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selected molecular systems at equilibrium, stretched, and twisted geometries. We report results

which allow to analyze the influence of the correlated and uncorrelated treatments on the orbital

1 | INTRODUCTION

The Lewis-Linnett picture has satisfactorily explained most aspects of molecular electronic structure by means of intuitive and meaningful chemical
concepts such as localized bonds, valences, lone electron pairs, and core orbitals.*? However, these concepts are not observable quantities in the
quantum-mechanical sense and, consequently, cannot be directly reproduced within the modern quantum theory framework. In fact, the orbitals
arising from the standard Hartree-Fock theory reflect the symmetry of the irreducible representations of the molecular point group, but they are
generally extended over the whole molecular system and unfortunately they do not reproduce the mentioned classical Lewis-Linnett picture con-
cepts. One of the procedures to recover that approach is the orbital localization. This technique is based on the invariance of the N-electron wave
functions under unitary transformations of the orbital basis sets, without requiring additional approximations.

Several schemes were proposed long time ago for localizing Hartree-Fock canonical molecular orbitals, which are based on maximization of a
determined quantity by means of 2 X 2 rotations or second-order maximization procedures.*~”! All of them present drawbacks, mainly in the

1! rather than the ¢ and n ones as expected.’®?! Other similar procedures

description of planar molecules, where they predict t or banana orbitals
(see e.g.,, Refs. [10,11]) have been used beyond the Hartree-Fock wave function level. Likewise, in a different approach, the partitioning of the
three-dimensional (3D) physical space into atomic basins has proven to be useful for localizing Hartree-Fock and natural spin orbitals, enabling the
study of the electron correlation effects.®?*?! These techniques, which use isopycnic orbital transformations, were initially formulated using two

partitioning schemes to define the localization, the atoms-in-molecules (AIM) procedure[13] and the Fuzzy atom (FA) treatment.[14-1¢1 A
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TABLE 1 Orbital occupation numbers (n; and v;), effective number of basins (L,fl), and orbital populations of core (C) and valence (V) regions
arising from ELF approach for the HF(12+) molecule (Ryr=0.9168A)

Canonical natural orbitals (L = 7.6628) Localized natural orbitals (L = 7.9242)
i n; Lt Qc) Qy(EH) Qy(r i Vi Lt QcF) Qy(rH) QyF)
1 2.000 1.166 0.923 0.004 0.072 1 2.000 1.135 0.937 0.004 0.059
2 1.991 1.209 0.030 0.064 0.907 2 1.989 1.066 0.019 0.013 0.968
3 1.984 1.162 0.042 0.032 0.926 3 1.984 1.162 0.042 0.032 0.926
4 1.984 1.164 0.043 0.032 0.925 4 1.984 1.164 0.043 0.032 0.925
5 1.970 2.105 0.030 0.438 0.531 5 1.973 2.112 0.027 0.490 0.482
) 0.027 2.130 0.058 0.580 0.360 6 0.027 2.149 0.057 0.569 0.372
7 0.015 1.281 0.064 0.055 0.879 7 0.015 1.284 0.067 0.054 0.878
8 0.015 1.285 0.066 0.055 0.878 8 0.015 1.289 0.069 0.054 0.876
9 0.009 1.122 0.029 0.026 0.943 9 0.009 1.087 0.024 0.017 0.959
10 0.002 1.873 0.013 0.338 0.648 10 0.002 1.815 0.021 0.299 0.679
11 0.000 1.957 0.007 0.683 0.209 11 0.000 1.866 0.005 0.708 0.187
Canonical molecular orbitals (L = 7.4532) Localized molecular orbitals (L = 7.9957)
i n; L Qc(r) Qv(En) Qv i Vi L= Qc(r) Qv h) Qv
1 2.000 1.154 0.929 0.004 0.068 1 2.000 1.129 0.940 0.004 0.057
2 2.000 1.621 0.026 0.221 0.753 2 2.000 1.069 0.020 0.013 0.967
S 2.000 1.172 0.043 0.035 0.922 S 2.000 1.172 0.043 0.035 0.922
4 2.000 1.175 0.044 0.035 0.921 4 2.000 1.175 0.044 0.035 0.921
5 2.000 1.852 0.033 0.294 0.673 5 2.000 2.112 0.028 0.502 0.470

Results correspond to the standard 6-31G basis set.

[11]

generalization of the Pipek-Mezey scheme,'"™ which has more recently been reported, allows to perform orbital localizations using several partition-

ing schemes in the Hilbert and physical spaces.[*”*®! The 3D physical space has also been partitioned according to the topological analysis of the
electron localization function (ELF).[*?22 The abilities of this technique have been widely studied shedding new lights on this methodology.[?3-2¢]
Using that partitioning we have reported a new localization procedure®”28! which only additionally requires the overlap integrals over the ELF
basins. Our treatment preserves the c/n-separability of planar systems and allows to evaluate the orbital localization in terms of basin occupancies
and localization indices although the ELF analyses were performed from the self-consistent field method. However, many systems require highly
correlated calculations to be properly described, mainly molecules at nonequilibrium (stretched and twisted) geometries and, consequently, a local-
ization procedure for correlated wave functions is needed for a correct description of their electronic structure. Therefore, the aim of this work is to
implement the extension of our ELF-based localization procedure at correlated level of theory, and to evaluate its performance in a series of selected
molecules.

The organization of this article is as follows. In section 2, we describe the localization procedure associated with the definition of correlated
ELF. In section 3, we report the computational details and the results obtained in selected systems. Finally, some remarks and conclusions are pre-

sented in the last section.

2 | LOCALIZATION CRITERION BASED ON THE TOPOLOGICAL ANALYSIS OF THE
ELECTRON LOCALIZATION FUNCTION AT CORRELATED LEVEL

The first-order reduced density matrix *D(x|x') corresponding to an N-electron wave function, describing the state of a system, allows one to deter-

mine all expectation values of one-electron quantities for that state. As is well known, the simplest expression of this matrix is
D)= mi b () Wi(X) 1
i

in which n; are the eigenvalues of the first-order reduced density matrix, \;(x) its eigenfunctions and x the spatial and spin coordinates. The one-

electron functions \j;(x), also called natural spin orbitals, satisfy the orthonormality condition (\;[\;) =8; (where ; stands for the Kronecker deltas).
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TABLE 2 Orbital occupation numbers (n; and v;), effective number of basins (L,fl), and orbital populations of core (C) and valence (V) regions
arising from ELF approach for the HF(12+) molecule (R = 4Ryf)

Canonical natural orbitals (L = 7.6322) Localized natural orbitals (L = 8.2071)
i n; Lt Qc) Qyn) Q) i Vi Lt Q) Q) Qv
1 2.000 1.225 0.898 0.000 0.102 1 2.000 1.191 0.912 0.000 0.088
2 1.992 1.059 0.029 0.000 0.971 2 1.992 1.029 0.014 0.000 0.986
3 1.986 1.080 0.038 0.000 0.961 3 1.986 1.080 0.038 0.000 0.961
4 1.986 1.080 0.038 0.000 0.961 4 1.986 1.080 0.038 0.000 0.961
5 1.024 2.080 0.020 0.516 0.463 5 0.997 1.007 0.000 0.996 0.001
) 0.968 2.092 0.021 0.481 0.497 ) 0.995 1.086 0.041 0.000 0.959
7 0.013 1.117 0.054 0.000 0.945 7 0.013 1.126 0.058 0.000 0.941
8 0.013 1.117 0.054 0.000 0.945 8 0.013 1.126 0.058 0.000 0.941
9 0.008 1.053 0.025 0.000 0.974 9 0.008 1.028 0.013 0.000 0.986
10 0.006 1.114 0.052 0.001 0.946 10 0.006 1.123 0.056 0.001 0.942
11 0.000 1.020 0.000 0.990 0.002 11 0.000 1.020 0.000 0.990 0.002
Canonical molecular orbitals (L = 8.2828) Localized molecular orbitals (L = 8.3955)
i n; Lt Qc) Qun) Qv i vi Lt Qc) Qu(n) Qv
1 2.000 1.229 0.896 0.000 0.104 1 2.000 1.191 0.912 0.000 0.088
2 2.000 1.062 0.030 0.000 0.970 2 2.000 1.028 0.014 0.000 0.986
S 2.000 1.077 0.037 0.000 0.963 S 2.000 1.077 0.037 0.000 0.963
4 2.000 1.077 0.037 0.000 0.963 4 2.000 1.077 0.037 0.000 0.963
5 1.997 1.879 0.022 0.322 0.654 5 1.997 1.879 0.022 0.322 0.654

Results correspond to the standard 6-31G basis set.

A linear transformation of the function set {\s;(x)} to another one {¢;(x)}, leaving invariant the matrix 1D(x|x’), can be suitable to describe states of

N-electron systems having properties localized in a determined spatial region. This type of transformations are known as isopycnic, so that[®927-31
)= cjU(x) @)
j

where ¢j; are the corresponding transformation coefficients, which are expressed as

h:

Cj=Uj 7: @)
in which u;; are the coefficients of a unitary transformation matrix and
Vi :Z u; U,‘i n,- (4)
i

The functions of the set {¢;(x)} are normalized but they are not necessarily orthogonal. The first-order reduced density matrix, expressed in

the new basis set {¢;}, turns out to be
D(x|X) Z vid (5)

which preserves the diagonal form in that basis set and the quantities v; are the occupation numbers of the functions ¢;(x) similarly to the n; ones in

the orthonormal basis set {\;(x)}. Obviously, in the case of the set {{;;(x)} are the Hartree-Fock orbitals n;= 1 for all occupied ones and, conse-

quently, Equation 2 would express an ordinary unitary transformation.®’

In this work we deal with the ELF theory[19]

in which the ordinary physical space is divided into disjoint Q4 basins so that the union of all of
them yields the whole space. According to that theory the Q, basins, which possess a clear physical meaning, are classified into core basins Qc(x) (or
atomic basins) and valence ones Qyx, x,...) (the X symbol stands for a central atom). The basins Qyx, stand for lone pairs, while the Qyx, x,) ones

indicate two-center bonds.’®23% |n the framework of the ELF theory, the internal product of two funct|ons ¢; and &y, (d;]d;), can be expressed as
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TABLE 3 Orbital occupation numbers (n; and v;), effective number of basins (L,fl), and orbital populations of core (C) and valence (V) regions
arising from ELF approach for the H,O(*A;) molecule (Ryo=0.958 A, HOH=104° 28 47")

aua A W N

N 0 N o

11
12
13

A OWN

Results correspond to the standard 6-31G basis set.

Canonical natural orbitals (L = 5.7200)

n;

2.000
1.988
1.980
1.971
1.967
0.028
0.026
0.018
0.012
0.003
0.002
0.001
0.000

L

1.132
1.657
1.320
2925
3.168
3416
3.374
1.509
1.382
2494
2,936
3.118
3.272

Qc(0)
0.939
0.029
0.043
0.034
0.029
0.068
0.067
0.071
0.034
0.011
0.005
0.015
0.011

Qv (o H,)
0.006
0.105
0.045
0.251
0.311
0.302
0.332
0.061
0.059
0.216
0.288
0.387
0.365

Canonical molecular orbitals (L = 5.7034)

Qy(0H,) Qf}’(o)
0.006 0.049
0.105 0.762
0.045 0.867
0.251 0.463
0.311 0.348
0.302 0.324
0.332 0.267
0.061 0.806
0.059 0.846
0.216 0.554
0.288 0.418
0.387 0.143
0.365 0.198

n;

2.000
1.999
1.999
2.000
1.999

8

1.122
1.881
1.342
2.705
3.169

Qc(0)
0.943
0.036
0.043
0.022
0.028

Qv (o Hy)
0.006
0.129
0.049
0.234
0.314

b
Qviom,) Qfl(O)

0.006
0.129
0.049
0.234
0.314

a A W0 N

N 0 N o

11
12
13

A OWN

Localized natural orbitals (L = 6.8031)

Vi
2.000
1.983
1.980
1.970
1.970
0.028
0.028
0.018
0.013
0.003
0.002
0.001
0.001

Lt

1.109
1175
1.320
2.108
2.108
2429
2429
1.509
1.280
2216
2.831
1.551
1.550

Qc(o0)
0.949
0.026
0.043
0.028
0.028
0.077
0.077
0.072
0.039
0.011
0.006
0.010
0.009

Qv(oH,)
0.005
0.026
0.045
0.040
0.603
0.521
0.035
0.061
0.039
0.184
0.268
0.795
0.022

Localized molecular orbitals (L = 6.8900)

Qv (0oH,) Qf}'(o)
0.005 0.041
0.026 0.921
0.045 0.867
0.603 0.329
0.040 0.329
0.035 0.365
0.521 0.365
0.061 0.806
0.039 0.881
0.184 0.619
0.268 0.458
0.022 0.110
0.795 0.110

Vi
2.000
1.999
1.999
1.999
1.999

<¢i|¢,‘> = Z <¢i\¢j>QA

L5

1.109
1.180
1.342
2.099

2.099

Qc(0)
0.949
0.026
0.043
0.027
0.027

Qy(oHy)
0.006
0.027
0.049
0.042
0.609

b
Qvio,) Qf/(O)

0.006
0.027
0.049
0.609
0.042

(6)

where {(di|dj)q, =ng ¢; d;dx. The quantity (d;|d;)q, indicates the distribution of the spin orbital ¢; into the basins Q4 (the population of the spin

orbital ¢; in that basin) and consequently a localization index L; of that spin orbital is formulated as

L=Y" (diln)a,
Qp

while its inverse L,.’1 is the effective number of basins spanned by the spin orbital ¢;.

The global localization index L is defined as

L= V2L
i

That definition allows one to express the localization index L as

_ 2 .k . Tkm
L—ZZV:' Cik Cil Cign Cin Ty

in which Tﬁ]"' are the components of a tensor defined as

i kimn

:Z <\Uk‘\|/!>QA W l¥n)a,

Qp

[8,27]

@)

(10)

The coefficients c; in Equation 2 are determined so that the localization index L in Equation 9 reaches a maximum value, yielding a set of spin

orbitals which attempts to describe properties of chemical interest in a more localized manner. Other transformations of molecular or natural
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TABLE 4 Orbital occupation numbers (n; and v;), effective number of basins (L,fl), and orbital populations of core (C) and valence (V) regions
arising from ELF approach for the H,O(*A;) molecule (R= 2.4Ry0, HOH=104° 28 47")

Canonical natural orbitals (L = 6.1675) Localized natural orbitals (L = 7.1406)
i n; Lt Qc(o) Qpy Q) Ko v Lt Qc(o) Qpy) Q) o
1 2.000 1.123 0.942 0.000 0.000 0.058 1 2.000 1.103 0.951 0.000 0.000 0.049
2 1.989 1.077 0.029 0.006 0.002 0.963 2 1.988 1.057 0.021 0.005 0.002 0.972
3 1.982 1.124 0.047 0.009 0.001 0.942 3 1.982 1.124 0.047 0.009 0.001 0.942
4 1.370 2.719 0.025 0.232 0.232 0.509 4 1.015 1.206 0.051 0.002 0.038 0.908
5 1.313 2.740 0.025 0.235 0.235 0.504 5 1.015 1.206 0.051 0.039 0.002 0.908
6 0.680 2.934 0.029 0.257 0.256 0.456 6 0.978 1.117 0.001 0.945 0.000 0.052
7 0.623 2.977 0.030 0.262 0.262 0.445 7 0.978 1.117 0.001 0.000 0.945 0.052
8 0.017 1.183 0.067 0.008 0.007 0.917 8 0.017 1.195 0.073 0.008 0.006 0.912
9 0.010 1.117 0.027 0.014 0.013 0.946 9 0.010 1.082 0.019 0.010 0.009 0.961

10 0.006 1.300 0.064 0.031 0.031 0.874 10 0.006 1.318 0.070 0.008 0.055 0.866
11 0.006 1.365 0.065 0.042 0.042 0.851 11 0.006 1.319 0.070 0.055 0.008 0.866
12 0.000 2.162 0.001 0.480 0.480 0.031 12 0.000 1.072 0.000 0.001 0.965 0.026
13 0.000 2.154 0.001 0.481 0.481 0.030 13 0.000 1.072 0.000 0.965 0.001 0.026

Canonical molecular orbitals (L = 7.5621) Localized molecular orbitals (L = 7.6494)

i ni Lt Qo  Quy ey  Ro i Vi Lt Qo  Quy Q) Ko
1 2000 1130 0939 0000 0000 0061 1 2000 1105 0950 0000 0000  0.050
2000 1101 0031  0.009 0.007 0.952 2000 1061 0022 0005 0.003 0.970

2.000 1.125 0.048 0.008 0.002 0.942 2.000 1.125 0.048 0.008 0.002 0.942

A OWN

1.999 1.329 0.041 0.048 0.047 0.864 1.999 1.348 0.040 0.052 0.051 0.857

v A W N

5 1.996 2.864 0.007 0.392 0.389 0.211 1.996 2.864 0.007 0.392 0.389 0.211

Results correspond to the standard 6-31G basis set.

d.[3,5,6,8—12,27,34—38]

orbitals, based on maximizing a determined index depending on a tensorial quantity, have been widely used; in fact the nature of

the tensorial quantity defines the type of localization criterion.

In some situations, it turns out useful to define superbasins O which are basins resulting from the union of simpler basins!?72?!

b _
QVixs o= Yt Quixy X, (12)

in which Qv x, x,...) is one of the p valence basins of the atoms X1, X2, . . ., satisfying
P
(Olddas, =D (dldnay, . | (12)
i=1

These tools allow to construct localization processes which preserve the symmetry of the orbitals.
As has been mentioned in the Introduction, in this work we study the influence of the electronic correlation on the ELF-based orbital localiza-

(27401 \yere obtained from the self-consistent field method, but the suitable description

tion. The recently reported results arising from the ELF theory’
of the electronic features of a considerable number of systems demand correlated treatments. In recent past,**! an alternative ELF definition in
terms of the Fermi hole curvature has allowed to formulate a correlated version of this function, which was proposed by Becke and Edgecombe at

| [19]

uncorrelated level."*”" This framework requires the use of the second-order reduced density matrix 2D(xl,xz|x’1,x’2) which, in its diagonal form

(x;=x1 and x,=x), is formulated as
2D(x1,X2)=1D(x1) 1D(x2)— *D(x1|x2) *D(x2|x1 )+ (X1, X2) (13)

In this equation, the first and second terms are usually denominated Coulomb- and exchange-type interactions, respectively,[***? while the
term I'(x1,x2) represents the cumulant density.[*?74¢ The expressions for the Coulomb and exchange interaction terms, in the natural spin-orbital

basis sets, involve sums over only two indices, whereas the cumulant contribution is much more complicated, requiring the use of approximations to
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TABLE 5 Orbital occupation numbers (n;), effective number of basins (Ll.’l), and orbital populations of core (C) and valence (V) regions arising
from ELF approach for the C2H4(1Ag) molecule at equilibrium (D) experimental geometry (Rec = 1.339 A, Repy = 1.086 A,
HCH=117°36', HCC=121°12)

Canonical natural orbitals (L = 4.8574)

i n; =5 Qc(c,) Qc(c,) Qy(H,.cy) Qv(H,.cy) Qy(H,.0,) Qv(H,.Co) Qf}’(ci,cz)
1 2.000 2.254 0.470 0.470 0.008 0.008 0.008 0.008 0.029
2 2.000 2.252 0471 0471 0.008 0.008 0.008 0.008 0.028
3 1.984 2.847 0.014 0.014 0.104 0.104 0.104 0.104 0.554
4 1.978 4.850 0.010 0.010 0.222 0.222 0.222 0.222 0.089
5 1.977 5.128 0.009 0.009 0.207 0.207 0.207 0.207 0.156
6 1.974 4.783 0.014 0.014 0.163 0.163 0.163 0.163 0.321
7 1.973 4.574 0.008 0.008 0.232 0.232 0.232 0.232 0.055
8 1.882 2.297 0.018 0.018 0.081 0.081 0.081 0.081 0.639
9 0.118 3.144 0.027 0.027 0.106 0.106 0.106 0.106 0.521
10 0.025 4.949 0.018 0.018 0.164 0.164 0.164 0.164 0.306
11 0.024 4.972 0.017 0.017 0.220 0.220 0.220 0.220 0.083
12 0.024 5.377 0.019 0.019 0.187 0.187 0.187 0.187 0.213
13 0.019 4781 0.047 0.047 0.136 0.136 0.136 0.136 0.361
14 0.018 5.639 0.032 0.032 0.193 0.193 0.193 0.193 0.160
Canonical molecular orbitals (L = 5.5685)
i n; =t Qc(cy) Qc(c,) Qy(H,.¢1) Qy(H,,cy) Qy(H,.¢y) Qy(H,.C2) Qf}’(cl,cz)
1 2.000 2.237 0.472 0.472 0.008 0.008 0.008 0.008 0.025
2 2.000 2.258 0.470 0.470 0.008 0.008 0.008 0.008 0.028
3 2.000 1.555 0.017 0.017 0.042 0.042 0.042 0.042 0.797
4 1.999 5.128 0.009 0.009 0.207 0.207 0.207 0.207 0.155
5 1.999 4.828 0.011 0.011 0.224 0.224 0.224 0.224 0.083
6 1.999 4.576 0.008 0.008 0.232 0.232 0.232 0.232 0.054
7 1.999 4779 0.011 0.011 0.225 0.225 0.225 0.225 0.076
8 2.000 2.365 0.018 0.018 0.084 0.084 0.084 0.084 0.628

Results correspond to the standard STO-3G basis set.

tackle its computational cost. Several approximate formulations based on the natural orbitals and their occupancies have been proposed for the last

(501 consisting in formulating

term.[*147-49] | this work we use the Hartree-Fock-like approximation (HF-XC), implemented in the ToPMoD package,
I'(x1,x2)=0 so that the basin calculations are affected by the HF-XC approximation. This approximation provides the calculation of the second-
order reduced density matrix elements in terms of the correlated first-order ones, and it is used for the calculation of the ELF basins itself. The per-
formance of this approximation has turned out to be extremely good[41'51] and, therefore, as shown below, it also allows one to localize natural or

molecular spin orbitals originated by correlated or uncorrelated wave functions, respectively.

3 | COMPUTATIONAL ASPECTS, NUMERICAL RESULTS, AND DISCUSSION

The performance of the above proposed ELF procedure for correlated wave functions has been assessed on a series of molecules with different
bonding patterns or with no conventional electronic structures. We have chosen compounds involving some second-row elements and hydrogen
atoms such as HF, H,O, CaH4(Doy), and CH4(Cyy), at experimental equilibrium,’®? stretched and twisted geometries, in their singlet ground states.
This set of systems has been selected as prototype of molecules possessing one and two covalent bonds, a double covalent bond, and a twisted

[53]

bond, respectively. The localization of natural and molecular orbitals within ELF approach was performed using the Gamess program'>>' as well as

our own routines, with the basis sets 6-31G for all systems except for the ethylene molecules, in which the STO-3G basis set was used. The
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TABLE 6 Orbital occupation numbers (v;), effective number of basins (Li’l), and orbital populations of core (C) and valence (V) regions arising
from ELF approach for the C2H4(1Ag) molecule at equilibrium (D) experimental geometry (Rec = 1.339 A, Rey = 1.086 A, HCH=117° 36/,
HCC=121°12)

Localized natural orbitals (L = 11.2553)

i Vi =5 Qc(c,) Qc(c,) Qy(H,.cy) Qv(H,.cy) Qy(H,.0,) Qv(H,.Co) Qf}’(ci,cz)
1 2.000 1.108 0.949 0.000 0.013 0.013 0.000 0.000 0.024
2 2.000 1.108 0.000 0.949 0.000 0.000 0.013 0.013 0.024
3 1.980 1.495 0.015 0.015 0.039 0.039 0.039 0.039 0.814
4 1.975 1.403 0.016 0.000 0.049 0.838 0.003 0.002 0.092
5 1.975 1.403 0.016 0.000 0.838 0.049 0.002 0.003 0.092
6 1.975 1.403 0.000 0.016 0.003 0.002 0.049 0.838 0.092
7 1.975 1.403 0.000 0.016 0.002 0.003 0.838 0.049 0.092
8 1.882 2.297 0.018 0.018 0.081 0.081 0.081 0.081 0.639
9 0.118 3.144 0.027 0.027 0.106 0.106 0.106 0.106 0.521
10 0.023 2.060 0.000 0.046 0.001 0.003 0.663 0.105 0.179
11 0.023 2.060 0.046 0.000 0.105 0.663 0.003 0.001 0.179
12 0.023 2.060 0.000 0.046 0.003 0.001 0.105 0.663 0.179
13 0.021 2.384 0.041 0.041 0.072 0.072 0.072 0.072 0.629
14 0.023 2.060 0.046 0.000 0.663 0.105 0.001 0.003 0.179
Localized molecular orbitals (L = 11.5009)
i Vi =t Qc(cy) Qc(c,) Qy(H,.¢1) Qy(H,,cy) Qy(H,.¢y) Qy(H,.C2) Qf}’(cl,cz)
1 2.000 1.107 0.950 0.000 0.013 0.013 0.000 0.000 0.023
2 2.000 1.107 0.000 0.950 0.000 0.000 0.013 0.013 0.023
3 2.000 1.496 0.016 0.016 0.039 0.039 0.039 0.039 0.814
4 1.999 1.401 0.016 0.000 0.050 0.839 0.003 0.002 0.089
5 1.999 1.401 0.016 0.000 0.839 0.050 0.002 0.003 0.089
6 1.999 1.401 0.000 0.016 0.003 0.002 0.050 0.839 0.089
7 1.999 1.401 0.000 0.016 0.002 0.003 0.839 0.050 0.089
8 2.000 2.365 0.018 0.018 0.084 0.084 0.084 0.084 0.628

Results correspond to the standard STO-3G basis set.

calculations were performed at Hartree-Fock and full configuration interaction (FCI) levels, although the frozen core approximation, in which the
two lowest-lying molecular orbitals are constrained to remain doubly-occupied in all configurations, was used for the C,H, systems. The overlap
integrals over ELF regions, required for this type of calculations, have been obtained from a modified version of the ToPMoD program.[so] The
results have been gathered in Tables 1-8, in which the reported occupation numbers n; and v; are the sums of their corresponding spin orbitals, n;=
ni«+n;s and vi=v;. +vjs respectively, to highlight the double, single or unoccupied character of the corresponding orbital. However, the orbital popu-
lations of the basins Qc(x), Qu(x, x,)» and Qyx, are referred to a spin orbital a or 3. These Tables allow one to compare suitably the results arising
from the correlated and uncorrelated treatments as well as the localization effects produced by the isopycnic transformations.

For the HF molecule the partitioning of the 3D space, according to the ELF analysis, provides one monosynaptic core basin Q¢ and one
monosynaptic lone pair basin Qy ), both associated with the F atom, as well as one disynaptic basin Qy ) standing for the F—H bond, which
becomes a monosynaptic valence basin Qy ) at the stretched geometry. The interpretation of the localized molecular and natural orbitals can be
performed by considering their relevant populations in the ELF basins which, as mentioned above, have a clear chemical meaning. At the equilibrium
geometry, the sets of localized molecular orbitals and the five most occupied localized natural orbitals describe one core orbital and three lone-pair
orbitals, all of them localized on the F atom, and one o-bonding orbital, which are shown in Figure 1. As can be observed in Table 1, the orbital pop-
ulations in the core Q¢ basin are very similar in both correlated and uncorrelated treatments. In the case of the orbital i = 1, which has the highest
population in the Qc(r) basin, the low values of the Ll‘1 quantity point out a narrow distribution of this orbital into the ELF basins. However, in the



8 of 14 U Aﬁ”"h M ALCOBA ET AL.
WILEY HEMISTRY

TABLE 7 Orbital occupation numbers (n;), effective number of basins (Ll.’l), and orbital populations of core (C) and valence (V) regions arising
from ELF approach for the C2H4(1A1) molecule at twisted geometry (C,, at 90°) from experimental one

Canonical natural orbitals (L = 4.0603)

i n; = Qccy) Qc(c,) QvH,.c,) Qv(H,.c,) Qv(H,.c,) Qv(H,.c,) Qv(c, c,) Qf}’(ci) Qf}’(cz)
1 2.000 2.255 0.469 0.473 0.007 0.007 0.007 0.007 0.016 0.008 0.008
2 2.000 2.257 0.472 0.468 0.007 0.007 0.007 0.007 0.016 0.008 0.008
3 1.981 2.832 0.017 0.017 0.051 0.051 0.051 0.051 0.569 0.097 0.097
4 1.975 5.224 0.010 0.010 0.215 0.215 0.215 0.215 0.010 0.055 0.055
5 1.974 5.484 0.011 0.011 0.208 0.208 0.208 0.208 0.084 0.030 0.030
6 1.972 5.486 0.009 0.009 0.203 0.203 0.213 0.213 0.084 0.033 0.033
7 1.972 5.486 0.009 0.009 0.213 0.213 0.203 0.203 0.084 0.033 0.033
8 1.000 6.385 0.020 0.020 0.094 0.094 0.094 0.094 0.126 0.229 0.229
9 1.000 6.385 0.020 0.020 0.094 0.094 0.094 0.094 0.126 0.229 0.229
10 0.029 6.769 0.015 0.015 0.176 0.176 0.176 0.176 0.078 0.092 0.092
11 0.027 5.395 0.018 0.018 0.211 0.212 0.212 0.212 0.009 0.054 0.054
12 0.023 6.409 0.030 0.025 0.199 0.199 0.168 0.168 0.122 0.045 0.042
13 0.023 6.409 0.025 0.030 0.168 0.168 0.199 0.199 0.122 0.042 0.045
14 0.018 5.879 0.049 0.049 0.112 0.112 0.112 0.112 0.327 0.064 0.064
Canonical molecular orbitals (L = 4.9812)
i n; Lt Qc(cy) Qc(c,) Qy(H,.cy) Qv(H,,cy) Qv(H,.¢,) Qv(H,.C,) Qf;’(clycz)
1 2.000 2.268 0.470 0.468 0.011 0.011 0.010 0.010 0.020
2 2.000 2.248 0.470 0.472 0.010 0.010 0.010 0.010 0.017
3 2.000 1.949 0.017 0.017 0.066 0.066 0.066 0.066 0.704
4 1.999 4.882 0.009 0.009 0.221 0.221 0.221 0.221 0.098
5 1.999 4531 0.009 0.009 0.234 0.234 0.234 0.234 0.048
6 1.999 4514 0.011 0.011 0.234 0.234 0.234 0.234 0.041
7 1.999 4.409 0.011 0.011 0.238 0.238 0.238 0.238 0.027
8 2.000 4.564 0.020 0.020 0.151 0.151 0.151 0.151 0.357

Results correspond to the standard STO-3G basis set.

case of the canonical orbital i =2 the correlated treatment predicts a 0.907 value for the Qy ) basin population, which states a markedly higher
localization than in the uncorrelated case in which the population of this orbital is distributed into the Qy 1) and Qyf) basins with values 0.221 and
0.753, respectively. The isopycnic transformation further increases the localization of this orbital yielding values 0.968 and 0.967 for the Qy ) basin
within the correlated and uncorrelated approaches, respectively. The orbital i = 5 also undergoes important changes in the L5_1 value; the electronic
correlation effect itself as well as the isopycnic localization procedure produce a wider distribution of this orbital between the basins Qy ) and
Qy(r). The remainders of the most occupied orbitals do not present significant population changes within these treatments. We have also studied

this molecule in a stretched geometry in which a higher static electron correlation®*

is expected. The uncorrelated treatments are not able to
describe the bond breaking; the o-bonding orbital is also present at this stretched geometry, as shown in Figure 2. However, in the correlated treat-
ment, the o-bonding doubly occupied orbital of the HF molecule is transformed into one s-like and one p-like singly occupied orbitals which, after
the localization procedure, turn out to be centered on the H atom and on the F atom, respectively. As can be seen in Table 2, the uncorrelated treat-
ments yield population values 0.322 and 0.654 for the canonical molecular orbital i = 5 in the Qy ) and Q) basins, respectively, while in the corre-
lated one the canonical orbital i = 6 possesses a considerable occupation number and both orbitals (=5 and i = 6) are distributed between the
basins Qv and Qy(r). In the correlated treatment, the orbital population is highly localized after the isopycnic localization procedure, with values of
0.996 for the orbital i = 5 and 0.959 for the i = 6 one in the basins Qy ) and Qyf), respectively. Obviously, these situations require the use of more
than one Slater determinant to formulate the N-electron wave function, which is characteristic of systems possessing high static electron
correlation.



International Jous

ALCOBA T AL AN'II'U M 9 of 14
HEMISTRY WILEY

TABLE 8 Orbital occupation numbers (v;), effective number of basins (Li’l), and orbital populations of core (C) and valence (V) regions arising
from ELF approach for the C2H4(1A1) molecule at twisted geometry (C,, at 90°) from experimental one

Localized natural orbitals (L = 10.0879)

i Vi L5 Qc(cy) Qc(cy) QvH,.c,) Qv(H,.c,) Qv(H,.c,) Qv(H,.c,) Qv(c,.c;) Qf;’(cl) Q:?(cz)

1 2.000 1.1090 0.0000 0.9493 0.0001 0.0001 0.0120 0.0120 0.0134 0.0002 0.0129
2 2.000 1.1090 0.9493 0.0000 0.0120 0.0120 0.0001 0.0001 0.0134 0.0129 0.0002
3 1.980 2.2613 0.0156 0.0156 0.0394 0.0394 0.0394 0.0394 0.6500 0.0806 0.0806
4 1.951 1.4379 0.0155 0.0001 0.0430 0.8289 0.0005 0.0005 0.0364 0.0706 0.0038
5 1.951 1.4380 0.0001 0.0155 0.0005 0.0005 0.0430 0.8288 0.0364 0.0038 0.0706
6 1.951 1.4380 0.0001 0.0155 0.0005 0.0005 0.8288 0.0430 0.0364 0.0038 0.0706
7 1.951 1.4380 0.0155 0.0001 0.8288 0.0430 0.0005 0.0005 0.0364 0.0706 0.0038
8 1.042 3.3742 0.0009 0.0402 0.0124 0.0124 0.1470 0.1470 0.1590 0.0056 0.4753
9 1.042 3.3745 0.0402 0.0009 0.1470 0.1470 0.0124 0.0124 0.1590 0.4752 0.0056
10 0.027 2.2450 0.0008 0.0457 0.0017 0.0017 0.6410 0.0826 0.0855 0.0043 0.1353
11 0.027 2.2450 0.0457 0.0008 0.6410 0.0826 0.0017 0.0017 0.0855 0.1353 0.0043
12 0.027 2.2449 0.0457 0.0008 0.0826 0.6410 0.0017 0.0017 0.0855 0.1353 0.0043
13 0.027 2.2450 0.0008 0.0457 0.0017 0.0017 0.0826 0.6410 0.0855 0.0043 0.1353
14 0.019 4.6504 0.0446 0.0446 0.0753 0.0753 0.0753 0.0753 0.4106 0.0994 0.0994

Localized molecular orbitals (L = 11.2268)

i Vi Lt Qc(cy) Qc(c,) Qy(H,.cy) Qv(H,,cy) Qv(H,.¢,) Qv(H,.C,) Qf;’(cl <)
1 2.000 1.111 0.000 0.948 0.000 0.000 0.017 0.017 0.017

2 2.000 1.111 0.948 0.000 0.017 0.017 0.000 0.000 0.017

3 2.000 1.851 0.016 0.016 0.061 0.061 0.061 0.061 0.724

4 1.999 1.310 0.016 0.000 0.060 0.870 0.003 0.002 0.047

5 1.999 1.310 0.000 0.016 0.003 0.002 0.060 0.870 0.047

6 1.999 1.310 0.000 0.016 0.002 0.003 0.870 0.060 0.047

7 1.999 1.310 0.016 0.000 0.870 0.060 0.002 0.003 0.047

8 2.000 4481 0.019 0.019 0.149 0.149 0.149 0.149 0.365

Results correspond to the standard STO-3G basis set.

In Tables 3 and 4, we report results arising from this methodology for the H,O molecule at equilibrium and symmetrically stretched geometries,
respectively. As can be observed in these tables, among the basins provided by the ELF partitioning appear one core basin Qc (o) associated with the
O atom and two valence basins Qy o H,) and Qy(o n,) associated with the two O—H bonds at the equilibrium geometry, which are transformed into
two monosynaptic valence basins Qyy,) and Qy,) at the stretched geometry. Finally, we build one superbasin Qf,b(o) resulting from the union of
two lone pair basins centered on the O atom, to recover the o/n separability of the orbitals resulting from the localization process. At the equilib-
rium geometry, the sets of localized molecular orbitals and the five most occupied localized natural orbitals correspond to one core orbital, one
o-type and one nt-type lone-pair orbitals, all of them localized on the O atom, and two c-bonding orbitals (O-H), which are shown in Figure 3. At
this geometry, the population of the orbital i = 1 is almost totally contained in the basin Qc(o) for all the methods reported in Table 3, which also
provide similar values of the Ll‘1 quantity. However, the population of the orbital i = 2 undergoes important changes depending on the procedure
used; the correlated treatment and the isopycnic transformations increase the values of its population on the superbasin Qif’(o). The orbital i=3
shows identical L’1 value for all the methods described, and its orbital population is also concentrated on that superbasin. The correlated treatment
produces a slightly wider distribution of the canonical orbital i = 4 between the basins Qy(o 1,), Qu(o,H,), and QV than the uncorrelated one. For
the canonical orbital i = 5 the populations in these basins are nearly identical for both treatments. However, the |sopycnic transformation at corre-
lated and uncorrelated levels shows that the orbitals i =4 and i = 5 turn out to be equivalent, in agreement with the genuine structure of the H,O
molecule. For the stretched H,O molecule, the set of the seven most occupied localized natural orbitals describe one core orbital, one s-like and
three p-like orbitals, all of them localized on the O atom, and two s-like orbitals localized on the H atoms, which are shown in Figure 4. A survey of
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FIGURE 1 Isosurfaces of the localized molecular and five most occupied natural orbitals for the HF molecule at equilibrium geometry.
Positive values are indicated in yellow and negative values in pastel blue. The isovalues are +0.1 a.u. The geometry of the molecule is
specified in Table 1. A, Hartree-Fock, B, FCI results. The ELF domains are Qc(r), Qv n), and Qu

the numerical values in Table 4 shows a considerable decrease of the occupation numbers of the p-like orbitals i =4 and i = 5 (centered on the O
atom), along with the increase of those of the s-like orbitals i =6 and i =7 (centered on the H atoms) in the localized correlated treatment, with
respect to its counterpart values at the equilibrium geometry. This effect has already been observed in the results of the HF molecule, but it is more
marked in the current system. Again, the isopycnic transformation treatment shows that the i = 6 and i = 7 orbitals become equivalent in accordance
with the molecular symmetry. Obviously, the Hartree-Fock treatments present shortcomings to describe suitably this stretched molecule, while the
localization treatment at correlated level provides the most chemically meaningful description for both geometries.

Tables 5 and 6 show results for the ethylene molecule in its equilibrium experimental geometry C2H4(1Ag), arising from the canonical (natural
and molecular) and localized (natural and molecular) orbitals, respectively. Our treatment provides one core basin Q¢ c) associated with each C atom
(C4 and Cy), four disynaptic valence basins of type Qy ) which describe the bonds of each C atom with two H atoms, and one superbasin Qf/b(ci,cz)
obtained from the union of two equivalent disynaptic basins corresponding to the bond C;—C; to preserve the c/n separability in the localization
process. The results presented in Table 5 exhibit much higher values of the L;” 1 indices than those found in the previous systems. These values point
out a wide distribution of the canonical orbital populations into the ELF basins, at both correlated and uncorrelated treatments. In contrast with
these results, the isopycnic transformation causes a high increase of the L quantities, as well as a drastic decrease of the Li‘1 ones, as is shown in
Table 6, providing a clear chemical interpretation of the localized orbitals whose shapes have been represented in Figure 5. According to the results

reported in Table 6, the orbitals i =1 and i = 2 are of doubly occupied core type, each corresponding to one C atom, the orbital i = 3 describes a

— —— ——Q —8

w ——O 000
— —0 —8

o —O0 O— —00

FIGURE 2 Isosurfaces of the localized molecular and six most occupied natural orbitals for the HF molecule at stretched geometry.
Positive values are indicated in yellow and negative values in pastel blue. The isovalues are +0.1 a.u. The geometry of the molecule is
specified in Table 2. A, Hartree-Fock, B, FCI results. The ELF domains are Qc(r), Qy), and Qu
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FIGURE 3 Isosurfaces of the localized molecular and five most occupied natural orbitals for the H,O molecule at equilibrium geometry.
Positive values are indicated in yellow and negative values in pastel blue. The isovalues are =0.1 a.u. The geometry of the molecule is
specified in Table 3. A, Hartree-Fock, B, FCI results. The ELF domains are Qc (o), Qv(o,H,)» Qv(oH,), and Qf,b(o)

c-type bond between both C atoms, the orbitals i=4,i=5, i= 6, and i = 7 stand for the four o-type C—H bonds, and the orbital i = 8 describes
the n-type bond C; —C,.

We have also studied the ethylene molecule in a 90° twisted geometry from the equilibrium one, to know the ability of this methodology to
describe the breaking of the n-type bond between the two C atoms. The results are reported in Table 7 for canonical (molecular and natural) orbitals
and in Table 8 for localized (molecular and natural) orbitals. As can be observed in Table 7 the Hartree-Fock treatment predicts similar basins for
this twisted geometry than for the equilibrium one. However, in the correlated treatment the superbasin Qf/b(ci_cz) is substituted by one valence
basin Qyc, c,) and two monosynaptic valence superbasins Qf,b(ci) and szcz) which represent the fragments of the n-type bond broken by the tor-
sion of 90°. These results show that the breaking of the n-type bond can only be explained within the correlated framework. The decrease of one
unit in the ng value and the increase of one unit in the ny one in the correlated results with respect to the uncorrelated ones confirm this interpreta-
tion. The results from the localized treatment reported in Table 8 present an identical performance in relation to the breaking of n-type bond,
although their L 1 values are lower, which is a consequence of their higher localization. In Figure 6, we show the shape of the resulting localized
orbitals which provide a well-known chemical description of this system.

LA R 8
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FIGURE 4 Isosurfaces of the localized molecular and seven most occupied natural orbitals for the H,O molecule at stretched geometry.
Positive values are indicated in yellow and negative values in pastel blue. The isovalues are +0.1 a.u. The geometry of the molecule is
specified in Table 4. A, Hartree-Fock, B, FCI results. The ELF domains are Qc (o), Qu(H,), Qu(H,), and Q{ZO)
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FIGURE 5 Isosurfaces of the localized molecular and eight most occupied natural orbitals for the C2H4(1Ag) molecule at equilibrium
experimental geometry. Positive values are indicated in yellow and negative values in pastel blue. The isovalues are +0.1 a.u. The geometry
of the molecule is specified in Tables 5 and 6. A, Hartree-Fock, B, FCI results. The ELF domains are Qc(c,), Qc(c,), Qv(H;.c1)»
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FIGURE 6 Isosurfaces of the localized molecular and nine most occupied natural orbitals for the C2H4(1A1) molecule at twisted geometry
(Cyy at 90°) from experimental one. Positive values are indicated in yellow and negative values in pastel blue. The isovalues are +0.1 a.u.
The geometry of the molecule is specified in Table 8. A, Hartree-Fock, B, FCI results. The ELF domains are Qc(c,), Qc(c,)> Qv(Hi.c1)» Qv(H,.Cr)
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In this work, we have extended, at electronic correlation level, the procedure for localizing orbitals based on the partitioning of the physical space
into basins arising from the ELF topological analysis. Within this correlated treatment, the basins have been obtained by approximating the second-
order reduced density matrix elements in terms of the elements of the correlated first-order reduced density matrix, neglecting the contribution of
the cumulant matrix. Numerical determinations have been performed in prototype systems, in equilibrium, stretched, and twisted geometries by
means of the correlated and uncorrelated treatments. The results from both treatments are significantly different, mainly for system at nonequili-

brium geometries, pointing out that our procedure constitutes a suitable method to localize orbitals in systems possessing strong correlation.
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