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Abstract. Different equivalence relations are defined in the set L(H)s of self-

adjoint operators of a Hilbert space H in order to extend a very well known
relation in the cone of positive operators. As in the positive case, for a ∈ L(H)s

the equivalence class Ca admits a differential structure, which is compatible

with a complete metric defined on Ca. This metric coincides with the Thomp-
son metric when a is positive.

1. Introduction

Let L(H) be the algebra of bounded linear operators of a Hilbert space H and
L(H)+ the cone of positive operators. Consider the partial order ≤ induced in L(H)
by L(H)+. There is a natural equivalence relation in L(H)+ which arises from this
order (namely, given a, b ∈ L(H)+, a ∼ b if and only if there exist positive numbers
α, β such that a ≤ αb and b ≤ βa). Each class or Thompson component admits a
complete metric, known as the Thompson part metric. In fact, this construction
can be done in every closed convex cone of a Banach space. The reader is referred
to [10] and [11] to find definitions, properties and applications of this metric.

On the other hand, the set GL(H)s of invertible selfadjoint operators admits
a differential structure as a homogeneous space of the group GL(H) of invertible
operators, see [5]. The orbit of the identity is the set GL(H)+ of invertible positive
operators and it is also the Thompson component of every a ∈ GL(H)+. More
generally, the components of positive operators are parameterized by the ranges of
their square roots, see [2] and [3]. Also, in [2] and [3] the differential and metrical
properties of the component of a positive operator were studied in detail. The
aim of this paper is to extend this equivalence relation to the set L(H)s of selfad-
joint operators and to define a metric on each component, that coincides with the
Thompson metric in the positive case; also to study the geometrical structure of
the components and finally, to compare both approaches.

The contents of the paper are the following: In Section 2 we recall some classi-
cal results about decompositions of selfadjoint operators which are used along the
paper. Also, the definition and some properties of the Thompson part metric for
positive operators are stated. Section 3 contains a brief description of the homo-
geneous structure of GL(H)s. We give a new characterization of the orbit of an
invertible selfadjoint operator by means of its polar decomposition. In Section 4
we define three equivalence relations on L(H)s that extend the one defined in the
cone L(H)+ and characterize the corresponding equivalence classes, Ca, C

1
a , C

2
a . In
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Section 5, we show that Ca is homeomorphic to the product of two Thompson com-
ponents of positive operators. This result allows to define the Thompson metric
dT on the component of a selfadjoint operator. It is proved that, for a ∈ L(H)s,
Ca admits a natural structure of homogeneous space of an appropriated group and
given b, c ∈ Ca there exists a unique geodesic γb,c joining them. A Finsler structure
is given in Ca which allows to define the length of a curve γ ⊆ Ca, L(γ). It holds
that the geodesic γb,c has minimal length among all curves with endpoints b and
c. Finally if d(b, c) is the geodesic distance between b and c, then d is a complete
distance in Ca and d(b, c) = dT (b, c) = L(γb,c).

2. Preliminaries

Let H be a Hilbert space, L(H) the algebra of linear bounded operators in H,
L(H)s the subset of selfadjoint operators and L(H)+ the cone of positive operators
of L(H). Denote byGL(H) the group of invertible operators of L(H) andGL(H)s =
L(H)s ∩GL(H), the set of invertible selfadjoint operators. Let U be the subgroup
of GL(H) of unitary operators and P the subset of reflections of U , i.e., P =
{u ∈ L(H) : u = u−1 = u∗}. The range and the nullspace of a ∈ L(H) are R(a)
and N(a) respectively. If S is a closed subspace of H, pS denotes the orthogonal
projection onto S. Observe that pS induces a matrix decomposition as follows:

if p = pS each a ∈ L(H) can be written as a =
(
a11 a12

a21 a22

)
, where a11 =

pap|S ∈ L(S), a12 = pa(1− p)|S⊥ ∈ L(S⊥,S), a21 = (1 − p)ap|S ∈ L(S,S⊥) and
a22 = (1− p)a(1− p)|S⊥ ∈ L(S⊥).

Every operator a ∈ L(H) admits a polar decomposition a = v|a| where |a| =
(a∗a)1/2 is positive and v is a partial isometry from N(a)⊥ onto R(a). Observe
that, in general, this decomposition is not unique. To fix the isometric part, define
va as the partial isometry verifying that va : N(a)⊥ → R(a) is an isometry and
N(va) = N(a). If a is selfadjoint, the isometric part of the polar decomposition
can be defined to obtain a reflection: in this case R(a)⊥ = N(a) so that if ua =
va + pN(a), it is easy to see that ua ∈ P and a = ua|a| = |a|ua. Notice that
ua|N(a)

= id|N(a)
and if pa = p

R(a)
, uapa = va. If qa = ua+1

2 then qa is an orthogonal
projection and uaqa = qa.

From now on, given a ∈ L(H)s denote by a = ua|a| the polar decomposition
of a with ua ∈ P and a = va|a| the polar decomposition of a with va the partial
isometry defined before.

Lemma 2.1. Consider a ∈ L(H)s with polar decomposition a = ua|a|. Then
a admits a unique decomposition a = a1 − a2 such that a1, a2 are (semidefinite)
positive and a1a2 = 0. Moreover a1 = |a|+a

2 = aqa and a2 = |a|−a
2 = −a(1 − qa),

where qa = ua+1
2 .

Proof. Straightforward. �

Given a ∈ L(H)s we will refer to the decomposition of Lemma 2.1 as the positive
decomposition of a.

Consider a ∈ L(H)s with positive decomposition a = a1 − a2 then |a| = a1 + a2;
if pc = p

R(c)
then va = pa1 −pa2 , ua = pa1 −pa2 +pN(a) and pa = pa1 +pa2 . Notice
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also that R(a1) and R(a2) are closed if and only if R(a) is closed. Finally observe
that R(qa) = R(a1)⊕N(a) and N(qa) = R(a2).

Thompson metric for positive operators. Every closed convex cone K of a
real Banach space E defines an order relation: if x, y ∈ E, x ≤ y if and only if
y − x ∈ K. Suppose that K is normal, i.e. there exists a constant r > 0 such
that ‖x‖ ≤ r‖y‖ if 0 ≤ x ≤ y. Consider the following equivalence relation in K:
x ∼ y if there exist constants r, s > 0 such that x ≤ ry and y ≤ sx. The Thompson
component of x ∈ E, Cx, is the equivalence class of x. Thompson [13] proved that

dT (x, y) = log max{inf{r > 0 : x ≤ ry}, inf{s > 0 : y ≤ sx}}

defines a complete distance on each component of K. The distance dT is known as
the part metric or Thompson metric. In the papers by R. Nussbaum [10] and [11]
some applications and examples of this metric can be found.

Observe that if H is a Hilbert space then L(H)+ is a closed normal convex cone
and the above relation can be considered in L(H)+.

The following proposition shows that the components Ca, a ∈ L(H)+, are para-
metrized by the ranges of a1/2.

Proposition 2.2. Consider a, b ∈ L(H)+ then b ∈ Ca if and only if R(a1/2) =
R(b1/2).

Proof. See Corollary 3.3 of [2]. �

Each Ca admits a structure of homogeneous space of an appropiated group.
In particular, if a ∈ L(H)+ has closed range then Ca identifies with GL(R(a))+.
There is a natural connection on the associated tangent bundle, TCa, and given
b, c ∈ Ca there exists a unique geodesic in Ca joining b to c, namely, γb,c(t) =
b1/2(b−1/2cb−1/2)tb1/2, t ∈ [0, 1]. Also the geodesic distance, d(b, c) = inf{L(γ)}
(where the infimun is taken over all smooth curves in Ca, joining b to c and L(γ)
is the lenght of γ) coincides with the Thompson metric, dT , on each component.
Moreover, if b, c ∈ Ca it holds that

(2.1) dT (b, c) = L(γb,c) = ‖ log(b−1/2cb−1/2)‖,

where b−1/2 = (b1/2)†|R(a)
and (b1/2)† denotes the Moore-Penrose pseudoinverse of

b1/2. See [2] and [3] for a complete exposition of these facts.

3. Homogeneous structure of GL(H)s.

In what follows we recall some results about the geometry of the set of invertible
selfadjoint operators, GL(H)s, that can be found in [5]. The main result of this
section is a characterization of the orbit of an invertible selfadjoint operator given
by the action of GL(H) in terms of the polar decomposition of its elements.

Given a ∈ GL(H)s define in H the following sesquilinear indefinite form

〈x, y〉a = 〈ax, y〉, x, y ∈ H.

The adjoint of u ∈ L(H) with respect to 〈 , 〉a or the a-adjoint of u is u∗a = a−1u∗a.
It is easy to see that the group Ua of a-unitary elements consists on the operators
u ∈ GL(H) such that u−1 = a−1u∗a.
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Consider the following action of GL(H) on L(H)s:

L : GL(H)× L(H)s → L(H)s, Lga = gag∗, for a ∈ L(H)s and g ∈ GL(H).

Given a ∈ L(H)s, the orbit of a corresponding to the action L is the set

Oa = {gag∗ : g ∈ GL(H)}.
Observe that if a is invertible thenOa ⊆ GL(H)s, so that L : GL(H)×GL(H)s →

GL(H)s. The action L is locally transitive in GL(H)s, see [5].
The isotropy group of a ∈ GL(H)s, Ia, is the group of operators g ∈ GL(H) such

that Lga = a, i.e Ia = {g ∈ GL(H) : gag∗ = a}. Then Ia = Ua−1 .

Proposition 3.1. Given a ∈ GL(H)s, consider the map fa : GL(H) → Oa,
fa(g) = Lga = gag∗. Then (GL(H),Oa, fa) is a principal fibre bundle with struc-
tural group Ia.

Proof. See Proposition 1.1 of [5]. �

The next result shows that the orbit of a ∈ GL(H)s is the orbit of its unitary
part.

Lemma 3.2. Consider a ∈ GL(H)s with polar decomposition a = ua|a|, ua ∈ P,
then Oa = Oua

.

Proof. Since a is selfadjoint, a = ua|a| = |a|1/2ua|a|1/2. Then a ∈ Oua so that
Oa = Oua . �

Given w ∈ U the unitary orbit of w is the set UOw = {uwu∗ : u ∈ U}. The
following theorem relates the orbits Oa and UOua

.

Theorem 3.3. Consider a, b ∈ GL(H)s with polar decompositions a = ua|a|, b =
ub|b| and positive decompositions a = a1 − a2, b = b1 − b2. Then the following
conditions are equivalent:

(1) b ∈ Oa,
(2) ub ∈ UOua ,
(3) dimR(ai) = dimR(bi), for i = 1, 2.

Proof. (1) → (2): Consider b ∈ Oa then, by Lemma 3.2, ub ∈ Oua , so that there
exists g ∈ GL(H) such that ub = guag

∗. Therefore ub = guag
∗ = (g∗)−1uag

−1, or
g∗guag

∗g = ua. Consider λ = g∗g; then λuaλ = ua or λ−1 = uaλua. Since λ > 0
and ua ∈ P, it follows that λ−1/2 =uaλ

1/2ua, or λ−1/2ua = uaλ
1/2. If g = wλ1/2

is the polar decomposition of g with w ∈ U , we get that ub = wλ1/2uaλ
1/2w∗ =

wuaw
∗, so that ub ∈ UOua .

(2) → (3): Consider ub ∈ UOua , then there exists u ∈ U such that ub = uuau
∗.

Therefore pb1 − pb2 = ub = uuau
∗ = upa1u

∗ − upa2u
∗. It follows from Lemma 2.1

that pbi
= upai

u∗ so that dimR(ai) = dimR(bi), for i = 1, 2.
(3) → (1): Since dimR(bi) = dimR(ai) for i = 1, 2, there exists a partial

isometry ui from H onto R(bi) with N(ui) = R(ai)⊥. Consider u = u1 + u2

then u ∈ U because R(a1) ⊕ R(a2) = H and R(a1)⊥ = R(a2). Also uuau
∗ =

u(pa1 − pa2)u
∗ = pb1 − pb2 = ub, so that ub ∈ Oua

, or equivalently b ∈ Oa. �

Consider the map

π : GL(H)s → P, π(a) = ua, where a ∈ GL(H)s, a = ua|a|.
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It follows from the definition of π that the fibre of u ∈ P, π−1({u}), is the subset
of GL(H)s of elements a = ua|a| such that ua = u, i.e. π−1({u}) = {a ∈ GL(H)s :
a = uα, α > 0}. In particular, the fibre of 1 is GL(H)+.

The following lemma is similar to Proposition 4.1 of [5].

Lemma 3.4. Consider u ∈ P, then the following conditions are equivalent:

(1) a ∈ π−1({u}),
(2) a = a∗, au > 0,
(3) au = ua, au > 0.

Proof. Straightforward. �

4. Equivalence relations in L(H)s

From now on, given c ∈ L(H)s, c = c1−c2 denotes the positive decomposition of
c defined in the Preliminaries and pc = p

R(c)
. Recall that c = uc|c| = vc|c| denotes

the polar decompositions of c with uc ∈ P and vc a partial isometry.
Given va and vb partial isometries, va is unitarily equivalent to vb if there exits

u ∈ U such that vb = uvau
∗. The unitary orbit of va is the set UOva

= {uvau
∗ :

u ∈ U}.
Given a reflection v ∈ P, consider the indefinite sesquilinear form given by

〈x, y〉v = 〈vx, y〉, x, y ∈ H,

and define in L(H) the following order: given a, b ∈ L(H), then a ≤v b if and only
if 〈(b− a)x, x〉v ≥ 0 ∀x ∈ H, or equivalently, v(b− a) ≥ 0.

In what follows we define three equivalence relations in L(H)s that extend the
relation in L(H)+ discussed in the Preliminaries. Consider a, b ∈ L(H)s then

(1) a ∼ b, if there exist α, β > 0 such that a ≤ua
αb and b ≤ub

βb.
(2) a ∼1 b, if there exist α, β > 0 such that |a| ≤ α|b|, |b| ≤ β|a| and va is

unitarily equivalent to vb.
(3) a ∼2 b, if there exist α, β > 0 such that |a| ≤ α|b| and |b| ≤ β|a| .

It is not difficult to see that ∼1 and ∼2 are equivalence relations.
To see that ∼ is an equivalence relation we need the following lemma.

Lemma 4.1. Consider a, b ∈ L(H)s with polar decompositions a = ua|a|, b = ub|b|.
If a ∼ b, then ua = ub.

Proof. If a ∼ b, then there exist α, β > 0 such that ua(αb−a) ≥ 0 and ub(βa−b) ≥ 0.
Then c = αuab ≥ |a| ≥ 0, and b = α−1uac. Since the polar decomposition is unique
in R(b), it follows that ua = ub in R(b). It remains to prove that ua = ub in N(b).
In fact N(a) = N(b): if x ∈ N(b), then 0 ≤ 〈(c − |a|)x, x〉 = −〈|a|x, x〉 so that
|a|x = 0. Hence, x ∈ N(|a|) = N(a) and N(b) ⊆ N(a). In the same way, using that
ub(βa − b) ≥ 0 it follows that N(a) ⊆ N(b). Then ua = ub in N(a) by definition
(see the Preliminaries). �

Corollary 4.2. The relation ∼ is an equivalence relation.

Proof. Apply Lemma 4.1. �



6 GUILLERMINA FONGI AND ALEJANDRA MAESTRIPIERI

Denote by Ca, C1
a and C2

a the equivalence classes or components of a correspond-
ing to ∼, ∼1 and ∼2 respectively.

As a corollary of Lemma 4.1 we obtain a characterization of the component Ca

of a in terms of its polar decomposition.

Corollary 4.3. Consider a ∈ L(H)s, with polar decomposition a = ua|a|. Then

Ca = {b ∈ L(H)s : R(|b|1/2) = R(|a|1/2) and ub = ua}.

Proof. Consider b ∈ Ca with polar decomposition b = |b|ub, then by Lemma 4.1,
it follows that ua = ub. Also there exist α, β > 0 such that ua(αb − a) ≥ 0
and ub(βa − b) ≥ 0 so that |a| ≤ α|b| and |b| ≤ β|a|. Therefore |a| ∼ |b| and
by Proposition 2.2, this is equivalent to R(|b|1/2) = R(|a|1/2). The converse is
similar. �

Corollary 4.4. Consider a = va|a| ∈ L(H)s with closed range, then Ca = Cva
.

Proof. Since a has closed range, b ∈ Ca if and only if R(b) = R(a) and ub = ua

or equivalently, R(b) = R(a) and vb = va. But observe that, in this case, R(va) =
R(a). Therefore va ∈ Ca. �

It follows from Proposition 2.2 that C1
a = {b ∈ L(H)s : R(|b|1/2) = R(|a|1/2)

and vb ∈ UOva
} and C2

a = {b ∈ L(H)s : R(|b|1/2) = R(|a|1/2)}.
Given a ∈ L(H)s, denote by ã = a|

R(a)
. If a has closed range then ã ∈

GL(R(a))s. Consider the orbit of ã in R(a), i.e., Oã = {gãg∗ : g ∈ GL(R(a))}.
Observe that it follows from Theorem 3.3 that if a ∈ GL(H)s then Oa = C1

a . More
generally,

Proposition 4.5. Let a ∈ L(H)s be a closed range operator and b ∈ L(H)s. Then
the following conditions are equivalent:

(1) b ∈ C1
a,

(2) R(b) = R(a) and dimR(bi) = dimR(ai), for i = 1, 2,
(3) b̃ ∈ Oã.

Proof. (1) → (2): If b ∈ C1
a , then R(|b|1/2) = R(|a|1/2). Since a has closed range

R(a) = R(|a|1/2) so that R(|b|1/2) is closed. Then R(|b|1/2) = |b|1/2(N(b)⊥) =
|b|1/2(R(|b|1/2)) = R(b). Therefore R(b) = R(a). Also vb ∈ UOva , so that vb =
uvau

∗ for u ∈ U . In the same way as in the proof of (2) → (3) of Theorem 3.3 it
can be proved that dimR(bi) = dimR(ai) for i = 1, 2.

(2)→ (3): Notice that b̃ ∈ GL(R(a)) because R(b) = R(a). Then apply Theorem
3.3 to GL(R(a))s.

(3)→ (1): Consider b ∈ L(H)s such that b̃ = gãg∗ with g ∈ GL(R(a)). Then
R(b) = R(b̃) = R(a). By Theorem 3.3, ub̃ ∈ UOuã

. If c ∈ L(H)s it holds that
uc̃ = ṽc, therefore ṽb ∈ UOṽa

, i.e. there exists u ∈ U(R(a)) such that ṽb = uṽau
∗.

If w = u+ pN(a) then w ∈ U and vb = wvaw
∗. Therefore b ∈ C1

a . �

Remark 4.6. In Section 3 we defined the map

π : GL(H)s → P, π(b) = ub, for b ∈ GL(H)s with b = ub|b|.

From the definitions and properties studied in Section 3, if u ∈ P, it holds that

π−1({u}) ⊆ Ou ⊆ GL(H)s.
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Notice that π−1({u}) = Cu, Ou = C1
u and GL(H)s = C2

u. Analogously, if a is a
closed range operator, consider the map

πa : GL(R(a))s → P(R(a)), π(b) = ub,

where GL(R(a))s is the set of invertible selfadjoint operators in R(a), P(R(a))
is the subset of reflections in R(a) and b = ub|b| is the polar decomposition of
b ∈ GL(R(a))s. Then, by Corollary 4.3 and Proposition 4.5, we can identify

π−1
a ({ũa}) ≈ Ca, Oã ≈ C1

a , GL(R(a))s ≈ C2
a .

More generally, given a ∈ L(H)s, it holds that Ca ⊂ C1
a ⊂ C2

a . Therefore ∼,∼1

and ∼2 extend to L(H)s the relation in L(H)+ described in the Preliminaries. In
fact, if a ∈ L(H)+ and b ∈ L(H)s is such that b ∈ Ca, then 1 = ua = ub so that
b ∈ L(H)+ and there exist α, β > 0 such that a ≤ αb and b ≤ βa. Therefore, when
a is positive, Ca coincides with the Thompson component of a.

5. The Thompson components of L(H)s

The next theorem proves that given a ∈ L(H)s, Ca is homeomorphic to the
product of two Thompson components of positive operators. This characterization
naturally leads to the definition of a metric on Ca that extends the Thompson
metric. From now on we will refer to Ca as the Thompson component of a.

Theorem 5.1. Consider a ∈ L(H)s with positive decomposition a = a1−a2. Then
Ca is homeomorphic to Ca1 × Ca2 .

Proof. Given b ∈ L(H)s with positive decomposition b = b1−b2, define ψ : L(H)s →
L(H)+ × L(H)+, ψ(b) = (b1, b2). The map ψ is well defined because, by Lemma
2.1, the decomposition is unique; also ψ is injective. If b ∈ Ca, ua = ub and there
exist α, β > 0 such that (αb− a)ua ≥ 0 and (βa− b)ua ≥ 0, then qa(αb− a)uaqa =
qa(αb − a)qa ≥ 0, with qa = ua+1

2 . Since bqa = b1 and aqa = a1, it follows that
αb1 − a1 ≥ 0. Similarly, βa1 ≥ b1. Hence b1 ∈ Ca1 . In the same way, b2 ∈ Ca2 .

To see that ψ is surjective consider (b1, b2) ∈ Ca1×Ca2 , then b = b1−b2 ∈ L(H)s,
b1, b2 ≥ 0 and b1b2 = 0. Hence, by Lemma 2.1, if b = b1 − b2, then b ∈ L(H)s.
Moreover b ∈ Ca: since bi ∈ Cai

there exist αi > 0 such that ai ≤ αibi for i = 1, 2.
Hence |a| ≤ α1b1 + α2b2 ≤ α′(b1 + b2) ≤ α′|b|, where α′ = max{α1, α2}. In a
similar way, there exists β′ > 0 such that |b| ≤ β′|a|. Therefore |b| ∈ C|a| . It
remains to prove that ua = ub, or equivalently that qa = qb. Since |b| ∈ C|a|, then
N(a) = N(b). Also R(a1) = R(b1) because b1 ∈ Ca1 . Then R(qa) = R(a1)⊕N(a)
(see the Preliminaries). Therefore R(qa) = R(qb) so that qa = qb, because qa and
qb are orthogonal projectors. �

Remark 5.2. Consider a ∈ L(H)s with positive decomposition a = a1 − a2. Then,
from the proof of Theorem 5.1, the component of a can be written as

Ca = {b1 − b2 ∈ L(H)s : bi ∈ Cai
, i = 1, 2}.

Consider a, b, c ∈ L(H)s with positive decompositions a = a1 − a2, b = b1 − b2
and c = c1 − c2. If b, c ∈ Ca, define

d(b, c) = max{dT (bi, ci), i = 1, 2)},
where dT (bi, ci) = log max{inf{r > 0 : bi ≤ rci}, inf{s > 0 : ci ≤ sbi}} for i = 1, 2,
is the Thompson metric for positive operators considered in the Preliminaries.
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Observe that d is well defined because of the uniqueness of the positive decom-
position of selfadjoint operators and the fact that bi, ci ∈ Cai

, i = 1, 2, where dT

is defined. It is easy to see that d defines a complete metric on Ca. Furthermore
observe that the metric d coincides with dT on each positive component. From now
on, denote by d = dT , the Thompson metric on Ca.

If c ∈ L(H)s has closed range, denote by c−1 = (c|R(c)
)−1 = c†|R(c)

, where c† is
the Moore-Penrose pseudoinverse of c. Observe that c−1 ∈ GL(R(c)).

Proposition 5.3. Given a ∈ L(H)s with closed range, consider b, c ∈ Ca with
positive decompositions b = b1 − b2 and c = c1 − c2 then

dT (b, c) = ‖ log[((b1/2
1 )†c1(b

1/2
1 )† + (b1/2

2 )†c2(b
1/2
2 )†)|R(b)

]‖.

Proof. Since b, c ∈ Ca and a = a1 − a2 is the positive decomposition of a then
for i = 1, 2, bi, ci ∈ Cai

. Since di = b
−1/2
i cib

−1/2
i ∈ GL(R(bi))+, then, by (2.1),

dT (b, c) = max{‖ log di‖, i = 1, 2} =
∥∥(

log d1 0
0 log d2

) ∥∥ =
∥∥ log

(
d1 0
0 d2

) ∥∥
= ‖ log[((b1/2

1 )†c1(b
1/2
1 )† + (b1/2

2 )†c2(b
1/2
2 )†)|R(b)

]‖. �

Corollary 5.4. Consider a ∈ L(H)s with closed range. If b, c ∈ Ca then

dT (b, c) = dT (|b|, |c|).

Proof. If b, c ∈ Ca then |b|, |c| ∈ C|a| and, by Theorem 3.11 of [2], it holds that
dT (|b|, |c|) = ‖ log(|b|−1/2|c||b|−1/2)‖. On the other hand, it is easy to see that
(|b|1/2)†|c|(|b|1/2)† = (b1/2

1 )†c1(b
1/2
1 )† + (b1/2

2 )†c2(b
1/2
2 )† where b = b1 − b2 and c =

c1 − c2 are the positive decompositions of b and c respectively. Then, applying
Proposition 5.3, it follows that dT (b, c) = dT (|b|, |c|). �

As in the positive case, the metrical structure of (Ca, dT ) is related to a differ-
ential structure. Consider a ∈ L(H)s with closed range and positive decomposition
a = a1 − a2, then Cai

identifies with GL(R(ai))+ for i = 1, 2 (see [2], [3]) and, as
it was pointed out in the Preliminaries, Cai

is a homogeneous space of GL(R(ai)),
i = 1, 2. The reader is referred to [3] and [9] in order to have a full description of
this structure. Then, since Ca is homeomorphic to Ca1 × Ca2 (see Theorem 5.1),
Ca admits a natural structure of homogeneous space of GL(R(a1))×GL(R(a2)).

A natural connection can be defined in Ca, which induces the concept of parallel
field along a curve. A curve γ ⊆ Ca is a geodesic if γ̇ is parallel along γ and, in this
case γ satisfies γ̈ = γ̇γ†γ̇ (see [2], [3]).

For b ∈ Ca, denote by (TCa)b the tangent space of Ca at b. If X ∈ (TCa)b it
follows from the product structure considered on Ca, that X = X1pa1 + X2pa2 ,
where Xi ∈ L(R(ai))s, i = 1, 2.

The unique geodesic γ such that γ(0) = b and γ̇ = X ∈ (TCa)b is

γ(t) = e
t
2 Xb†be

t
2 b†X .

It follows easily that γ(t) = γ1(t) − γ2(t) where γi(t) = e
t
2 Xbi

†
bie

t
2 bi

†X is the
geodesic such that γi(0) = bi and γ̇i(0) = Xipai

∈ (TCai
)bi

, i = 1, 2.
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Given b, c ∈ Ca there is only one geodesic γb,c such that γb,c(0) = b and γb,c(1) =
c, namely

(5.1) γb,c(t) = |b|1/2(|b|−1/2|c||b|−1/2)t|b|1/2va = γ|b|,|c|(t)va.

It is easy to see that

(5.2) γb,c(t) = γb1,c1(t)− γb2,c2(t),

where γbi,ci(t) = b
1/2
i (b−1/2

i cib
−1/2
i )tb

1/2
i is the geodesic in Cai joining bi and ci,

i = 1, 2.

The norm
‖X‖b = ‖(|b|1/2)†X(|b|1/2)†‖, X ∈ (TCa)b,

defines a Finsler structure on the tangent bundle TCa, i.e. a smooth assignation
of a complete norm on each tangent space (TCa)b, b ∈ Ca. If X = X1pa1 +X2pa2 ,
with Xi ∈ L(R(ai))s, i = 1, 2 it follows that ‖X‖b = max{‖Xi‖bi

, i = 1, 2}.
For a C∞ curve γ : [0, 1] → Ca define the length of γ by

L(γ) =
∫ 1

0

‖γ̇(t)‖γ(t)dt.

Given γ ⊆ Ca then L(γ) = max{L(γ1), L(γ2)}, where γ = γ1− γ2 is the positive
decomposition of γ. In fact, ‖γ̇(t)‖γ(t) = max{‖γ̇i(t)‖γi(t), i = 1, 2}.

Lemma 5.5. Given a ∈ L(H)s with closed range, consider b, c ∈ Ca. If γb,c is the
unique geodesic joining b and c then

L(γb,c) = L(γ|b|,|c|) = max{‖ log(b−1/2
i cib

−1/2
i )‖, i = 1, 2}.

Proof. The first equality follows from (5.1). From (5.2) we get that L(γb,c) =
max{L(γbi,ci

) : i = 1, 2} but L(γbi,ci
) = ‖ log(b−1/2

i cib
−1/2
i )‖ (see the Preliminaries

or Corollary 2.9 of [2] ). �

Now we show that among all curves in Ca joining b and c, the geodesic γb,c has
minimal length.

Proposition 5.6. Given a closed range operator a ∈ L(H)s, consider b, c ∈ Ca. If
δ : [0, 1] → Ca is a C∞ curve such that δ(0) = b and δ(1) = c, then L(γb,c) ≤ L(δ).

Proof. Consider a curve δ : [0, 1] → Ca, δ(t) = |δ(t)|va such that δ(0) = b and
δ(1) = c. If b = |b|va, c = |c|va then it holds that |δ| : [0, 1] → C|a| is a curve joining
|b| with |c|. Then, by Theorem 2.10 of [2], it follows that L(γ|b|,|c|) ≤ L(|δ|). But
L(γ|b|,|c|) = L(γb,c) and L(δ) = L(|δ|).

�

Consider b, c ∈ Ca, the geodesic distance in Ca is defined by

d(b, c) = inf{L(γ) : γ : [0, 1] → Ca, C
∞, γ(0) = b, γ(1) = c}.

Corollary 5.7. Given a ∈ L(H)s with closed range and b, c ∈ Ca, then

d(b, c) = L(γb,c).

As in the positive case, the Thompson metric coincides with the geodesic distance
on each component.
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Corollary 5.8. Consider a closed range operator a ∈ L(H)s. If b, c ∈ Ca, then

dT (b, c) = d(b, c) = L(γb,c)

where γb,c is the geodesic in Ca joining b and c.

Proof. Apply (2.1), Corollary 5.4 and Lemma 5.5. �

Final remarks. The geometrical structure of Ca as a homogeneous space, dis-
cussed in Section 5 when a has closed range, is still valid in the general case.
However the computations are more complicated. The reader can find in [3] these
computations in detail when a is a general positive operator. In Section 3 the orbit
of an invertible selfadjoint operator was described by means of the polar decompo-
sition of its elements. More generally, it is interesting to study the orbit of a closed
range operator a ∈ L(H)s, i.e. the set Oa = {gag∗, g ∈ GL(H)}. The geometrical
and metrical structures of Oa were studied in the positive case, in [4], where it
was proved that Oa admits a structure of differential manifold, if an appropriated
metric is considered.
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