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Abstract

We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The
length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of

∫ 1

0
‖γ̇(t)‖ dt, where ‖ ‖ denotes

the usual norm of operators. The initial value problem is solved: for any isometry V0 and each
tangent vector at V0 (which is an operator of the form iXV0 with X∗ = X) with norm less than or
equal to π, there exist curves of the form eitZV0, with initial velocity iZV0 = iXV0, which are short
along their path. These curves, which we call metric geodesics, need not be unique, and correspond
to the so called extension problem considered by M.G. Krein and others: in our context, given a
symmetric operator

X0|R(V0) : R(V0) → H,

find all possible Z∗ = Z extending X0|R(V0) to all H, with ‖Z‖ = ‖X0‖. We also consider the
problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that
if there exists a continuous path joining V0 and V1, then both ranges have the same codimension.
We show that if this number is finite, then there exist metric geodesics joining V0 and V1.

Keywords: isometries, geodesics.

1 Introduction

Let H be a Hilbert space, B(H) the algebra of bounded operators acting on H, and U(H) the group
of unitary operators. We denote I = {V ∈ B(H) : V ∗V = I} the set of isometries of H. The
unitary group U(H) acts on I by means of

U × V 7→ UV.

This action is locally transitive. More precisely, it is well known (see [8]), that two isometries V1, V2

such that ‖V1 − V2‖ < 1 are conjugate by this action: there exists a unitary U = U(V1, V2) such
that UV1 = V2. The unitary U can be chosen as a C∞ map in terms of V1, V2.

∗2000 Mathematics Subject Classification: 47A05, 47B15, 58B20.
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If V2 = UV1, then the final projections (onto the ranges) of V1 and V2 are unitarily equivalent:
V2V

∗
2 = UV1V

∗
1 U∗. Since the unitary group is connected, it follows that the connected components

of I coincide with the orbits of this action, lie at distance at least 1, and are parametrized by the
codimension of the ranges of the isometries:

I(H) = I = ∪0≤n≤∞In

where
In = {V ∈ I : dim R(V )⊥ = n}.

It is also known that In, I are (infinite dimensional) differentiable submanifolds of B(H), and
homogeneous spaces of U(H). The tangent spaces of I can be regarded as complemented subspaces
of B(H) [1]. Namely,

(TI)V = {iXV : X∗ = X}.
Suppose we endow I with the Finsler metric consisting of the usual norm of B(H) in each tangent
space. That is, we measure the length of a curve γ in I by means of

length(γ) =
∫ b

a

‖γ̇(t)‖ dt

if the curve is parametrized in the interval [a, b].
We study the problem, of geometrical as well as variational nature, of finding curves of minimal

length in I.
We obtain the following results:

1. For each V ∈ I and each tangent vector V ∈ (TI)V with ‖V‖ ≤ π, there exists a curve
ν(t) = eitXV , t ∈ [0, 1], satisfying the initial conditions

ν(0) = V, ν̇(0) = iXV = V,

which has minimal length along its path, among all smooth curves in I. By this we mean: for
any t0, t1 ∈ [0, 1], the curve ν restricted to the interval [t0, t1], has length which is less than
or equal to the length of any other smooth curve in I joining ν(t0) and ν(t1).

2. For each pair of elements V0, V1 ∈ In, with n finite, there exists a curve ν(t) = eitXV0 with

ν(0) = V0, ν(1) = V1

with minimal length among smooth curves of I with the same endpoints. This curve is also
minimizing along its path.

In both situations, neither of the metric geodesics need be unique. On the contrary, even for
arbitrary close elements (or short velocity vectors) there may exist multiple solutions.

If n = ∞, we obtain metric geodesics joining two given isometries V0 and V1 in two special
cases: if either the ranges of V0 and V1 are equal or orthogonal.

Note that if n = 0, I0 = U(H). It is a folklore fact (see for example [2]) that the curves of
the form µ(t) = eitX , X∗ = X, have minimal length among smooth curves of unitaries with the
same endpoints, provided that ‖X‖ ≤ π. We shall use this fact. On the other hand, since In

is a homogeneous space of U(H), it follows that any curve ν(t) in In, can be lifted to a curve of
unitaries: ν(t) = µ(t)V0 for µ(t) ∈ U(H) and a fixed V0 ∈ In. Therefore the results described
appear natural.

These results are related to [4] and [5], where the problem of the existence of metric geodesics
is studied in the context of abstract homogeneous spaces. In those papers a quotient Finsler metric
is defined. Here we consider the usual operator norm. However, some techniques used there work
fine in the present context.
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2 Minimality and the extension problem

Let V ∈ I, X = X∗ and ν(t) = eitXV . Note that the length of ν is

length(ν) = ‖XV ‖.

If one searches curves of this type, subject to given initial conditions, which should be as short as
possible, it turns out to be useful to try to minimize ‖X‖: find, if possible, the minimum of the set

{‖Z‖ : Z∗ = Z,ZV = XV }.

Denote by P = V V ∗ the final projection of V (equal to the orthogonal projection onto the range
of V ). Note that XV = ZV if and only if XP = ZP . Indeed, XV = ZV implies XV V ∗ = ZV V ∗;
conversely, XP = ZP implies XV = XPV = ZPV = ZV . It follows that the problem above is
equivalent to finding the mimimum of

{‖Z‖ : Z∗ = Z,ZP = XP},

for a given self-adjoint X. This in turn is equivalent to solving the extension problem for self-adjoint
operators, which can be stated as follows. Given a 2× 2 (incomplete) block operator matrix of the
form (

A B
B∗ ?

)
,

complete the 2, 2 entry in order to obtain a self-adjoint operator with the least possible norm.
Indeed, in our case the entries are A = PXP and B = PX(I − P ). This problem was solved in
a much broader setting (for unbounded symmetric operators) by M. G. Krein in [7]. There is an
elementary and beautiful construction of a solution in [11], page 336. In general, the solution is
not unique, in [3] there are descriptions of all solutions. Let us state the existence result in our
framework:

Lemma 2.1 Given X = X∗ ∈ B(H), there exists Z = Z∗ ∈ B(H) such that

1. ZV = XV and

2. ‖ZV ‖ = ‖Z‖.
Such Z may not be unique.

The solutions of the extension problem give minimizing geodesics of isometries starting at V :

Theorem 2.2 Let V ∈ I and iXV ∈ (TI)V (X = X∗) with ‖XV ‖ ≤ π. Let Z be a solution of
the extension problem, i.e.

ZV = XV and ‖ZV ‖ = ‖Z‖.

Then the curve ν(t) = eitZV , t ∈ [0, 1] which verifies ν(0) = V and ν̇(0) = iXV , has minimal
length along its path among smooth curves in I.

Proof. Let P = V V ∗ be the final projection of V . Fix a solution Z of the extension problem.
Note that ZP = XP , ‖ZP‖ = ‖Z‖ and ‖Z‖ ≤ π. Given a positive element A of a C∗-algebra,
there exists a faithful representation of the algebra (for instance, the universal representation) and
a unit vector ξ in the Hilbert space H of this representation, such that Aξ = ‖A‖ξ (here we identify
A with its image under the representation). Let us call such a vector ξ a norming eigenvector for
A. Let us apply this fact to the positive operator PZ2P . Let ξ be a (unit) norming eigenvector for
PZ2P . Again we identify operators with their images under this representation, and regard them
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as operators in this new, eventually bigger, Hilbert space. Clearly ξ lies in the range of P . We
claim that ξ is a norming eigenvector for Z2 as well. Indeed,

Z2ξ = Z2Pξ = PZ2Pξ + (I − P )Z2Pξ = ‖PZ2P‖ξ + ξ1,

where ξ1 = (I − P )Z2Pξ is orthogonal to ξ. Note that

‖PZ2P‖ = ‖ZP‖2 = ‖Z‖2 = ‖Z2‖.

Then
‖Z2‖2 ≥ ‖Z2ξ‖2 = ‖PZ2P‖2 + ‖ξ1‖2 = ‖Z2‖2 + ‖ξ1‖2.

It follows that ξ1 = 0 and our claim is proved. Since R(P ) = R(V ) there exists a unit vector η ∈ H
such that V η = ξ. Consider the curve ν(t)η = eitZV η = eitZξ. Clearly ‖ν(t)η‖ = 1, i.e. ν(t)η is a
curve in the unit sphere SH of the Hilbert space H. We claim that it is a minimizing geodesic of
this Riemann-Hilbert manifold. Indeed,

ν̈(t) = −eitZZ2ξ = −‖Z‖2eitZξ = −‖Z‖2ν(t).

That is, ν satisfies the differential equation of the geodesics of the sphere SH. Moreover, the length
of νη is

length(νη) =
∫ 1

0

‖ν̇(t)η‖ dt = ‖Zξ‖ ≤ π.

It follows that νη is a minimizing geodesic of the unit sphere. Note also that

‖Zξ‖2 =< Zξ, Zξ >=< Z2ξ, ξ >= ‖Z2‖ = ‖Z‖2.

Clearly, if [t0, t1] ⊂ [0, 1], the length of νη restricted to [t0, t1] (or shortly νη|[t0,t1]) is (t1 − t0)‖Z‖.
On the other hand,

length(ν|[t0,t1]) =
∫ t1

t0

‖ν̇‖ dt = (t1 − t0)‖ZV ‖ = (t1 − t0)‖Z‖.

It follows that length(νη) = length(ν) on any subinterval of [0, 1].
Suppose now that γ : [a, b] → I is a smooth curve joining ν(t0) and ν(t1). Clearly the curve γη

is a smooth curve in SH joining ν(t0)η and ν(t1)η. Therefore

length(γη|[t0,t1]) ≥ length(νη|[t0,t1]) = length(ν|[t0,t1]).

On the other hand,

length(γη|[t0,t1]) =
∫ t1

t0

‖γ̇(t)η‖ dt ≤
∫ t1

t0

‖γ̇(t)‖ dt = length(γ|[t0,t1]).

It follows that ν is not longer than any other smooth curve in I joining any two points along their
path. 2

The proof of this theorem is based on the fact that geodesics of length at most π of the unit sphere
of a Hilbert space are minimizing curves. A similar argument was used in [10] to characterize
minimizing curves of projections in a C∗-algebra.

The converse of the statement in the above theorem does not hold. Consider the following
example. Let H = H0 ⊕H0 be of infinite dimension, let P be the orthogonal projection onto the
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first copy of H0, and let V be an isometry with final space P . Consider the following operators
given as block matrices in terms of P

Z =
(

2 0
0 1

)
and D =

(
0 0
0 2

)
.

Note that ZV = (Z + D)V and ‖Z‖ = ‖ZV ‖ = 2. Therefore δ(t) = eitZV is minimizing along its
path, for t ∈ [0, 1]. Also note that X = Z + D has norm 3, and therefore it is not a solution of the
corresponding extension problem. However eitXV = eitZV is minimizing along its path. Perhaps a
proper way to state a converse of theorem (2.2) would be the following: suppose that γ(t) = eitXV ,
with X∗ = X and ‖X‖ ≤ π, is minimizing along its path for t ∈ [0, 1], then there exists Z∗ = Z
with ‖ZV ‖ = ‖Z‖ and eitZV = eitXV for all t. Or equivalently, a self-adjoint operator Z with
‖ZV ‖ = ‖Z‖ and ZnV = XnV for al n ≥ 1. We will consider this question elsewhere.

3 Existence of geodesic joining given endpoints

In the previous section it was shown that for any pair of initial conditions (V,V) in the tangent
bundle of I, there exist (eventually many) short geodesics satisfying the initial conditions. In this
section we consider the problem of finding short geodesics joining a given pair of elements in I.
Again, our solution of this problem consists of minimizing the norm on a certain set of operators.
Namely, let V0, V1 ∈ In, 0 ≤ n ≤ ∞, and consider the set

LV0,V1 = {Z ∈ B(H) : Z∗ = Z, eiZV0 = V1}.

Recall that by the local transitivity of the action, there exists a unitary U such that UV0 = V1, and
that such U is of the form U = eiZ for Z as above, i.e. LV0,V1 is non empty. The following result
is an adaptation of Theorem 3.2 in [5], to our particular context, where the Finsler metric is given
by the norm of B(H) (in [5] quotient norms are considered).

Theorem 3.1 Let V0, V1 ∈ In, and suppose that there exists Z0 ∈ LV0,V1 such that

‖Z0‖ = inf{‖Z‖ : Z ∈ LV0,V1}.

Then ν(t) = eitZ0V0 is shorter than any other piecewise smooth curve joining V0 and V1 in I.
Moreover, ν(t) is minimizing along its path.

Proof. The proof, as in 3.2 of [5], proceeds in three steps:

• a) Let Z0 ∈ LV0,V1 with ‖Z0‖ = inf{‖Z‖ : Z ∈ LV0,V1}, fix s ∈ (0, 1) and denote Vs = eisZ0V0.
Then sZ0 ∈ LV0,Vs

and s‖Z0‖ = inf{‖Z‖ : Z ∈ LV0,Vs
}.

• b) Suppose that X, Y are self-adjoint operators of small norms in order that eiXeiY lies in
the domain of the power series of the logarithm log defined on a neighbourhood of I with
antihermitic values. (for intance, ‖eiXeiY − I‖ < 1). Then

log(eiXeiY ) = iX + iY + R2(X, Y ),

where

lim
s→0

R2(sX, sY )
s

= 0.

• c) Let P0 = V0V
∗
0 . For any Y = Y ∗ such that Y = (I − P0)Y (I − P0), one has that

‖Z0‖ ≤ ‖Z0 + Y ‖.
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Let us prove these steps, and show how they prove our result.
Step a):
For an element X = X∗, denote by γX(t) = eitX . Note that condition ‖Z0‖ = inf{‖Z‖ : Z ∈

LV0,V1} implies that the curve γZ0 is the shortest among piecewise smooth curves of unitaries joining
I to the set {U ∈ U(H) : UV0 = V1}. Indeed, if µ(t) is another smooth curve of unitaries with
µ(0) = I and µ(1)V0 = V1, then there is a curve of the form eitW , W ∗ = W and ‖W‖ ≤ π, with
eiW = µ(1), which is shorter than µ. Note that such W lies in LV0,V1 , and therefore ‖W‖ ≥ ‖Z0‖.
Then length(µ) ≥ ‖W‖ ≥ length(γZ0).

Let us show that s‖Z0‖ = inf{‖Z‖ : Z ∈ LV0,Vs
}. Suppose that there exists X ∈ LV0,Vs

such
that ‖X‖ < s‖Z0‖. Consider the curve δ(t) = ei(1−t)sZ0+itZ0 which joins eisZ0 with eiZ0 in U(H),
and σ(t) = δ(t)e−isZ0eiX , joining eiX and ei(1−s)Z0eiX (in both cases t ∈ [0, 1]). Note that they
have the same length, for they differ on an element of U(H): length(δ) = length(σ) = (1− s)‖Z0‖.
Note also that the endpoint of σ satisfies σ(1)V0 = V1. Let γ̃ be the piecewise smooth curve which
consists of the curve γX followed by σ. Then γ̃ joins I and the fiber {U ∈ U(H) : UV0 = V1} in
U(H), and therefore by the fact remarked above, length(γ̃) ≥ ‖Z0‖. On the other hand,

length(γ̃) = length(γX) + length(σ) = ‖X‖+ (1− s)‖Z0‖

< s‖Z0‖+ (1− s)‖Z0‖ = ‖Z0‖.

Step b):
The linear part of the series of log(eiXeiY ) is iX + iY . So that

log(eiXeiY ) = iX + iY + R2(X, Y )

Where the remainder term R2(X, Y ) is an infinitesimal of the order ‖X‖+ ‖Y ‖. Therefore

lim
s→0

R2(sX, sY )
s

= 0.

Step c):
By step a), for any s ∈ (0, 1), s‖Z0‖ = inf{‖Z‖ : Z ∈ LV0,Vs}. Let Y = Y ∗ such that

Y = (I − P0)Y (I − P0). Then clearly eiY V0 = eiY P0V0 = V0. Therefore log(eiZ0eiY ) ∈ LV0,V1 .
Analogously, log(eisZ0eisY ) ∈ LV0,Vs

. Then

s‖Z0‖ ≤ ‖ log(eisZ0eisY )‖ = ‖isZ0 + isY + R2(sZ0, sY )‖

≤ s‖Z0 + Y ‖+ ‖R2(sZ0, sY )‖.

Then

‖Z0‖ ≤ ‖Z0 + Y ‖+
‖R2(sZ0, sY )‖

s
.

Taking limits, ‖Z0‖ ≤ ‖Z0 + Y ‖, which proves step c).
The theorem follows, for the set {Z0 + Y : Y ∗ = Y, (I − P0)Y (I − P0) = Y } parametrizes the

set of all Z such that ZP0 = Z0P0. This means that Z0 is a solution of the extension problem
described in the previous section, and therefore, by theorem (2.2), ν(t) = eitZ0V0 is a minimizing
geodesic, joining V0 and V1. 2

As a particular case, this result solves the problem of existence of metric geodesics joining isometries
of finite codimension.

Corollary 3.2 Let V0, V1 ∈ In with n < ∞. Then there exists a curve of the form ν(t) = eitZ0V0,
t ∈ [0, 1], joining V0 and V1 which is shorter than any other piecewise smooth curve in I with the
same endpoints. Moreover, it is also minimizing along its path.
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Proof. As in the beginning of the proof of the preceding result, one can always find an element in
LV0,V1 with norm less than or equal to π. Then i0 = inf{‖Z‖ : Z ∈ LV0,V1} ≤ π. Also, from this
remark it is clear that if i0 = π, there exists a minimum. Suppose i0 < π. Fix U ∈ U(H) such that
UV1 = V0. Consider the set exp(LV0,V1) = {eiX : X ∈ LV0,V1}. Note that U · exp(LV0,V1) consists
of unitary operators W satisfying WP0 = P0. Indeed, it is clear that WV0 = V0 if and only if
WP0 = P0. If one writes such unitaries as 2× 2 matrices in terms of P0, they are of the form(

P0 0
0 (I − P0)W (I − P0)

)
It follows that U · exp(LV0,V1) is homeomorphic to the unitary group of R(P0)⊥ = R(V0)⊥, which
is finite dimensional. Therefore exp(LV0,V1) is compact. Let Zn be a sequence in LV0,V1 such that
‖Zn‖ → i0. Then eiZn has a convergent subsequence eiZnk → W0. Since i0 < π, there exists l such
that k ≥ l implies ‖Znk

‖ < π. It is well known that the exponential map,

exp : {X ∈ B(H) : X∗ = X, ‖X‖ < π} → {W ∈ U(H) : ‖W − I‖ < 2}, exp(X) = eiX ,

is a homeomorphism. It follows that Znk
converges to a self-adjoint operator Z0 in LV0,V1 with

‖Z0‖ = i0. 2

There are two special situations when the problem of finding a minimizing geodesic joining two
given isometries can be solved explicitely.

Proposition 3.3 Suppose that V0, V1 are two isometries in the same connected component, whose
ranges are either equal or orthogonal. Then there exists a minimizing geodesic of the form ν(t) =
eitXV0 joining them.

Proof. Suppose first that R(V0) = R(V1), or equivalently, P0 = P1 = P . Then V1V
∗
0 is a unitary

operator in R(V0). Therefore U = V1V
∗
0 + I − P is a unitary operator in H, satisfying UV0 =

V1V
∗
0 V0 = V1. Moreover, regarded as a 2× 2 matrix in terms of P , U is of the form(

V1V
∗
0 0

0 I − P

)
Therefore U = eiX with X self-adjoint, ‖X‖ ≤ π and with matrix(

X ′ 0
0 0

)
.

Clearly ‖X‖ = ‖XP0‖, and therefore ν(t) = eitXV0 is a minimizing geodesic with ν(0) = V0 and
ν(1) = V1.

Suppose now that R(V0) ⊥ R(V1). Note that this implies that the ranges have infinite codi-
mension. Also it is clear that V ∗1 V0 = V ∗0 V1 = 0. Denote by Q the orthogonal projection onto
R(V0)⊕R(V1), i.e. Q = P0 + P1. This implies that the element J = −V0V

∗
1 + V1V

∗
0 satisfies

J∗ = −J, J2 = −Q, QJ = JQ = J, JV0 = V1.

Indeed, these are straightforward computations. Also it is clear that

‖JV0‖ = 1 = ‖J‖.

Let X = −iπ
2 J . Then X is self-adjoint with ‖X‖ = ‖XV0‖ = π/2. Note also that

eiX = e
π
2 J = I +

π

2
J − 1

2
(
π

2
)2Q− 1

6
(
π

2
)3J +

1
24

(
π

2
)4Q + . . . = J + I −Q.

Then eiXV0 = JV0 + (I −Q)V0 = V1. Therefore ν(t) = eitXV0 is a minimizing geodesic joining V0

and V1. 2

Note that if R(V0) ⊥ R(V1), then d(V0, V1) = π/2 (here d denotes the rectifiable metric).
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4 A linear connection in I
It was remarked that I is a submanifold of B(H). In this section we try to perform a classic
differential geometric approach to the problem of finding curves of isometries of minimal length.
We introduce a covariant derivative in the tangent bundle, and consider the question of how the
geodesics of this connection relate to the metric geodesics found in the previous sections. Since I is
a submanifold of B(H), its tangent spaces (TI)V are complemented closed (real) linear subspaces
of B(H). A simple way to introduce a connection is to find a smooth distribution of supplements
of (TI)V for each V ∈ I. Or equivalently, a smooth distribution I 3 V 7→ PV ∈ BIR(B(H)) (=the
space of real linear operators acting on B(H)), verifying that P2

V = PV and R(PV ) = (TI)V . Let
us define

PV (X) =
1
2
PX − 1

2
V XV ∗ + (I − P )X , X ∈ B(H), (4.1)

where as before, P = V V ∗. Let us first show that these maps are real linear idempotents whith
ranges equal to (TI)V , and afterwards justify this choice.

Proposition 4.1 The map PV : B(H) → B(H) is a real linear idempotent with range equal to
(TI)V . The map I → BIR(B(H)), V 7→ PV is smooth.

Proof. It is apparent that PV is real linear and bounded. Also it is clear that the map V 7→ PV

is smooth. In order to prove that PV is an indempotent with range T (I)V , it suffices to show
that R(PV ) ⊂ (TI)V and PV |(TI)V

= id(TI)V
. The second fact is a straightforward computation.

Recall that (TI)V = {ZV : Z∗ = −Z}. Then

PV (ZV ) =
1
2
PZV − 1

2
V V ∗Z∗V + (I − P )ZV = PZV + (I − P )ZV = ZV.

The first fact is less obvious. Let Y ∈ R(PV ), then

Y =
1
2
PX − 1

2
V X∗V + (I − P )X = Y1 + Y2,

where Y1 = 1
2PX − 1

2V X∗V and Y2 = (I − P )X. First note that, using P = V V ∗ and PV = V

Y1 =
1
2
V V ∗X − 1

2
V X∗PV =

1
2
{PXV ∗ − V X∗P}V ∈ {ZV : Z∗ = −Z}.

Accordingly, using V ∗V = 1 and (I − P )V = 0,

Y2 = (I − P )XV ∗V = {(I − P )XV ∗ − V X∗(I − P )}V ∈ {ZV : Z∗ = −Z}.

2

The choice of PV may seem at first sight arbitrary. In fact, there exist many undistinguished
supplements for (TI)V . However, if H is finite dimensional, BIR(H) becomes a real Hilbert space
with the natural inner product given by the real part of the trace:

< X,Y >= Re (Tr(Y ∗X)).

In this case, I = I0 is the unitary group of H. A straightforward computation shows that PV is
symmetric for this inner product. It follows that the supplement chosen for (TI)V is its orthogonal
complement, and therefore the linear connection it induces on I is the Levi-Civita connection of
the metric induced by the (real part of the) trace on every tangent space.
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Let us proceed with the computation of this connection in the general case. If X (t) is a smooth
tangent vector field along a curve γ : [a, b] → I, which is a smooth curve of operators taking values
in (TI)γ(t) for earch t, then the covariant derivative is given by

DX
dt

= Pγ(t)(Ẋ (t)).

Therefore a curve µ(t) ∈ I is a geodesic if it satisfies the second order differential equation

0 = Pµ(µ̈) =
1
2
µµ∗µ̈− 1

2
µµ̈∗µ + (I − µµ∗)µ̈ = µ̈− 1

2
µµ∗µ̈− 1

2
µµ̈∗µ.

This expression can be made simpler. If one differentiates twice the identity µ∗µ = 1 one obtains,
first µ̇∗µ + µ∗µ̇ = 0 and next µ̈∗µ + 2µ̇∗µ̇ + µ∗µ̈ = 0. Multiplying this relation by µ on the left, one
obtains

µµ∗µ̈ + µµ̈∗µ = −2µµ̇∗µ̇.

This can be replaced in the differential equation above to obtain

0 = µ̈ + µµ̇∗µ̇ (4.2)

which we shall adopt. Insofar, we have considered metric geodesics of the form δ(t) = eitXV . It is
natural to ask wether these can be geodesics of this linear connection.

Proposition 4.2 A curve δ(t) = eitXV is a geodesic of the linear connection just defined if and
only if X2 commutes with P = V V ∗.

Proof. Note that δ̇(t) = iXeitXV = ieitXXV , δ̇∗ = −iV ∗XeitX and δ̈(t) = −eitXX2V . Then,
replacing in 4.2, one gets that δ is a geodesic if

−eitXX2V + eitXV V ∗Xe−itXeitXXV = 0,

i.e.
eitX(−X2V + PX2V ) = 0

which, multiplying by V ∗ on the right is equivalent to X2P = PX2P . Since X2 is self-adjoint, this
is clearly equivalent to X2 commuting with P . 2

Remark 4.3 The operator X2 commutes with P in two special cases, if, regarded as a 2×2 matrix
in terms of P , the element X has a diagonal or codiagonal matrix.

1. In the first case, X itself commutes with P . Note that X = PXP + (I − P )X(I − P ),
where both summands commute. Then eit(I−P )X(I−P )V = V . Therefore the geodesic δ is
δ(t) = eitXV = eitPXP eit(I−P )X(I−P )V = eit(I−P )X(I−P )V . In other words, it suffices to
consider X = PXP . In particular, ‖X‖ = ‖XP‖, so that if additionally ‖X‖ ≤ π, the
geodesic δ of the linear connection is also minimizing. Also note that for all t, R(δ(t)) = R(V ),
i.e. these tangent vectors iXV correspond to (all possible) directions inside R(V ).

2. If X has codiagonal matrix, X = PX(I − P ) + (I − P )XP . It is apparent that also in this
case one has ‖X‖ = ‖XP‖, and therefore (if again ‖X‖ ≤ π) these give minimizing geodesics.
Note that in this case the range of the tangent vector iXV is orthogonal to R(V ). Indeed,
iXV = i(PX(I − P )V + (I − P )XP )V = i(I − P )XV , whose range is clearly orthogonal to
R(P ) = R(V ).

Summarizing, geodesics starting at V , which either stay within the range of V , or start orthogonally
to it, are of the form δ(t) = eitXV , with X diagonal (respectively, codiagonal) with respect to P . If
‖X‖ ≤ π, they are minimizing.
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There is another natural way to induce a linear connection in I [9]. Recall that I is a homoge-
neous space of the unitary group U(H) of H. The isotropy group IsoV = {W ∈ U(H) : WP = P}
has been identified as the unitary operators with matrices of the form(

P 0
0 W ′

)
where W ′ = (I −P )W (I −P ) is a unitary operator of R(V )⊥. The isotropy Banach-Lie algebra is
therefore given by IsoV = {iZ ∈ B(H) : Z∗ = Z,ZP = 0}, which in matrix form are(

0 0
0 iZ ′

)
with Z ′ self-adjoint in R(V )⊥. One can introduce a linear connection in the homogeneous space
by means of an invariant supplement KV of IsoV inside the Banach-Lie algebra of U(H), which is
the anti-Hermitic part of B(H), B(H)ah = {Y ∈ B(H) : Y ∗ = −Y }. Such KV should satisfy:

1. KV ⊕ IsoV = B(H)ah.

2. IsoV -invariance: W · KV ·W ∗ = KV , for all W ∈ IsoV .

3. Smoothness: the map I → BIR(B(H)ah), V 7→ ΠV is smooth, where ΠV is the idempotent
with range KV , corresponding to the decomposition above.

A possible choice would be to take KV consisting of matrices (in terms of P ) of the form(
A B
−B∗ 0

)
with A∗ = −A. However this choice behaves poorly in the metric sense. The advantage of a
linear connection introduced by means of a reductive structure (see [6]) is that the geodesics can
be explicitely computed, they are of the form δ(t) = eitKV , with K ∈ KV . If these curves were of
minimal length, then the extension problem would admit the trivial answer, namely putting 0 in
the 2, 2 entry. This is not necessarilly the case [3].

It remains open the question if there exists a reductive supplement consisting of solutions to
the extension problem. That is, if there exists a supplement KV which additionally satisfies

• 4. ‖ΠV ‖ ≤ 1.
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