GAIN OF FUNCTION IN FHM-1 CA\textsubscript{2.1} KNOCK-IN MICE IS RELATED TO THE SHAPE OF THE ACTION POTENTIAL

Carlota González Inchauspe 1, Francisco J. Urbano 1, Mariano N. Di Guilmi 1, Ian D. Forsythe 2, Michel D. Ferrari 3, Arn M.J.M. van den Maagdenberg 3,4, and Osvaldo D. Uchitel 1

1Instituto de Fisiología, Biología molecular y Neurociencias. CONICET. Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

2Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, University of Leicester, LE1 9HN. UK. Departments of 3Neurology, 4Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands.

Abbreviated title: CA\textsubscript{2.1} channels in a hemiplegic migraine mouse model

Correspondence should be addressed to Dr. O.D. Uchitel,
E-mail: odu@fbmc.fcen.uba.ar

Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (LFBM-IFIBYNE), UBA-CONICET, Intendente Guiraldes 2670, pabellón 2, piso 2, Ciudad Universitaria, C1428BGA-Buenos Aires, Argentina.

FAX : (+54-11) 4576 3321

Copyright © 2010 by the American Physiological Society.
Abstract

Familial hemiplegic migraine type-1 (FHM1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca\(^{2+}\) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study neurotransmission at the calyx of Held synapse and cortical layer 2/3 pyramidal cells (PCs). Using whole cell patch clamp recordings in brainstem slices we confirmed that KI CaV2.1 Ca\(^{2+}\) channels activated at more hyperpolarizing potentials. However, calyceal presynaptic calcium currents (I\(_{pCa}\)) evoked by presynaptic action potentials (APs) were similar in amplitude, kinetic parameters and neurotransmitter release.

CaV2.1 Ca\(^{2+}\) channels in cortical layer 2/3 PCs from KI mice also showed a negative shift in their activation voltage. PCs had APs with longer durations and smaller amplitudes than the calyx of Held. AP evoked Ca\(^{2+}\) currents (I\(_{Ca}\)) from PCs were larger in KI compared to WT mice. In contrast, when I\(_{Ca}\) were evoked in PCs by calyx of Held AP waveforms, we observed no amplitude differences between WT and KI mice. In the same way, Ca\(^{2+}\) currents evoked at the presynaptic terminals (I\(_{pCa}\)) of the calyx of Held by the AP waveforms of the PCs had larger amplitudes in R192Q KI mice that in WT. These results suggest that longer time courses of pyramidal APs were a key factor for the expression of a synaptic gain of function in the KI mice. In addition, our results indicate that consequences of FHM1 mutations might vary according to the shape of APs in charge of triggering synaptic transmission (neurons in the calyx of Held vs. excitatory/inhibitory neurons in the cortex), adding to the complexity of the pathophysiology of migraine.

Key-words: knock-in mice, CaV2.1 channels, migraine mutation, calyx of Held, cortical pyramidal cells.
Transmitter release at central synapses is triggered by Ca\(^{2+}\) influx through multiple voltage-gated Ca\(^{2+}\) channels (VGCCs) subtypes but increasingly relies on Ca\(_{v}2.1\) (P/Q-type) Ca\(^{2+}\) channels with maturation (Iwasaki et al. 1998, 2000). Familial hemiplegic migraine type-1 (FHM1) is caused by missense mutations in the CACNA1A gene that encodes the \(\alpha_{1A}\) subunit of Ca\(_{v}2.1\) Ca\(^{2+}\) channels. Typical migraine attacks in FHM patients are associated with transient hemiparesis and are a useful model to study pathogenic mechanisms of the common forms of migraine (Ferrari et. al. 2008). Biophysical analysis of FHM-1 Ca\(^{2+}\) channel dysfunction in heterologous systems is controversial as both loss-of-function and gain-of-function phenotypes have been reported (Barrett et al. 2005; Cao and Tsien, 2005; Hans et al. 1999; Kraus et al. 1998, 2000; Tottene et al. 2002). However, analysis of single-channel properties of human Ca\(_{v}2.1\) channels carrying FHM-1 mutations revealed a consistent increase in channel open probability and Ca\(^{2+}\) influx at negative voltages, mainly due to a negative shift in channel activation (Tottene et al. 2002, 2005). A knock-in (KI) migraine mouse model carrying the human FHM-1 R192Q mutation was generated and exhibits several gain-of-function effects, including a negative shift in Ca\(_{v}2.1\) channel activation in cerebellar granule cells, increased synaptic transmission at the neuromuscular junction and increased susceptibility to cortical spreading depression (CSD) (van den Maagdenberg et al. 2004), a likely mechanism of the migraine aura (Lauritzen, 1994). Using microcultures and brain slices from FHM-1 mice, Tottene et al. (2009) have recently shown increased probability of glutamate release at cortical layer 2/3 pyramidal cells. Intriguingly, neurotransmission from inhibitory fast-spiking interneurons appeared unaltered, despite being mediated by P/Q-type channels (i.e., carrying the FHM-1 mutation). This abnormal balance of cortical excitation-inhibition was associated with the increased susceptibility for CSD in the KI mice, but the underlying mechanism changing synaptic strength by the R192Q mutation is not fully understood. We used KI R192Q mice to study neurotransmission at the giant synapse known as the calyx of Held. This is a glutamatergic afferent forming on neurons of the Medial Nucleus of the Trapezoid Body (MNTB, Forsythe et al. 1994) where both presynaptic calcium currents (\(I_{\text{pCa}}\)) and excitatory postsynaptic currents (EPSCs) can be recorded. Since migraine is associated with cortical circuits (Aurora and Wilkinson, 2007), we extended our studies to cortical layer 2/3 pyramidal neurons, comparing Ca\(^{2+}\) currents elicited by different AP waveforms. We observed that KI presynaptic Ca\(_{v}2.1\) channels activate at more hyperpolarized membrane potentials than WT channels. However, only a wide action potential can account for an increment in the evoked Ca\(^{2+}\) currents in KI mice compared to WT. Our observations may shed light on differential effects of FHM-1 mutations on different cortical synapses and thereby provide a better basis to understand the contribution of migraine mutations to pathology.
Materials and Methods

Generation of the R192Q KI mouse strain has been described previously (van den Maagdenberg et al. 2004). Both homozygous R192Q KI and WT mice from a similar genetic mixed background of 129 and C57BL6J were used for the experiments. All experiments were carried out according to National guidelines and approved by local Ethical Committees.

Preparation of brainstem and cortical slices.
Mice of P11-15 days were killed by decapitation, the brain removed rapidly and placed into an ice-cold low-sodium artificial cerebrospinal fluid (aCSF). The brainstem or cortical hemispheres containing motor cortex were mounted in the Peltier chamber of an Integraslice 7550PSDS microslicer (Campden Instruments Limited, UK). Transverse slices containing MNTB were cut sequentially and transferred to an incubation chamber containing low-calcium, normal-sodium aCSF at 37°C for 1h and returned at room temperature. Slices of either 200 or 300 μm thickness were used for presynaptic Ca²⁺ current recordings and for EPSC recordings, respectively. Normal aCSF contained (mM): NaCl 125, KCl 2.5, NaHCO₃ 26, NaH₂PO₄ 1.25, glucose 10, ascorbic acid 0.5, myo inositol 3, sodium pyruvate 2, MgCl₂ 1 and CaCl₂ 2. Low sodium aCSF was as above but NaCl was replaced by 250 mM sucrose and MgCl₂ and CaCl₂ concentrations were 2.9 mM and 0.1 mM, respectively. The pH was 7.4 when gassed with 95% O₂-5% CO₂. Similarly, coronal slices including the motor cortex (180-250 μm) were obtained from P7–8 mice.

Electrophysiology
Slices were transferred to an experimental chamber perfused with normal aCSF at 25°C. Neurons were visualized using Nomarski optics on a BX50WI microscope (Olympus, Japan) and a 60X/0.90 NA water immersion objective lens (LUMPlane FI, Olympus). Whole-cell voltage clamp recordings were made with patch pipettes pulled from thin walled borosilicate glass (Harvard Apparatus, GC150F-15, UK). Electrodes had resistances of 3.2-3.6 MΩ for presynaptic recordings and 3.0-3.4 MΩ for postsynaptic recordings, when filled with internal solution. Patch solutions for voltage clamp recordings contained (mM): CsCl 110, Hepes 40, TEA-Cl 10, Na₂phosphocreatine 12, EGTA 0.5, MgATP 2, LiGTP 0.5, QX-314 5 and MgCl₂ 1; pH was adjusted to 7.3 with CsOH. Lucifer Yellow was also included to visually confirm presynaptic recordings location.

Currents were recorded using a Multiclamp 700A amplifier (Axon Instruments, Union City, CA), a Digidata 1322A (Axon Instruments) and pClamp 9.0 software (Axon Instruments). Data were sampled at 50 kHz and filtered at 6 kHz (Low pass Bessel). Series resistance was compensated to be in the range 4-8 MΩ. Whole-cell membrane capacitances ranged 15-25 pF for calyx of Held terminals, and 28-36 pF for layer 2/3 pyramidal cells. Leak currents were subtracted on line with a P/5 protocol. Ca²⁺ currents were recorded in the presence of extracellular TTX (1 μM) and TEA-Cl (10 mM). EPSCs
were evoked by stimulating the globular bushy cell axons in the trapezoid body at the midline using a bipolar platinum electrode attached to an isolated stimulator (Stimuli of 0.1 ms, 4-10 V). Strychnine (1 μM) was added to the external solution to block inhibitory glycinergic synaptic responses. Action potentials (APs) were measured in whole-cell configuration under current clamp mode. Patch solutions for current clamp recordings contained (mM): K-Gluconate 110, KCl 30, Hepes 10, Na-phosphocreatine 10, EGTA 0.2, MgATP 2, LiGTP 0.5 and MgCl₂ 1. Only cells that had membrane resting potential between -60 mV to -75 mV were selected for recording. APs were elicited by injecting depolarizing step current pulses of 1-2 nA during 0.25 ms. Average data are expressed and plotted as mean ± standard error of the mean (SEM). Statistical significance was determined using either Student’s *t*-test or One-way ANOVA repeated measures plus Student-Newman-Keuls post-hoc test.

Results

Presynaptic calcium currents (\(I_{pCa}\)) and EPSCs from FHM-1 R192Q mice at the calyx of Held

We initially investigated the effect of the FHM1 R192Q mutation on the biophysical properties of presynaptic Ca²⁺ currents, which at the calyx of Held are almost exclusively mediated by P/Q-type Ca²⁺ channels. We examined the current-voltage (I-V) relationship of the presynaptic Ca²⁺ currents (\(I_{pCa}\)) at calyx of Held terminals following voltage-step depolarizations. Representative recordings are shown in figure 1A. In WT mice (n = 17), \(I_{pCa}\) activated around -45 mV, with a peak at -15 mV and showed an apparent reversal potential of around 55-60 mV. \(I_{pCa}\) activates at more hyperpolarizing potentials in R192Q KI calyx (n = 26), peaking at -20 mV, with similar reversal potential. In figure 1B, mean \(I_{pCa}\) amplitudes were normalized to the membrane capacitance of each presynaptic terminal. Maximum current amplitudes (measured at the potential corresponding to the peak of the I-V relationship) were not significantly different: 1150 ± 100 pA (current density 61 ± 3 pA/pF, n = 26) and 1050 ± 150 pA (current density 54 ± 3 pA/pF, n = 17) for KI and WT, respectively (Student’s *t*-test, \(P > 0.05\)). Activation curves obtained from the peak amplitudes of tail currents showed a -6.5 mV shift towards hyperpolarized potentials in KI compared to WT mice (figure 1C). Therefore, both IV and activation curves from R192Q KI presynaptic terminals are significantly different compared to WT (One-way ANOVA RM, Student-Newman-Keuls post-hoc, \(P < 0.001\)). Steady-state inactivation was measured using 2.5 s conditioning step potentials applied to presynaptic terminals, followed by a 50 ms test step to the potential at the peak of the I-V curve. Representative recordings are shown in figure 1D. Currents evoked by test voltage steps were normalized, plotted against voltage and fitted by the Boltzmann’s function (figure 1E). Half-inactivation voltages \(V_{1/2}\) were significantly more negative for R192Q KI compared to WT (Student’s *t*-test, \(P = 0.017\)).
In conclusion, R192Q KI mutation does affect biophysical properties of presynaptic Ca\(^{2+}\) currents: \(I_{\text{pCa}}\) are opened at more hyperpolarizing membrane potentials.

\(I_{\text{pCa}}\) elicited by AP waveforms from Calyx of Held terminals

Assuming that the kinetics of \(I_{\text{pCa}}\) can be modeled by Hodgkin/Huxley equations, a shift to more negative activation voltages should generate a larger Ca\(^{2+}\) current during an action potential (AP) (Borst and Sakmann, 1999). \(I_{\text{pCa}}\) were evoked by real AP waveforms previously recorded from the same preparation (see Materials and Methods). No differences in AP waveforms were observed between WT and R192Q KI synapses (figure 2A, upper traces). Since the duration of calyx of Held APs is shorter than 1 ms, it was important to have a good clamp of the membrane potential that assured effective voltage control during APs depolarization and repolarization. Membrane capacity and series resistance were well compensated and \(I_{\text{pCa}}\) recordings were accepted for analysis only if the presynaptic terminals were patch clamped under the following conditions: uncompensated series resistance below 12 M\(\Omega\) and leak currents below 80 pA. Under these conditions, \(I_{\text{pCa}}\) had kinetics that were in agreement with those previously described (Fedchyshyn and Wang 2005, Takahashi 2005, Yang and Wang 2006).

Mean traces of \(I_{\text{pCa}}\) evoked by the calyx of Held APs for both R192Q KI (n = 48) and WT mice (n = 30) are shown in figure 2A, bottom traces. There were no significant differences in mean \(I_{\text{pCa}}\) amplitudes between KI and WT calyx of Held presynaptic terminals (figure 2B; \(P = 0.16\), Student’s \(t\)-test). Mean half widths, decay times and rise times were also similar between WT and R192Q KI mice (figure 2C; \(P>0.05\), Student’s \(t\)-test). We concluded that the negative shift in activation of presynaptic Ca\(^{2+}\) channels in R192Q KI mice had little impact on Ca\(^{2+}\) currents when APs from calyx of Held were used as waveforms.

Evoked excitatory postsynaptic currents (EPSCs)

We analyzed transmitter release triggered by R192Q-mutated Ca\(_{\text{v}}\)2.1 channels. EPSCs evoked in both WT and R192Q KI mice showed synchronous release, displaying an all or nothing behaviour and having amplitudes (above threshold) that were independent of the stimulus intensity. EPSCs were abolished by \(\omega\)-agatoxin IVA (200 nM), indicating that only P/Q-type channels are mediating Ca\(^{2+}\) influx responsible for transmitter release (data not shown). Figure 2D shows EPSCs recorded from the soma of an MNTB neuron under voltage clamp conditions at a holding potential of -70 mV. Mean EPSC amplitudes were identical: 10.6 ± 0.6 nA (n = 46) for WT and 10.7 ± 0.5 nA (n = 65) for KI (Student’s \(t\)-test, \(P = 0.42\)).

Activity-dependent facilitation of presynaptic Ca\(^{2+}\) currents and transmitter release

Presynaptic calcium currents at the calyx of Held display Ca\(^{2+}\)-dependent facilitation which accounts for part of the facilitation of transmitter release, particularly under low depletion conditions (i.e., low Ca\(^{2+}\)- high Mg\(^{2+}\); Felmy et al. 2003, Inchauspe et al. 2004; Muller et al. 2008). Pairs of AP waveforms with short inter-pulse intervals (5-10 ms) were applied under voltage-clamp to the
presynaptic terminals. With 2 mM [Ca\(^{2+}\)] in the external solution, the second \(I_{\text{pCa}}\) showed 12 ± 2% facilitation in R192Q KI (n = 12) and 10 ± 1% in WT mice (n = 10) (figure 2E). In 0.6 mM [Ca\(^{2+}\)] and 2 mM [Mg\(^{2+}\)], no difference was observed in EPSC paired-pulse facilitation: 44 ± 2% (n = 7) at R192Q KI and 45 ± 3% (n = 5) in WT calyx of Held synapses (figure 2F).

Ca\(^{2+}\) currents (\(I_{\text{Ca}}\)) in cortical layer 2/3 pyramidal cells

Since migraine has been suggested to be closely related to altered properties in cortical circuits (Aurora and Wilkinson, 2007), P/Q-type Ca\(^{2+}\) currents (\(I_{\text{ca}}\)) were recorded from layer 2/3 motor cortex PCs in brain slices from P10-11 WT and R192Q KI mice. To isolate P/Q type Ca\(^{2+}\) channels, N- and L-type blockers (\(\omega-CgTxGVIA\) 1 \(\mu M\) and nitrendipine 10 \(\mu M\), respectively) were added to the aCSF solution. Current-voltage curves (Figure 3A) showed a 6 mV hyperpolarizing shift in R192Q KI neurons, similar to data presented above from the calyx of Held and that published by Tottene et al. (2009) in pyramidal cells. P/Q-type Ca\(^{2+}\) currents were also evoked by AP waveforms previously recorded under current clamp from the same layer 2/3 PCs under the same experimental conditions mentioned above. Longer duration and lower amplitude APs were observed in pyramidal cells compared to the calyx of Held (Figure 3B, upper traces). The R192Q mutation significantly increased AP-evoked Ca\(^{2+}\) currents (Figure 3B lower traces and 3D left bars). In contrast, when P/Q-type \(I_{\text{ca}}\) in layer 2/3 PCs were evoked by AP templates recorded at the calyx of Held, no difference in amplitude was observed between WT and R192Q KI mice (Figure 3C lower traces and 3D right bars). \(I_{\text{ca}}\) kinetic parameters present no significant differences between WT and KI (figure 3E for PC AP-evoked \(I_{\text{ca}}\) and figure 3F for calyx of Held AP-evoked \(I_{\text{ca}}\)).

To systematically analyze the influence of AP time courses on \(I_{\text{ca}}\), we applied pseudo-APs with increasing repolarization times (from 0.1 to 1.9 ms) without changing the amplitude and depolarization time (0.5 ms) as shown in figure 4A. The \(I_{\text{ca}}\) integral was plotted against repolarization time (figure 4B). The slope of the linear regression was larger for R192Q KI PCs compared to WT, confirming that \(I_{\text{ca}}\) influx in R192Q KI PCs is larger when the waveform repolarization is prolonged.

Ca\(^{2+}\) currents (\(I_{\text{Ca}}\)) in cortical layer 2/3 pyramidal cells at physiological temperature

Temperature is well known to affect APs kinetics and voltage gated Ca\(^{2+}\) channels. We tested if the alterations described above at room temperature were reproduced at physiological temperature by recording APs from cortical layer 2/3 PCs at a temperature of 36±1°C (figure 5A, top trace) and used these AP waveforms to generate \(I_{\text{ca}}\) in PCs from both WT and R192Q KI mice (figure 5A, bottom traces). \(I_{\text{ca}}\) recorded from R192Q KI PCs had bigger amplitudes compared to those recorded from WT (\(P = 0.001\) Student’s \(t\)-test, figure 5B). There were no significant differences in the kinetics of the Ca\(^{2+}\) currents between WT and R192Q KI mice (figure 5C). We then evoked \(I_{\text{ca}}\) using ramp-shaped
waveforms with a rise time of 0.5 ms and different repolarization times to study the dependence of I_{Ca}-mediated charge with the duration of the APs at a temperature of $36\pm1^\circ\text{C}$ (figure 5D). We found a linear dependence of the calcium influx (i.e., time integral of the I_{Ca}) with repolarization time. The slope of the linear regression was significantly bigger in KI mice compared to WT mice ($P = 0.008$ Student’s t-test, figure 6E). These results confirm that at physiological temperature the FHM1 mutation also induce an increase in Ca^{2+} currents when these are evoked by cortical PC-like APs.

I_{pCa} elicited by longer duration APs waveforms: calyx of Held vs cortical pyramidal cell APs

Tottene et al. (2009) have found a gain of function of excitatory neurotransmission at pyramidal cells from R192Q KI synapses. They propose that the increased probability of glutamate release at cortical layer 2/3 pyramidal cells results from an increased AP-evoked Ca^{2+} influx. Our results at the calyx of Held synapse indicated that the activation of the Ca^{2+} at more negative potentials did not imply an increment in AP-evoked Ca^{2+} currents. So we decided to study I_{pCa} at the presynaptic terminals from WT and R192Q KI mice with APs previously recorded from layer 2/3 pyramidal cells, which have longer duration and lower amplitude compared to the calyx of Held (Figure 6A, upper traces). When evoked by these PC APs, I_{pCa} from R192Q KI presynaptic calyceal terminals were significantly bigger compared to WT (figure 6A lower traces and 6B). However, kinetic parameters of the I_{pCa} at the calyx of Held evoked by the PC APs were not different between WT and KI (figure 6C).

In conclusion, our results suggest that activation of Ca^{2+} channels at more hyperpolarizing potentials led to higher inward Ca^{2+} influx during long duration/small amplitude APs (i.e., PC-like APs). However, negligible differences were observed when Ca^{2+} currents were elicited by short duration/large amplitude APs (i.e., calyx of Held-like APs). This may explain the unaltered inhibitory neurotransmission observed by Tottene et al. (2009) at the fast spiking interneuron- pyramidal cell synapses. Cortical layer 5/6 fast spiking interneurons (that have inhibitory projections into the pair connected PCs, generating brief IPSPs) have APs that are comparable in duration to those at the calyx of Held. Supplementary figure 1A shows representative repetitive AP firing from cortical layer 5/6 fast-spiking (FS) interneurons. In Supplementary figure 1B we superimposed APs from the calyx of Held, the cortical layer 2/3 PCs and from the cortical layer 5/6 fast spiking interneurons recorded from WT mice. The duration of APs from interneurons is known to be reduced at physiological temperature as well as in older animal (Ali et al. 2007).
Using knock-in mice carrying the pathogenic FHM1 mutation R192Q in the \(\alpha_{1A} \) subunit of P/Q-type Ca\(^{2+} \) channels, we evaluated the functional consequences of this mutation for Ca\(^{2+} \) currents from different neuronal types. At the calyx of Held synapse, the FHM1 mutation generates a hyperpolarizing shift of both activation and inactivation of Ca\(_{\alpha2.1} \) currents compared to WT. These alterations had little effect during AP-evoked presynaptic Ca\(^{2+} \) current recordings. This is an important result because it provides direct evidence that the FHM-1 mutations seen in the activation/inactivation parameters are not sufficient to elicit and alter the physiological phenotype at the calyx of Held. Presynaptic Ca\(^{2+} \) currents are generated during AP repolarization (i.e., when testing a more depolarizing voltage range compared to the range where differences in activation and inactivation properties had been investigated) and there are no differences in the I-V curves at potentials greater than 0 mV (Figure 1), so the absence of any gain of function in Ca\(^{2+} \) influx is not surprising.

At the calyx of Held in P11 and older mice, transmitter release is triggered exclusively by P/Q-type Ca\(^{2+} \) channels. Since no differences were observed in the AP-evoked I\(_{pCa} \) we expected no differences in neurotransmitter output. Accordingly, the FHM-1 mutated Ca\(_{\alpha2.1} \) Ca\(^{2+} \) channels in R192Q KI mice mediate functional transmission with similar EPSC amplitudes, release probability and facilitation than WT mice. These results contrast with the increased release probability of the glutamatergic pyramidal cell synapses recently reported by Tottene et al. (2009). Nevertheless, they agree with the normal transmitter release observed at the fast spiking interneuron inhibitory synapses and at the neuromuscular junction studied in the same animal model (Kaja et al. 2005, Tottene et al. 2009).

Tottene et al. (2009) suggested that the increased probability of glutamate release at cortical layer 2/3 pyramidal cells results from an increased AP-evoked Ca\(^{2+} \) influx (related to the shift in the activation potential of the mutated Ca\(^{2+} \) channels), but experimental proof was not provided. To test the hypothesis that increased AP-evoked Ca\(^{2+} \) currents in the cortical pyramidal neurons was due to changes in Ca\(^{2+} \) channel activation, the depolarization and hyperpolarization rates of the AP waveforms must be taken into account (Bischofberger et al. 2002, Li et al. 2007). We used APs recorded from the cortical layer 2/3 PCs and from the calyx of Held to compare the I\(_{Ca} \) elicited by both AP waveforms. While I\(_{Ca} \) amplitudes recorded in WT or KI cortical layer 2/3 pyramidal cells showed no differences when elicited by calyx of Held AP waveforms, a significant increase in the amplitude of I\(_{Ca} \) was observed in R192Q KI compared to WT when pyramidal cell AP waveforms were used. Likewise, KI mice do show an enhancement in I\(_{pCa} \) at the calyx of Held presynaptic terminals when elicited by PC APs. Thus, our results strongly suggest that synapses driven by larger amplitude and shorter duration APs (e.g., Calyx of Held and interneurons APs) are affected less by the mutation-induced
hyperpolarizing shift in voltage-dependence of Ca^{2+} channel activation, than those driven by longer
duration APs (e.g., pyramidal neurons APs). Moreover, we have shown that I_{Ca} influx elicited using
AP-like waveforms with different repolarization times became significantly larger in KI pyramidal
neurons compared to WT when the waveform repolarization phase was prolonged. The driving force
for Ca^{2+} ions develops during repolarization of the AP, reaching the highest values closer to the resting
potential where the shift in the I-V curve found in the FHM-1 mutated channel is more significant. A
decrease in the rate of repolarization will increase the contribution of the Ca^{2+} currents at
hyperpolarizing potential values, allowing the difference in activation due to the channel mutation to be
expressed and so leading to an increase in total Ca^{2+} current. We have confirmed that our conclusions
are also valid at physiological temperature (where APs and I_{Ca} have faster kinetics compared to room
temperature). We also found that after calcium channels were opened for a long period of time, their
voltage dependence of inactivation was shifted towards more negative potential values (a -5 mV shift
in half-inactivation voltages). Since this shift in voltage-dependence steady state inactivation of the
mutated calcium channels depends on previous activation of the channels during seconds, we believe
that it would not introduce significant differences during simple AP-evoked Ca^{2+} currents. However,
during repetitive firing at high frequencies, the inactivation at more hyperpolarizing potentials may
prevent small conductance calcium-activated potassium channels (SK) from being activated during the
train of APs. Therefore, a twofold increment in excitability at cortical networks might be taking place:
1) due to increasing Ca^{2+} currents in KI during PC APs (voltage shift of activation) and 2) because of
decreasing activation of SK currents during repetitive APs discharge. These alterations would facilitate
induction and propagation of cortical spreading depression (CSD) in KI mice.

The differences in AP durations that trigger cortical excitatory and inhibitory synapses may explain the
unaltered inhibitory neurotransmission observed at the fast spiking (FS) interneuron-pyramidal cell
(PC) synapses and the gain of function observed at the PC-FS interneuron excitatory synapses. Ali et
al. (2007) measured the APs of several types of interneurons (in juvenile/adult cats and rats) and found
that multipolar interneurons that display fast spiking behavior with little or no spike accommodation
have APs with half-widths between 0.2-0.3 ms in adult species and between 0.8-1.3 ms in juveniles,
whereas interneurons with burst or adapting firing patterns (e.g., bitufted interneurons) exhibited APs
with a wide range of half-widths (0.2-0.6 ms in adults and 1.2-1.8 ms in juveniles). The presynaptic
basket cells are another example of neurons displaying fast spiking APs of very short duration.,
Bucurenciu et al. (2010) precisely describe that a small number of Ca^{2+} channels are necessary to
trigger and evoke transmitter release with high temporal precision at the gabaergic basket cell - granule
cells synapse in the dentate gyrus of rat hippocampal slices, supporting the hypothesis that at inhibitory
synapses controlled by short APs the activation of the FHM1 mutated channels at more negative
potentials have little or no effect in transmitter release. The ideal test of our hypothesis would be to
measure the presynaptic AP waveform in cortical nerve terminals but this is not possible. However a
good correlation between the half-width of the somatic action potential and the synaptic events elicited
in and by interneurons has been reported (Ali et al. 2007), indicating that at the presynaptic nerve
terminal variations in AP duration are rather small compared to the difference in duration and
amplitude observed between the calyx of Held or the fast spiking interneurons and the cortical APs.
Simultaneous recording of axon and somatic APs in neocortical PCs have a similar time course,
although the amplitudes of the former are reduced (Shu et al. 2007) favoring the expression of altered
gating properties of the mutated Ca\(^{2+}\) channels.

Several mechanisms may contribute to the differential effect of FHM-1 mutations at different
synapses, including different isoforms of the mutated \(\alpha 1\) subunit or differences in the G-protein
modulation of Ca\(^{2+}\) channels (Weiss et al. 2008), but our data provide evidence that the AP time-course
is a crucial element in regulating Ca\(^{2+}\) influx into nerve terminals and determining synaptic gain of
function.

Acknowledgements

This work was supported by Wellcome Trust grant RM36 046, UK and UBACYT X-171, Universidad
de Buenos Aires, Argentina (to Dr. Uchitel), FONCYT-ANPCyT BID 1728 OC.AR, PICT 2007-1009,
PICT 2008-2019 and PIDRI-PRH 2007 (to Dr. Urbano) and the Centre for Medical Systems Biology
(CMSB) in the framework of the Netherlands Genomics Initiative (NGI) (to Dr. van den
Maagdenberg).

We would like to thank María Eugenia Martin and Paula Felman for their invaluable technical and
administrative assistance.

References

Ali AB, Bannister AP and Thomson AM. Robust correlations between action potential duration and the
properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and

Barrett CF, Cao YQ and Tsien RW. Gating deficiency in a familial hemiplegic migraine type 1 mutant

Figure legends

Figure 1 - Properties of presynaptic Ca$^{2+}$ currents at the calyx of Held from WT and R192Q KI mice

A- I_{pCa} (below) evoked by 20 ms depolarizing voltage steps (above) from -75 mV to potentials ranging -60 to 60 mV (5 mV steps). Right insets: tail currents elicited after repolarization to -75 mV.

B- I/V relationship for I_{pCa} from WT (n = 17) and R192Q KI (n = 26).

C- I_{pCa} activation curves: normalized amplitudes of tail currents plotted against voltage and fitted by the Boltzmann’s function: $I(V) = 1/[(1 + \exp ((V - V_{1/2})/k)]$. Half-activation voltages ($V_{1/2}$) were -32.4 ± 0.3 mV for R192Q KI (n = 26) and -25.9 ± 0.2 mV for WT (Student’s t-test, $P = 6\times10^{-6}$, n = 17) and slope factors (k): 4.75 ± 0.25 mV and 6.0 ± 0.2 mV ($P = 0.035$, Student’s t-test) for R192Q KI and WT respectively.

D- I_{pCa} evoked by a 50 ms voltage step to the peak of the I-V curve, after applying conditioning prepulses for 2.5 s to different voltages from -75 to -15 mV (2.5 mV steps).

E- Steady state inactivation of I_{pCa} from R192Q KI and WT terminals. Data are normalized to the maximum peak amplitude, plotted against the conditioning voltage and fitted by the Boltzmann’s function. Half-inactivation voltages $V_{1/2}$ were significantly more negative (-39.2 ± 0.2 mV, n = 12) for R192Q KI compared to WT (-35.5 ± 0.1 mV, n = 6; Student’s t-test, $P = 0.017$). Slopes were: -4.0 ± 0.2 mV and -4.8 ± 0.1 mV (Student’s t-test, $P = 0.06$) for R192Q KI and WT, respectively.

* Significant differences between WT and R192Q KI mice ($P < 0.001$, One-way ANOVA RM, Student-Newman-Keuls post-hoc).

Figure 2 - AP-evoked presynaptic calcium currents (I_{pCa}) and EPSCs at calyx of Held from WT and R192Q KI mice.

A- Upper traces: average APs waveforms at the calyx of Held from WT (dotted black, n = 4) and R192Q KI (grey, n = 3) mice. Mean potential amplitude was 110 ± 2 mV and 112 ± 2 mV, Half-width: 0.44 ± 0.02 ms and 0.44 ± 0.03 ms, rise time (10-90%): 0.33 ± 0.02 ms and 0.31 ± 0.04 ms and decay time 0.40 ± 0.02 ms and 0.44 ± 0.04 ms for WT and R192Q KI mice, respectively. Bottom traces: mean I_{pCa} elicited by APs (dotted black and grey traces for WT and R192Q KI, respectively).

B - Mean I_{pCa} amplitudes evoked by APs at the calyx of Held presynaptic terminals are not significantly different between WT and R192Q KI mice.

C – Kinetic parameters of presynaptic Ca$^{2+}$ currents at the calyx of Held synapses generated by their own APs (n = 30 for WT and n = 48 for R192Q KI mice).

D- Representative EPSCs evoked in MNTB neurons from WT (dotted black) and R192Q KI (grey) mice at a holding potential of -70 mV, in 2 mM [Ca$^{2+}$]$_{\text{o}}$, aCSF.
E- Presynaptic Ca\(^{2+}\) current facilitation. Pairs of AP waveforms evoked I\(_{\text{pCa}}\) showing activity-dependent facilitation in WT and R192Q KI. Mean pair pulse facilitation was 12 ± 2% in R192Q KI (n = 12) and 10 ± 1% in WT mice (n = 10).

F - Facilitation of EPSCs. A pair of stimuli was applied with a short interval (10 ms). In low external Ca\(^{2+}\) concentration (0.6 mM) and high external Mg\(^{2+}\) concentration (2 mM), the EPSC evoked by the second stimulus is facilitated with respect to the first EPSC in synapses from both WT (45 ± 3%, n = 5) and R192Q KI mice (44 ± 2%, n = 7).

Figure 3 - AP-evoked P/Q-type Ca\(^{2+}\) currents (I\(_{\text{Ca}}\)) in layer 2/3 pyramidal cells (PC) from WT and KI cortical slices.

A - P/Q-type current density as a function of voltage in WT and R192Q KI layer 2/3 pyramidal cells (PC). Normalized I-V curves were multiplied by the average maximal current density (6.9 ± 0.3 pA/pF, n = 7 for WT and 8.2 ± 0.2 pA/pF, n = 7 for KI). * Significant differences between WT and R192Q KI mice (P < 0.001, One-way ANOVA RM, Student-Newman-Keuls post-hoc).

B- Upper traces: AP waveforms recorded in PCs (dotted black for WT and grey for R192Q KI mice, offset for better visualisation). WT PCs had APs with a mean rise time of 0.53 ± 0.05 ms; half-width of 1.97 ± 0.08 ms; decay time of 3.1 ± 0.2 ms and potential amplitude of 90 ± 2 mV (n = 5). Similar values were measured from KI mice (rise time: 0.52 ± 0.07 ms; half-width: 1.72 ± 0.12 ms; decay time: 2.9 ± 0.4 ms; potential amplitude: 92 ± 2 mV; n = 6). Bottom traces: I\(_{\text{Ca}}\) elicited by the above APs in the same cells (black for WT and grey for R192Q KI mice).

C- I\(_{\text{Ca}}\) in PC (bottom traces, dotted black for WT, grey for KI mice) evoked by the AP waveforms (upper traces) recorded at the calyx of Held presynaptic terminals.

D- Mean I\(_{\text{Ca}}\) amplitude evoked in PCs by either AP waveforms showed in B and C. I\(_{\text{Ca}}\) amplitudes from KI PCs (240 ± 15 pA, n = 25) are 41 % larger than those from WT PCs (170 ± 10 pA, n = 18, P = 0.01) when evoked by PC APs. I\(_{\text{Ca}}\) were not statistically different when evoked by calyx of Held APs. Mean amplitudes were: 402 ± 27 pA for R192Q KI mice (n =25) and 345 ± 26 pA for WT mice (n = 18; Student’s t-test, P = 0.07).

E- Kinetic parameters of Ca\(^{2+}\) currents generated in PCs by AP waveforms corresponding to the same cells (n = 18 for WT and n = 25 for R192Q KI mice).

F- Kinetic parameters of Ca\(^{2+}\) currents generated in PCs by AP waveforms of the calyx of Held (n =18 for WT and n = 25 for R192Q KI mice).

Figure 4 - Dependence of calcium influx with the AP repolarization rate
A- Recordings of I_{Ca} in response to AP-like voltage ramps (from -65 mV to +20 mV, rise time of 0.5 ms, plateau duration of 0.05 ms and increasing decay times from 0.1 to 1.9 ms with 0.2 ms increments) in WT and R192Q KI pyramidal cells.

B- I_{Ca}-mediated charge (I_{Ca} integral) is plotted as a function of the AP repolarization time. Solid lines show the linear regression of the data. Slope value is larger for R192Q KI mice (136±3 pA, n = 12) than for WT mice (99±3 pA, n = 13, Student’s t-test, $P = 0.002$).

* Significant differences between WT and R192Q KI mice ($P < 0.006$, One-way ANOVA RM, Student-Newman-Keuls post-hoc).

Figure 5 - AP-evoked P/Q-type Ca$^{2+}$ currents (I_{Ca}) in layer 2/3 pyramidal cells (PC) from WT and KI cortical slices at physiological temperature.

A- Upper traces: AP waveforms recorded in PCs at physiological temperature (36 ± 1ºC). Mean rise time was 0.41 ± 0.03 ms; half-width 0.93 ± 0.04 ms; decay time 1.9 ± 0.3 ms and potential amplitude 85 ± 3 mV (n = 6). Bottom traces: I_{Ca} elicited by the above APs in PC at physiological temperature (black for WT and grey for R192Q KI mice).

B- Mean I_{Ca} amplitude evoked in PCs by their own APs at physiological temperature are 35 % larger in R192Q KI mice (380 ± 22, n = 27, $P = 0.001$ Student’s t-test) than in WT mice (280 ± 22 pA, n = 32).

C- Kinetic parameters of Ca$^{2+}$ currents generated in PCs by AP waveforms corresponding to the same cells (n = 32 for WT and n = 27 for R192Q KI) at 36 ± 1ºC.

D- Recordings of I_{Ca} in response to AP-like voltage ramps (from -65 mV to +20 mV, rise time of 0.5 ms, plateau duration of 0.05 ms and increasing decay times from 0.1 to 2.1 ms with 0.2 ms increments) in WT and R192Q KI pyramidal cells at 36 ± 1ºC.

E - I_{Ca}-mediated charge (I_{Ca} integral) is plotted as a function of the AP repolarization time. Solid lines show the linear regression of the data. Slope value is larger for R192Q KI mice (230±3 pA, n = 18) than for WT mice (177±2 pA, n = 18, Student’s t-test, $P = 0.008$).

* Significant differences between WT and R192Q KI mice ($P < 0.005$, One-way ANOVA RM, Student-Newman-Keuls post-hoc).

Figure 6 - $I_{p\text{Ca}}$ at the calyx of Held evoked by long AP waveforms recorded at pyramidal cells (PCs).

A - Upper traces: AP waveforms recorded in PCs (dotted black for WT and grey for R192Q KI mice, offset for better visualisation, see parameters in figure legend 3B). Bottom traces: $I_{p\text{Ca}}$ elicited by the above APs at the calyx of Held presynaptic terminals (dotted black for WT and grey for R192Q KI mice).

B - Mean $I_{p\text{Ca}}$ amplitudes evoked at the calyx of Held presynaptic terminals by the PCs APs are 41 %
larger at KI mice (650 ± 58 pA, $n = 24$) than at WT mice (460 ± 44 pA, $n = 11$, $P = 0.018$, Student’s t-test).

C- Kinetic parameters of presynaptic Ca$^{2+}$ currents at the calyx of Held synapses generated by AP waveforms from pyramidal cells ($n = 11$ for WT and $n = 24$ for R192Q KI mice).

Supplementary figure 1- Inhibitory synapses usually have short duration presynaptic APs

A- Firing pattern of a layer 5/6 fast-spiking (FS) interneuron in cortical slices from WT mice, obtained in current clamp mode by small supra-threshold depolarizing current injections (50-200 pA, 100 ms).

APs have a mean rise time of 0.50 ± 0.03 ms; half-width of 1.12 ± 0.04 ms; decay time of 1.2 ± 0.3 ms and potential amplitudes of 102 ± 1 mV ($n = 8$).

B- Superimposed mean APs from the calyces of Held, the cortical layer 2/3 PCs and the cortical layer 5/6 fast spiking interneurons of WT mice at room temperature.

APs were recorded at a sampling frequency 50 kHz using a Multiclamp 700A amplifier (Axon Instruments, Union City, CA), a Digidata 1322A (Axon Instruments) and pClamp 9.0 software (Axon Instruments). Patch solutions for current clamp recordings contained (mM): K'Gluconate 110, KCl 30, Hepes 10, Na-phosphocreatine 10, EGTA 0.2, MgATP 2, LiGTP 0.5 and MgCl$_2$ 1.

586

587
Figure 1

A) Calyx of Held presynaptic terminals

B, C) Graphs showing normalized I vs. membrane potential for WT and KI conditions.

D) Comparison of I density at -15 mV and -75 mV for WT and KI.

E) Normalized I vs. membrane potential for WT and KI conditions.
Figure 2

I_{pCa} evoked by calyx of Held APs

(A) WT KI

(B) WT KI

(C) WT KI

(D) WT KI

(E) WT KI

(F) WT KI

EPSCs

$[Ca^{2+}] = 2$ mM

$[Ca^{2+}] = 0.6$ mM

50 mV

0.4 nA

0.5 ms

2 nA

1 ms

0.3 nA

5 ms

0.5 nA

5 ms

Figure 2
Figure 3

A. I_{Ca} density (pA/pF) vs. Membrane potential (mV) for WT and KI. (*) indicates a significant difference.

Cortical layer 2/3 pyramidal cells (PCs)

B. Traces of I_{Ca} evoked by calyx of Held APs for WT and KI.

C. Traces of I_{Ca} evoked by PC APs for WT and KI.

D. Bar graph showing peak I_{Ca} amplitude (pA) for WT and KI evoked by PC APs and calyx of Held APs.

E. Graph showing I_{Ca} time constants (ms) for WT and KI evoked by PC APs.

F. Graph showing I_{Ca} time constants (ms) for WT and KI evoked by calyx of Held APs.
Figure 4

A

Cortical layer 2/3 pyramidal cells (PCs)

+ 20 mV

-65 mV

0.1 nA

0.5 ms

WT

KI

B

I_{Ca} integral (pA.ms)

Repolarization time (ms)

*
Peak amplitude (pA) of ICa evoked by pyramidal cell APs at TC = 36 ± 1°C

I_{Ca} evoked by pyramidal cell APs at $T = 36 \pm 1^\circ C$

Figure 5

- A: Alpha peak amplitude (pA) with WT and KI.
- B: Histogram showing I_{Ca} amplitude (pA).
- C: ICa time constants (ms) with WT and KI.
- D: Graph of I_{Ca} integral (pA.ms) against Repolarization time (ms).
- E: Graph of I_{Ca} integral (pA.ms) against Repolarization time (ms) with WT and KI.
Presynaptic Ca$^{2+}$ currents (I_{pCa}) at the Calyx of Held evoked by pyramidal cell APs

Figure 6