because the calculation of thematrix elements of the resulting potential is quite simple.
In Sect. 2 we introduce the model, Sect. 3 shows a perturbation approach to the small-
box regime and a Rayleigh–Ritz calculation with symmetry-adapted basis sets, Sect. 4
describes the large-box limit, in Sect. 5 we discuss a simple variational calculation
that is more suitable for larger box sizes and in Sect. 6 we draw conclusions. There is
also an “Appendix” outlining the construction of the projection operators used in all
the calculations just described.

2 Four particles in a one-dimensional box

We first consider N interacting point particles of mass m in a one-dimensional box of
length L = 2a with Hamiltonian

H = − h̄2

2m

N∑

i=1

∂2

∂x2i
+

N−1∑

i=1

N∑

j=i+1

W (|xi − x j |), (1)

where xi is the coorinate of the i-th particle. The boundary conditions are determined
by the impenetrable walls of the box

�(x1, x2, . . . , xi = ±a, . . . , xN ) = 0, i = 1, 2, . . . , N . (2)

The Hamiltonian operator is invariant under the N ! permutations of the particle coor-
dinates as well as under parity inversion x → −x. The 2N ! N × N matrices that
produce all the permutations of the sets {x1, x2, . . . , xN } and {−x1,−x2, . . . ,−xN }
form a group given by the product SN ⊗ O(1) [7,8]. When N = 2 the group is also
called C2h (in principle we can also use D2 or C2v that are isomorphic to C2h) and
when N = 3 we can resort to either D3d or D3h [9]. Both cases have already been
treated by group theory in earlier papers [1,2].

In order to solve the Schrödinger equation it is convenient to define the dimension-
less particle coordinates qi = xi/a and the dimensionless Hamiltonian

Hd = 2ma2

h̄2
H = −

N∑

i=1

∂2

∂q2i
+ λ

N−1∑

i=1

N∑

j=i+1

w(|qi − q j |), (3)

where λw(|qi − q j |) = 2ma2W (a|qi − q j |)/h̄2. The boundary conditions for the
eigenfunctions ψ of this operator now become
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ψ(q1, q2, . . . , qi = ±1, . . . , qN ) = 0, i = 1, 2, . . . , N . (4)

From now on we only consider the dimensionless Hamiltonian (3) and omit the
subscript d. In order to facilitate the numerical calculations we choose a harmonic
interaction of the form W

(∣∣xi − x j
∣∣) = k

2

(
xi − x j

)2 that leads to λ = ma2k/h̄2 and
w(|qi − q j |) = (qi − q j )

2.
For N = 4 our problem just reduces to solving the Schrödinger equation for the

operator

H = −
(

∂2

∂q21
+ ∂2

∂q22
+ ∂2

∂q23
+ ∂2

∂q24

)

+ λ
[
(q1 − q2)

2 + (q1 − q3)
2 + (q1 − q4)

2 + (q2 − q3)
2

+ (q2 − q4)
2 + (q3 − q4)

2
]
, (5)

with the boundary conditions

ψ(±1, q2, q3, q4)=ψ(q1,±1, q3, q4)=ψ(q1, q2,±1, q4) = ψ(q1, q2, q3,±1) = 0.
(6)

In this case the group S4 ⊗ O(1) is isomorphic to Oh and in this paper we resort to
the character table of the latter group [9].

3 Small-box-regime

When λ is sufficiently small (sufficiently small box size L) we can estimate the energy
levels by means of perturbation theory. The Schrödinger equation is exactly solvable
when λ = 0 and the eigenvalues and eigenfunctions of H0 = H(λ = 0) are

E (0)
n1n2n3n4 = π2

4

(
n21 + n22 + n23 + n24

)
, n1, n2, n3, n4 = 1, 2, . . .

ψ(0)
n1n2n3n4(q1, q2, q3, q4) = φn1(q1)φn2(q2)φn3(q3)φn4(q4)

φn(q) = sin
nπ(q + 1)

2
. (7)

Note that φn(−q) = (−1)n−1φn(q).
In order to facilitate the discussion of the results we introduce the notation

{a, b, c, d}P to indicate the set of all distinct permutations of four elements that
may be either coordinates or quantum numbers. For example, each 4-tuple of quan-
tum numbers in the set {n1, n2, n3, n4}P leads to the same unperturbed energy
E (0)
n1n2n3n4 . We may eventually add accidental Pythagorean degeneracies of the form

m2
1+m2

2+m2
3+m2

4 = n21+n22+n23+n24, where (m1,m2,m3,m4) /∈ {n1, n2, n3, n4}P
[10]. If such energy level is g -fold degenerate then the perturbation corrections of
first order to the eigenfunctions will be of the form
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ψ(1) =
g∑

j=1

c(1)
j ψ

(0)
j , (8)

where j denotes a 4-tuple (n1, n2, n3, n4). The coefficients c(1)
j are solutions to the

secular equation

(
H′ − E (1)I

)
c(1) = 0, (9)

whereH′ is the g× g matrix of the perturbation H ′ = H −H0 in the set of degenerate

eigenfunctions
{
ψ

(0)
j , j = 1, 2, . . . , g

}
, I is the g×g identity matrix, c(1) is a column

vector with elements c(1)
j and E (1) is one of the g roots of the secular determinant∣∣H′ − E (1)I

∣∣ = 0.
In order to determine the symmetry of the solution ψ(1), which provides a suitable

label for the corresponding root E (1), we apply the projection operators PS associated
to the irreducible representations (irreps) S of the group Oh [9]. The result is well
known to be PSψ(1) = ψ(1) if ψ(1) is a basis for the irrep S or PSψ(1) = 0 otherwise.
The construction of the projection operators is outlined in the “Appendix”. In this way
we obtain the following results for the first energy levels:

E1A1g = π2 + 4
(
π2 − 6

)

π2 λ + · · · , (10)

E1A1u = 7π2

4
+ 216π4 − 1053π2 − 4096

54π4 λ + · · · ,

E1T2u = 7π2

4
+ 648π4 − 3159π2 + 4096

162π4 λ + · · · , (11)

E2A1g = 5π2

2
+ 324π4 − 1215π2 − 8192

81π4 λ + · · · ,

E1T2g = 5π2

2
+ 4π2 − 15

π2 λ + · · · ,

E1Eg = 5π2

2
+ 324π4 − 1215π2 + 4096

81π4 λ + · · · , (12)

E3A1g = 3π2 + 4
(
3π2 − 14

)

3π2 λ + · · · ,

E2T2g = 3π2 + 4
(
3π2 − 14

)

3π2 λ + · · · , (13)

E2A1u = 13π2

4
+ 216π4 − 567π2 − 4096

54π4 λ + · · · ,

E2T2u = 13π2

4
+ 648π4 − 1701π2 + 4096

162π4 λ + · · · , (14)

E3A1u = 15π2

4
+ 405000π4 − 1434375π2 − 8105984

101250π4 λ + · · · ,
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E3T2u = 15π2

4
+ 405000π4 − 1434375π2 − 6144

√
424321 − 1280000

101250π4 λ + · · · ,

E1Eu = 15π2

4
+ 405000π4 − 1434375π2 − 425984

101250π4 λ + · · · ,

E4T2u = 15π2

4
+ 405000π4 − 1434375π2 + 6144

√
424321 − 1280000

101250π4 λ + · · · ,

E1T1u = 15π2

4
+ 405000π4 − 1434375π2 + 5545984

101250π4 λ + · · · , (15)

E4A1g = 4π2 + 2
(
2π2 − 3

)

π2 λ + · · · , (16)

E5A1g = 9π2

2
+ 202500π4 − 489375π2 − 5545984

50625π4 λ + · · · ,

E3T2g = 9π2

2
+ 202500π4 − 489375π2 − 6144

√
53329 − 1386496

50625π4 λ + · · · ,

E4T2g = 9π2

2
+ 202500π4 − 489375π2 + 6144

√
53329 − 1386496

50625π4 λ + · · · ,

E1T1g = 9π2

2
+ 202500π4 − 489375π2 + 2772992

50625π4 λ + · · · ,

E2Eg = 9π2

2
+ 202500π4 − 489375π2 + 2772992

50625π4 λ + · · · , (17)

where A1g , A2g , A1u , and A2u are nondegenerate, Eg and Eu are two-fold degenerate,
and T1g , T2g , T1u and T2u are three-fold degenerate.

We appreciate that the degeneracy of the unperturbed states is partially removed
by the perturbation. The remaining degeneracies are expected to be broken at higher
perturbation orders.One does not expect that such remaining degeneracies are due to an
unknown hidden symmetry [10] because they are rather inconsistent. For example, in
the case {1, 1, 1, 3}P we have E3A1g = E2T2g ; however, {1, 2, 2, 3}P leads to E5A1g <

E3T2g < E4T2g < E2Eg = E1T1g where the state A1g and the three states T2g are not
degenerate as in the preceding case.

Figure 1 shows the lowest energy levels in the interval 0 ≤ λ ≤ 1 where pertur-
bation theory is expected to yield sufficiently accurate results. We also carried out
a simple Rayleigh–Ritz variational calculation with symmetry-adapted basis sets for
A1g and T2g choosing only those functions coming from {1, 1, 1, 1}, {1, 1, 2, 2}P and
{1, 1, 1, 3}P in order to show the splitting of the levels E3A1g and E2T2g . These levels
appear to be degenerate in the upper subfigure but the finer scale of the lower one
clearly reveals the splitting that takes place at the second order of perturbation theory
(E3A1g > E2T2g ). The symmetry-adapted basis set was constructed by straightforward
application of the projection operators PA1g and PT2g to the zeroth-order eigenfunc-
tions (7 ) (see [1,2] for more details).
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Fig. 1 Lowest eigenvalues calculated by means of perturbation theory and the Rayleigh–Ritz variational
method

4 Large-box-regime

When L → ∞ (λ → ∞) we have a system of four unconfined particles with
harmonic-pair interaction. In order to discuss this case it is convenient to define the
new coordinates

ξ1 =
√
2q2
2

−
√
2q1
2

ξ2 = −
√
6q1
6

−
√
6q2
6

+
√
6q3
3

ξ3 = −
√
3q1
6

−
√
3q2
6

−
√
3q3
6

+
√
3q4
2

ξ4 = q1 + q2 + q3 + q4
2

(18)
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because the Hamiltonian operator becomes

H = −
(

∂2

∂ξ21
+ ∂2

∂ξ22
+ ∂2

∂ξ23
+ ∂2

∂ξ24

)
+ 4λ

(
ξ21 + ξ22 + ξ23

)
. (19)

We appreciate that the center ofmass described by the coordinate ξ4 moves freelywhile
there is harmonic oscillation along the 3 remaining coordinates. The eigenvalues and
eigenfunctions are expected to be

EK ,n1,n2,n3 = K 2 + 2
√

λ (2n1 + 2n2 + 2n3 + 3) ,

ψK ,n1,n2,n3(ξ1, ξ2, ξ3, ξ4) = exp (i K ξ4) χn1(ξ1)χn2(ξ2)χn3(ξ3),

n1, n2, n3 = 0, 1, . . . , −∞ < K < ∞, (20)

where χn(ξ) is a harmonic-oscillator eigenfunction.
The connection between the small and large box regimes is given by

lim
λ→∞ λ−1/2Em1,m2m3,m4(λ) = 2 (2n1 + 2n2 + 2n3 + 3) . (21)

When carrying out this limit we should take into account that the symmetry of the
eigenfunction should be conserved as λ → ∞ and that exp (i K ξ4) does not exhibit
a definite symmetry. Therefore, in order to make a connection between both regimes
the eigenfunctions in the large-box case should be of the form

ψc
K ,n1,n2,n3(ξ1, ξ2, ξ3, ξ4) = cos (K ξ4) χn1(ξ1)χn2(ξ2)χn3(ξ3),

ψ s
K ,n1,n2,n3(ξ1, ξ2, ξ3, ξ4) = sin (K ξ4) χn1(ξ1)χn2(ξ2)χn3(ξ3). (22)

In order to determine the symmetry of a given eigenfunction in the large-box limit
we take into account that ξ4 is basis for the irrep A1u while the set {ξ1, ξ2, ξ3} is a basis
for the irrep T2u . Therefore, cos (K ξ4) and sin (K ξ4) are basis for the irreps A1g and
A1u , respectively. By means of the direct product of irreps we obtain the symmetry
of any eigenfunction of the form (22). For example, when {n1, n2, n3}P = {0, 0, 1}P
the three possible products χn1(ξ1)χn2(ξ2)χn3(ξ3) are basis for T2u and the resulting
functions ψc

K ,n1,n2,n3
(ξ1, ξ2, ξ3, ξ4) and ψ s

K ,n1,n2,n3
(ξ1, ξ2, ξ3, ξ4) are basis for T2u

and T2g , respectively.

5 Simple variational method

In order to obtain accurate variational results for large values of λ as was done in the
case of two particles [1] we should try variational functions of the form

F(q1, q2, q3, q4) = G(q1, q2, q3, q4) exp
[
−a

(
ξ21 + ξ22 + ξ23

)]
, (23)

where G(q1, q2, q3, q4) satisfies the boundary conditions at the box walls and
exp

[−a
(
ξ21 + ξ22 + ξ23

)]
provides the correct asymptotic behaviour of the wavefunc-
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Fig. 2 Lowest three eigenvalues calculated by means of perturbation theory (solid line) and the variational
method (circles)

tion of the free oscillator. The variational parameter a will increase from a0 to infinity
as λ increases from zero to infinity.

However, since this calculation is rather cumbersome here we try a much simpler
one with a variational function of the form

F(q1, q2, q3, q4) = G(q1, q2, q3, q4) exp
[
−a

(
q21 + q22 + q23 + q24

)]
, (24)

where we clearly sacrifice the correct description of the asymptotic behaviour when
λ → ∞. For example,

FA1g (q1, q2, q3, q4) = N
(
q21 − 1

) (
q22 − 1

) (
q23 − 1

) (
q24 − 1

)

× exp
[
−a

(
q21 + q22 + q23 + q24

)]
, (25)

FA1u (q1, q2, q3, q4) = Nξ4

(
q21 − 1

) (
q22 − 1

) (
q23 − 1

) (
q24 − 1

)

× exp
[
−a

(
q21 + q22 + q23 + q24

)]
, (26)

and

FT2u (q1, q2, q3, q4) = N
(
q21 − 1

) (
q22 − 1

) (
q23 − 1

) (
q24 − 1

)

× exp
[
−a

(
q21 + q22 + q23 + q24

)]
⎧
⎨

⎩

ξ1
ξ2
ξ3

(27)

are expected to yield approximations to the first energy levels E1A1g < E1A1u < E1T2u .
Figure 2 shows the perturbation and variational results for those three states. Both

the perturbation corrections of first order and the variational approaches are upper
bounds to the corresponding energies because the variational principle applies to the
lowest state of each symmetry. Since the perturbation expressions shown in Sect. 3
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(EPT from now on) yield the exact result when λ = 0 they are expected to be more
accurate than the variational results (Evar ) for sufficiently small λ. Figure 2 reveals
that Evar < EPT for λ > λc that tells us that Evar is more accurate for sufficiently
large values of λ. As expected, the perturbation expressions exhibit a wrong behaviour
for large values of λ. On the other hand, Evar increases correctly as

√
λ but the choice

of an incorrect exponential factor in the trial function leads to a wrong coefficient of
the leading term of the energy; for example a numerical calculation suggests that

lim
λ→∞ λ−1/2E1A1g = √

48 > 6. (28)

6 Conclusions

Throughout this paper, as well as in the two earlier ones [1,2], we have shown that
group theory is useful for the analysis of systems of particles in a one-dimensional box.
In the present case we can label the states of the system of four particles by means of
the irreps of the point group Oh . The knowledge of the symmetry of the states for finite
λ and for λ → ∞ facilitates the analysis of the connection between the states of the
confined and free systems, respectively. In addition to it, point group proves suitable
for the construction of simple variational trial functions like those in Sect. 5 as well
as for the construction of symmetry-adapted basis sets for more accurate calculations
like the Rayleigh–Ritz method used in Sect. 3.

Appendix: Construction of projection operators

In this appendix we outline the procedure for the construction of the projection oper-
ators that enabled us to determine the symmetry of the corrections of first order to the
eigenfunctions as well as to construct symmetry-adapted basis sets and the variational
trial functions.

First, we build a set of 48 matrices GM = {
M j , j = 1, 2, . . . , 48

}
given by the

24 permutations of the rows of the 4 × 4 identity matrix I and the 24 permutations
of the rows of −I. This set of matrices is a group with respect to the matrix product
Mi · M j . Second, we define a set GO = {

Oj , j = 1, 2, . . . , 48
}
of linear invertible

operators according to the rule

Oj f (q) = f (M−1
j q), (29)

where q is a column vector with elements qi (the four dimensionless particle coordi-
nates) and f (q) is an arbitrary function of them. These operators form a group with
respect to the composition Oi ◦Oj . IfMi andM j are the matrix representations of Oi

and Oj , respectively, then Mi · M j is the matrix representation of Oi ◦ Oj . In other
words, the groups GM and GO are isomorphic.

Third, we determine the classes for the group of matrices GM in the usual way.
Two matricesMi andM j belong to the same class ifMk · Mi · M−1

k = M j for some
Mk ∈ GM . Fourth, we calculate the traces, determinants and orders of the matrices in
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every class. In this way we connect each class of matricesM j (or operators Oj ) with
the corresponding class of symmetry operations that appear in the character table of
the group Oh [9].

Finally, we obtain the projection operators by means of the well known expression
[7–9]

PS = nS
h

h∑

j=1

χ j (S)Oj , (30)

where h = 48 is the order of the group, nS is the dimension of the irreducible repre-
sentation S and χ j (S) is the character of the operation Oj for S that appears in the
character table. Since the matrices in a class share the same trace it is sufficient to
obtain a one-to-one correspondence between the classes of matrices and the classes
of symmetry operations.

The application of the projection operators to the eigenfunctions of order zero given
by some of the sets of quantum numbers {n1, n2, n3, n4}P yields the following irreps:

Quantumnumbers Numberof states E0 Symmetry

{1, 1, 1, 1} 1 π2 1A1g
{1, 1, 1, 2}P 3 7π2/4 1A1u , 1T2u
{1, 1, 2, 2}P 6 5π2/2 2A1g, 1T2g, 1Eg
{1, 1, 1, 3}P 4 3π2 3A1g, 2T2g
{1, 2, 2, 2}P 4 13π2/4 2A1u , 2T2u
{1, 1, 2, 3}P 12 15π2/4 3A1u , 3T2u , 1Eu , 4T2u , 1T1u
{2, 2, 2, 2}P 1 4π2 4A1g
{1, 2, 2, 3}P 12 9π2/2 5A1g, 3T2g, 4T2g, 2Eg, 1T1g
{1, 1, 1, 4}P 4 19π2/4 4A1u , 5T2u
{1, 1, 3, 3}P 6 5π2 6A1g, 3Eg, 5T2g
{2, 2, 2, 3}P 4 21π2/4 5A1u , 6T2u
{1, 1, 2, 4}P 12 11π2/2 7A1g, 2T1g, 6T2g, 4Eg, 2T1g
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