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Instituto de F́ısica, Pontificia Universidad Católica de Chile,
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Abstract. Motivated by experiments confirming that the optical transparency of

graphene is defined through the fine structure constant and that it could be fully

explained within the relativistic Dirac fermions in 2D picture, in this article we

investigate how this property is affected by next-to-nearest neighbor coupling in the

low-energy continuum description of graphene. A detailed calculation within the linear

response regime allows us to conclude that, somewhat surprisingly, the zero-frequency

limit of the optical conductivity that determines the transparency remains robust up

to this correction.
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1. Introduction

Graphene is a two-dimensional allotrope of carbon, arranged as a honeycomb lattice

with a C3v ⊗ Z2 symmetry [1] that determines its remarkable physical properties

[2, 3, 4, 5]. In particular, the electronic spectrum arising from an atomistic tight-

binding model displays two non-equivalent points K+, K− where the conduction and

valence bands touch, and in whose vicinity the dispersion relation is approximately

linear. This leads to an effective, low-energy continuum model where the electronic

properties of the material are well captured by those of relativistic Dirac fermions in

2D. Among the plethora of physical consequences of this fact that have been already

predicted and measured [2, 3, 4, 5, 6, 7, 8], we noticed an interesting experiment

that measures the optical transparency of single and few-layer graphene [9]. The

transparency is a physical property that is determined by the optical conductivity,

i.e. the linear response to an electromagnetic field, in the zero-frequency limit. A

variety of experiments confirm [9, 10, 11, 12, 13] that the measured transmittance is

indeed compatible with the effective single-particle model of relativistic Dirac fermions

in graphene. A number of different theoretical works have exploited this fact to calculate

the light absorption rate in graphene from a “relativistic” quantum electrodynamics

perspective [14, 15, 16, 17, 18, 19, 20, 21, 22]. An interesting question that remains

open is up to what extent this effective model is valid in the representation of this

optical property, since it arises from a tight-binding microscopic atomistic model that

involves only the nearest neighbor hopping. In this article, we decided to explore what is

the contribution to the optical conductivity arising from the next-to-nearest neighbors

coupling in the atomistic Hamiltonian, included as a quadratic correction to the kinetic

energy operator within the continuum effective model for graphene. Such a model has

been considered in Ref. [23] to fully account for the Anomalous Integer Quantum Hall

Effect in this material and the underlying wave equation is referred to in literature as

Second Order Dirac Equation [24]. For our purposes, let us recall that within the linear

response theory, general Kubo relations allow to express the transport coefficients in

terms of retarded correlators [25], that for a pair of observables Ô1, Ô2 are defined by

(ζ = ± for Bosons and Fermions, respectively)

CR
O1,O2

(t− t′) = − iθ(t− t′)〈[Ô1(t), Ô2(t′)]−ζ〉
= − iθ(t− t′)〈Ô1(t)Ô2(t′)〉 − iθ(t− t′)ζ〈Ô2(t′)Ô1(t)〉. (1.1)

These retarded correlators differ from the usual time-ordered ones that, by construction,

are obtained via functional differentiation of the standard generating functional

constructed form a path-integral formulation in quantum field theory. This rather

technical inconvenience can be overcome by connecting the different propagators using

a Lehmann representation, or alternatively to work in the Matsubara formalism at

finite temperature and use analytic continuation a posteriori [25]. There is however a

third, and more direct alternative, which is to express the generating functional in the

contour time path (CTP), also known as Keldysh formalism in the condensed matter
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Figure 1. (Color online) Sketch of the crystal structure of graphene. The honeycomb

array is described in terms of two overlapping triangular sublattices.

literature [26, 27]. In this work, we choose the CTP formalism to explicitly calculate the

polarization tensor as a retarded correlator of the current operators, which provides the

correct definition of the optical conductivity within linear response theory. With these

ideas in mind, we have organized the remaining of this article as follows: In Sect. 2, we

present the details of the model. In Sect. 3 we present the Keldysh formalism to calculate

the current-current correlator and in Sect. 4 we obtain the optical conductivity from the

vacuum polarization tensor. We discuss our findings in Sect. 5. Some calculational

details are presented in an Appendix.

2. Lagrangian, conserved current and generating functional

Graphene consist in one atom thick membrane of tightly packed carbon atoms in a

honeycomb array. Its crystal structure, sketched in Fig. 1, is described in terms of two

overlapping triangular (Bravais) sublattices so that for a given atom belonging to any

of these sublattices, its nearest neighbors belong to the second sublattice, the next-

to-nearest neighbors to the original sublattice and so on. The band structure at the

next-to-nearest approximation is of the form

E±(k) = ±t
√
f(k)− t′[f(k)− 3], (2.1)

where t and t′ are the nearest and next-to-nearest hopping parameters and

f(k) = 3 + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+ 2 cos(

√
3kya) , (2.2)
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where a ' 1.42Å is the interatomic distance. The pointsK+ andK− at which f(K±) = 0

define the so-called Dirac points. Around K+,

E±(k +K+) = ±t
[

3

2
a|k| − 3

8
a2k2 sin(3ϑ)

]
+ t′

[
−9

4
a3k2 + 3

]
+O(|k|3) , (2.3)

with tan(ϑ) = ky/kx. Around K− one merely has to replace ϑ→ −ϑ in Eq. (2.3). The

isotropic portion of this model was first considered in Ref. [23] as a natural framework

to explain the Anomalous Integer Quantum Hall Effect in graphene. The anisotropic

term in that work was treated perturbatively and shown not to contribute to the energy

spectrum at first order. In the presence of electromagnetic interactions, the model is

described by the Lagrangian [23]

L :=
i

2

[
ψ† ∂tψ − ∂tψ† ψ

]
+ ψ†eA0ψ

− 1

2m

{
[(p− eA + θσ)ψ]† · [(p− eA + θσ)ψ]− 2θ2ψ†ψ

}
=

i

2

[
ψ† ∂tψ − ∂tψ† ψ

]
− 1

2m

{
∇ψ† ·∇ψ + i∇ψ† · (−eA + θσ)ψ−

−iψ† (−eA + θσ) ·∇ψ + ψ†
[
(−eA + θσ)2 − 2θ2

]
ψ
}
, (2.4)

where θ = mvF . Here, ψ† and ψ are regarded as independent fields whose equations of

motion are derived from the variation of the action with respect to these fields, namely,

∂L
∂ψ†
− ∂t

(
∂L

∂ (∂tψ†)

)
−∇ ·

(
∂L

∂ (∇ψ†)

)
= i∂tψ −

1

2m

[
(p− eA + θσ)2 − 2θ2

]
ψ = 0 , (2.5)

and similarly for ψ.

The Lagrangian in Eq.(2.4) remains invariant against the local change in the

dynamical variables and the external electromagnetic field

ψ(x)→ eieα(x)ψ(x) ⇒ δψ(x) = ieα(x)ψ(x) ,

ψ†(x)→ ψ†(x)e−ieα(x) ⇒ δψ†(x) = −ieα(x)ψ†(x) ,

Aµ(x)→ Aµ(x) + ∂µα(x) ,

(2.6)

that is, it has a U(1) gauge symmetry. Nœther’s Theorem leads to the existence of the

locally conserved current

αjµ := −δψ†
(

∂L
∂ (∂µψ†)

)
−
(

∂L
∂ (∂µψ)

)
δψ . (2.7)

The corresponding charge density is

j0 = e ψ†ψ (2.8)
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Figure 2. (Color online) The contour γ = γ+ ⊕ γ− is depicted in the figure. The

double folding of the time axis is displayed, by showing that always two points t− and

t+, located in the time ordered t− ∈ γ− and and anti-time ordered t+ ∈ γ+ branches

of the contour correspond to the same chronological time instant t.

and the current density

jk =
e

2m

{
i
(
∂kψ

† ψ − ψ† ∂kψ
)

+ 2ψ† (−eAk + θσk)ψ
}
. (2.9)

It is straightforward to verify, from the equations of motion, that jµ is conserved,

∂µj
µ = ∂tj

0 −∇ · j = 0 . (2.10)

Notice also that we can write

jµ(x) =
δ

δAµ(x)

∫
L(y) d3y . (2.11)

With these ingredients, we can formulate the corresponding current-current correlator.

3. Generating functional in the Contour Time Path.

We seek to calculate the polarization tensor, defined as a retarded current-current

correlator that, in linear response, determines the optical conductivity. For that purpose,

we choose to represent the field-theory described in the previous section on the Contour

Time Path (CTP) [26, 27]. Let us define the contour γ = γ− ⊕ γ+, where γ− represents

the time-ordered branch while γ+ the anti-time-ordered branch, as depicted in Fig.2.

Therefore, we define a contour evolution parameter τ ∈ γ, such that

τ =

{
t−, τ ∈ γ− ,
t+, τ ∈ γ+ .

(3.1)

Also notice that, as depicted in Fig.2, both t+ and t− have a unique correspondence to

a given chronological instant of time t ∈ IR. Correspondingly, for operators and fields

defined with their time arguments along the CTP, we have the definitions

ψ(x, τ) =

{
ψ(x, t−) ≡ ψ−(x, t), τ ∈ γ− ,
ψ(x, t+) ≡ ψ+(x, t), τ ∈ γ+ .

(3.2)
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Then, the generating functional of (current) Green’s functions of this two-dimensional

system, defined on the CTP reads

Zγ[A] = eiΓγ [A] :=

∫
Dψ†(x, τ)Dψ(x, τ) e

i

∫
γ

dτ

∫
d2xL[ψ†(x, τ), ψ(x, τ)]

, (3.3)

where Γγ[A] is the effective contribution to the action for the electromagnetic field.

The path-integral on the CTP induces by construction the contour-ordering between

the fields, defined by the operation T between two operators Ô1(τ) and Ô2(τ) in the

Heisenberg picture (ζ = ± for Bosons/Fermions, respectively)

〈T Ô1(τ1)Ô2(τ2)〉 = θ(τ1 − τ2)〈Ô1(τ1)Ô2(τ2)〉
+ ζθ(τ2 − τ1)〈Ô2(τ2)Ô1(τ1)〉. (3.4)

Here, we have defined the contour Heaviside function as

θ(τ1 − τ2) =

{
1, τ1 >c τ2 ,

0, τ2 >c τ1 ,
(3.5)

with the symbol >c indicating the relation “later than in the contour”. In general

physical situations where the sources and external fields do not break time-reversal

invariance, ψ−(x, t) = ψ+(x, t), and the CTP becomes just a useful trick to express at

once all the different correlators. Consider for instance the contour-ordered correlator

between two fields,

∆(x1, τ1; x2, τ2) ≡ − i〈T ψ(x1, τ1)ψ†(x2, τ2)〉
= θ(τ1 − τ2)(−i)〈ψ(x1, τ1)ψ†(x2, τ2)〉

+ ζθ(τ2 − τ1)(−i)〈ψ†(x2, τ2)ψ(x1, τ1)〉 . (3.6)
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This single definition, depending on the location of the parameters τ1, τ2 ∈ γ, generates

at once four different propagators:

∆−−(x1, t1; x2, t2) = − i〈T ψ(x1, t1−)ψ†(x2, t2−)〉
= − i〈T ψ−(x1, t1)ψ†−(x2, t2)〉
= − i〈T̂ψ−(x1, t1)ψ†−(x2, t2)〉
= − i〈T̂ψ(x1, t1)ψ†(x2, t2)〉 , (3.7)

∆−+(x1, t1; x2, t2) = − i〈T ψ(x1, t1−)ψ†(x2, t2+)〉
= − i〈T ψ−(x1, t1)ψ†+(x2, t2)〉
= − iζ〈ψ†+(x2, t2)ψ−(x1, t1)〉
= − iζ〈ψ†(x2, t2)ψ(x1, t1)〉 , (3.8)

∆+−(x1, t1; x2, t2) = − i〈T ψ(x1, t1+)ψ†(x2, t2−)〉
= − i〈T ψ+(x1, t1)ψ†−(x2, t2)〉
= − i〈ψ+(x1, t1)ψ†−(x2, t2)〉
= − i〈ψ(x1, t1)ψ†(x2, t2)〉 , (3.9)

∆++(x1, t1; x2, t2) = − i〈T ψ(x1, t1+)ψ†(x2, t2+)〉
= − i〈T ψ+(x1, t1)ψ†+(x2, t2)〉
= − i〈T̃ψ+(x1, t1)ψ†+(x2, t2)〉
= − i〈T̃ψ(x1, t1)ψ†(x2, t2)〉 . (3.10)

Here, we have defined the usual time-order T̂ and anti-time-order T̃ operators. Notice

that not all correlators are independent, since they satisfy

∆+−(x, y) + ∆−+(x, y) = ∆−−(x, y) + ∆++(x, y). (3.11)

It is customary to organize the correlators above in the matrix form

∆(x, y) =

[
∆−−(x, y) ∆−+(x, y)

∆+−(x, y) ∆++(x, y)

]
. (3.12)

Using the definitions above, the retarded and advances correlators can be expressed as

linear combinations of the previous ones

∆A(x1, t1; x2, t2) = iθ(t2 − t1)〈
[
ψ(x1, t1), ψ†(x2, t2)

]
−ζ〉

= ∆−−(x1, t1; x2, t2)−∆+−(x1, t1; x2, t2)

= ∆−+(x1, t1; x2, t2)−∆++(x1, t1; x2, t2) , (3.13)

∆R(x1, t1; x2, t2) = − iθ(t1 − t2)〈
[
ψ(x1, t1), ψ†(x2, t2)

]
−ζ〉

= − iθ(t1 − t2)

(
〈ψ(x1, t1)ψ†(x2, t2)〉

− ζ〈ψ†(x2, t2)ψ(x1, t1)〉
)

= ∆−−(x1, t1; x2, t2)−∆−+(x1, t1; x2, t2)

= ∆+−(x1, t1; x2, t2)−∆++(x1, t1; x2, t2) . (3.14)
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From the CTP generating functional defined in Eq. (3.3), it is possible to generate the

average current components

−iδ logZγ[A]

δAµ(x)
=

1

Zγ[A]

∫
Dψ†Dψ e

i

∫
γ

d3yL(y)
jµ(x)

= 〈jµ(x)〉 =: Jµ[A](x) , (3.15)

while the second functional derivative gives the current-current correlation function,

(−i)2 δ2 logZγ[A]

δAµ(x)δAν(y)
= − iδJ

µ[A](x)

δAν(y)

= − i
〈
δjµ(x)

δAν(y)

〉
+ 〈T jµ(x)jν(y)〉

− 〈jµ(x)〉 〈jν(y)〉 , (3.16)

where the first term is the diamagnetic contribution [28]〈
δjµ(x)

δAν(y)

〉
= δµkδνk

(
− e2

m2

)〈
ψ†(x)ψ(x)

〉
δ(3) (x− y)

= − e

m2
δµkδνk

〈
j0(x)

〉
δ(3) (x− y) ,

(3.17)

and the others are the paramagnetic ones.

We take the currents in normal order with respect to the fermionic field, so that

Jµ[A = 0] = 0. The linear response of the system to the external electromagnetic field

is described by the second derivative in Eq. (3.16) evaluated at Aµ = 0 [28],

Kµν(x, y) = (−i)2 δ2 logZγ[A]

δAµ(x)δAν(y)

∣∣∣∣
A=0

= Kνµ(y, x)

= 〈T jµ(x)jν(y)〉0 . (3.18)

Then, the density response is

K00(x, y) =
〈
T j0(x)j0(y)

〉
0

= e2
〈
T ψ†(x)ψ(x)ψ†(y)ψ(y)

〉
0
. (3.19)

The spatial components of the current are given by

jk(x)

∣∣∣∣∣
A=0

=
e

2m

{
i∂kψ

†(x)ψ(x)− iψ†(x)∂kψ(x) + 2θψ†(x)σkψ(x)
}

= ψ†(x)
( e

2m

{
−i←→∂ k + 2θσk

})
ψ(x)

≡ ψ†a(x)D̂k
abψb(x) . (3.20)

Here, we have defined the differential operators

D̂k
ab =

e

2m

{
−i←→∂ kδab + 2θ [σk]ab

}
. (3.21)
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Applying Wick’s theorem on the CTP for the definition of the current-correlator

(correlators associated to disconnected diagrams vanish):

〈T jk(x)jl(y)〉 = 〈T ψ†a(x)D̂k
abψb(x)ψ†c(y)D̂l

cdψd(y)〉
= − D̂k

abD̂
l
cd〈T ψb(x)ψ†c(y)〉〈T ψd(y)ψ†a(x)〉 . (3.22)

The previous relation allows us to define the corresponding components of the

polarization tensor in the CTP contour indices α, β = ±,

Kkl
αβ(x, y) = 〈T jkα(x)jlβ(y)〉

= − D̂k
abD̂

l
cd∆

αβ
bc (x, y)∆βα

da (y, x) . (3.23)

The retarded component of the polarization tensor is obtained following the general

prescription explained in Eq.(3.14),

Kkl
R (x, y) = Kkl

−−(x, y)−Kkl
−+(x, y)

= D̂k
abD̂

l
cd

{
∆−−bc (x, y)∆−−da (y, x)−∆−+

bc (x, y)∆+−
da (y, x)

}
= D̂k

abD̂
l
cd

{
∆F
bc(x, y)∆F

da(y, x)

−
(
∆F
bc(x, y)−∆R

bc(x, y)
) (

∆F
da(y, x)−∆A

da(y, x)
)}

= D̂k
abD̂

l
cd

{
∆F
bc(x, y)∆A

da(y, x) + ∆R
bc(x, y)∆F

da(y, x)

−∆R
bc(x, y)∆A

da(y, x)

}
. (3.24)

In terms of Fourier transforms,

ψ(x) =
1

(2π)3/2

∫
d3p e−ip·xψ̃(p) , ψ†(x) =

1

(2π)3/2

∫
d3p eip·xψ̃†(p) , (3.25)

we have

∆αβ
ab (x, y) ≡ ∆αβ

ab (x− y) =

∫
d3p

(2π)3
ei(x−y)·p∆̃αβ

ab (p). (3.26)

Here, the different propagators for the Hamiltonian model considered are, in Fourier
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space (F: Feynman, R: Retarded, A: Advanced),

∆̃F (p) = ∆̃−−(p) = i
p0 − p2

2m
+ vFp · ~σ(

p0 − p2

2m

)2

− v2
Fp2 + iε′

= i
p0 − p2

2m
+ vFp · ~σ(

p0 + iε− p2

2m
− vF |p|

)(
p0 − iε− p2

2m
+ vF |p|

) , (3.27)

∆̃R(p) = i
p0 − p2

2m
+ vFp · ~σ(

p0 + iε− p2

2m

)2

− v2
Fp2

, (3.28)

∆̃A(p) = i
p0 − p2

2m
+ vFp · ~σ(

p0 − iε− p2

2m

)2

− v2
Fp2

. (3.29)

In particular, for the linear response theory, we need the retarded component of the

polarization tensor

Kµν
R (x− y) =

∫
d3p

(2π)3
ei(x−y)·p Πµν

R (p) . (3.30)

Here, the Fourier transform of the retarded component is given by

Πkl
R(p) = Πkl

FA(p) + Πkl
RF (p)− Πkl

RA(p) , (3.31)

where the different terms are defined by

Πkl
FA(p) =

e2

4m2

∫
d3q

(2π)3
Γkab(p+ 2q)∆̃F

bc(p+ q)Γlcd(p+ 2q)∆̃A
da(q) ,

Πkl
RF (p) =

e2

4m2

∫
d3q

(2π)3
Γkab(p+ 2q)∆̃R

bc(p+ q)Γlcd(p+ 2q)∆̃F
da(q) ,

Πkl
RA(p) =

e2

4m2

∫
d3q

(2π)3
Γkab(p+ 2q)∆̃R

bc(p+ q)Γlcd(p+ 2q)∆̃A
da(q) , (3.32)

with the symbol

Γkab(p+ 2q) = [δab(p+ 2q)k + 2θ [σk]ab] , (3.33)

and a similar expression for Γlcd(p + 2q). Below we obtain the polarization tensor

explicitly.

4. The polarization tensor

The polarization tensor Πkl(p) contains the information about the conductivity on the

plane of this two-dimensional system and also about its properties of transmission of

light through it [16, 28]. We are interested in the consequences of the application of

harmonic homogeneous electric fields which, in the temporal gauge, are related with the

vector potential by Ek = −∂Ak/∂t = iωAk. Since the conductivity is determined by

the linear relation between the current and the applied electric field, Jk = σklEl, from
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Eqs. (3.15), (3.18) and (3.31), we can write for the conductivity as a function of the

frequency [16, 28]

σkl(ω) =
ΠR
kl(p)

p0

∣∣∣∣
p→(ω,0)

. (4.1)

So, in the following we evaluate ΠR
kl(ω,0) from Eq.(3.31), that hence requires the

evaluation of the three integrals defined in Eq.(3.32). Let us start with ΠFA
kl (p),

ΠFA
kl (p) =

e2

4m2

×
∫

d3q

(2π)3
Tr
{

[pk + 2qk + 2θσk] ∆F (p+ q) [pl + 2ql + 2θσl] ∆A(q)
}
.(4.2)

Specializing this expression to the case p = (ω,0), we write

ΠFA
kl (ω,0) =

e2

4m2

∫
d3q

(2π)3

Tr{A}
BFA

(4.3)

with

A = [2qk + 2θσk]

[
ω + q0 −

q2

2m
+ vFq · ~σ

]
[2ql + 2θσl]

×
[
q0 −

q2

2m
+ vFq · ~σ

]
,

BFA =

(
ω + q0 + iε− q2

2m
− vF |q|

)(
ω + q0 − iε−

q2

2m
+ vF |q|

)
×
((

q0 − iε−
q2

2m

)2

− v2
Fq2

)
. (4.4)

By writing q1 = Q cosϕ, q2 = Q sinϕ, and noticing that the denominator is independent

of ϕ, it is straightforward to get for the trace in the numerator integrated over ϕ,∫ 2π

0

Tr {A} dϕ = − 8π
(
Q2 + 2m2v2

F

)
q2

0

+ 8
π

m

(
Q4 − ω

(
mQ2 + 2m3v2

F

)
− 2m2Q2v2

f

)
q0

+ 2
π

m2
Q2
(
2mω

(
Q2 − 2m2v2

F

)
+ 2m2Q2v2

F −Q4
)
,(4.5)

for k, l = 1, 1 or 2, 2, and a vanishing result for k, l = 1, 2 or 2, 1.

Since the previous result is a quadratic polynomial in q0, and the denominator in

Eq. (4.4) is a quartic expression in the integration variable, the integral over q0 can

be done on the complex plane, taking into account the position of the simple poles of

the integrand with respect to the real axis. With a dimensional regularization of the

resulting integral (dimension d = 2− s), as described in detail in Appendix, one finds

ΠFA
11 (ω,0) =

e2

4m2

{
i
m2ω

4πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]}
. (4.6)
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A similar procedure, as described in Appendix, leads to the corresponding expressions

for the other two pieces of the retarded polarisation tensor

ΠRA
11 (ω,0) =

e2

4m2

{
i
m2ω

2πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]

− im
2ω

4π
log

[
(ω + 2iε)

2mvF

]}
, (4.7)

ΠRF
11 (ω,0) =

e2

4m2

{
i
m2ω

4πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]}
. (4.8)

We notice that the three separate parts above, which together yield the retarded

polarization tensor, display a pole at s = 0. However, when added together according

to Eq.(3.31), the poles exactly cancel to yield a finite result

ΠR
11(ω,0) = lim

ε→0+
ΠRF

11 (ω,0) + ΠFA
11 (ω,0)− ΠRA

11 (ω,0)

=
e2

4m2

m2ω

4
=
e2ω

16
. (4.9)

The result above must be multiplied by a factor of 2 due to the spin degeneracy, and

another factor of 2 due to valley degeneracy. Thus, the final result of the optical

conductivity is

σ11 = 2 · 2ΠR
11(ω,0)

ω
=
e2

4
. (4.10)

Remarkably, this is the same result that is obtained for the usual linear dispersion

approximation. Therefore, we conclude that the optical conductivity, and hence the

transparency in graphene are not affected by next-to-nearest neighbor contributions to

the tight-binding microscopic model, that translate into a quadratic correction to the

kinetic energy, as considered in this work.

5. Conclusions

Among the many outstanding properties of graphene which can be described within the

Dirac limit, its optical transparency is entirely explained in terms of the fine structure

constant. A natural question is to ask the extent at which such picture deviates from the

experimental measurements. In this regard, in this article we considered the next-to-

nearest neighbors contribution which in the continuum corrects the kinetic term with a

quadratic contribution. Introducing the CTP formalism, we calculate the linear response

current-current correlator from which the optical conductivity is derived. Within this

formalism, it is straightforward to obtain the retarded part of the polarization tensor

after a dimensional regularization of the involved integrals. Remarkably and somehow

unexpectedly, we found the conductivity of the Dirac limit to be robust against quadratic

corrections. This encouraging results opens the possibility of testing deviations of the

Dirac limit in graphene in other physical phenomena. These results are currently under

scrutiny and results will be reported elsewhere.
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Appendix: Regularization of the momentum integrals

In this Appendix, we present in detail the dimensional regularization method used to

calculate the momentum integrals defined in the main text. Let us consider the term

Eq. (4.3). After taking the trace and performing the angular integral as shown in

Eq. (4.5), we have to evaluate

ΠFA
11 (ω,0) =

e2

4m2

∫ ∞
0

dQ

(2π)3
Q

∫ ∞
−∞

dq0

BFA

{
− 8π

(
Q2 + 2m2v2

f

)
q2

0

+ 8
π

m

(
Q4 − ω

(
mQ2 + 2m3v2

f

)
− 2m2Q2v2

f

)
q0

+ 2
π

m2
Q2
(
2mω

(
Q2 − 2m2v2

f

)
+ 2m2Q2v2

f −Q4
)}

, (5.1)

with BFA given in Eq. (4.4) with |q| = Q. Clearly, on the q0-plane, the integrand has

three poles on the positive imaginary plane at q
(1,2)
0 = iε+ Q2

2m
±vFQ, q

(3)
0 = iε−ω+ Q2

2m
−

vFQ, and a single pole on the negative imaginary plane at q
(4)
0 = −iε− ω + Q2

2m
+ vFQ.

We evaluate the q0 integral by means of the residue theorem, closing the contour on the

lower plane. The result of this procedure can be expressed as

ΠFA
11 (ω,0) =

e2

4m2

∫ ∞
0

dQ

(2π)3

QP FA(Q,ω)

(ω + 2iε) (ω − 2vFQ+ 2iε) (ivFQ+ ε)
. (5.2)

Here, we have defined the numerator as the polynomial function

P FA(Q,ω) =
(
−16π2m2v4

F + 16π2mωv2
F + 32iπ2mv2

F ε− 8iπ2ωε+ 8π2ε2
)

+Q
(
16π2m2ωv3

F + 32iπ2m2v3
F ε
)

+Q2
(
16π2m2v2

F ε
2 − 16iπ2m2ωv2

F ε
)

+Q3
(
−32π2mv3

F + 8π2ωvF + 16iπ2vF ε
)
− 16Q4

(
π2v2

F

)
. (5.3)

By simply counting powers in numerator and denominator, it is clear that the remaining

integral is divergent and needs regularization. For this purpose, we first perform a partial

fraction decomposition of the denominator as follows

1

(ω + 2iε) (ω − 2vFQ+ 2iε) (ivFQ+ ε)
=

1

2iωv2
F (ω + 2iε)

×
(

1

Q−Q1

− 1

Q−Q2

)
, (5.4)

with Q1 = iε/vF , Q2 = (ω + 2iε) /(2vF ). After this, the integral splits into two

contributions

ΠFA
11 (ω,0) =

e2

4m2

1

2iωv2
F (ω + 2iε)

{∫ ∞
0

dQ

(2π)3
Q
P FA(Q,ω)

Q−Q1

−
∫ ∞

0

dQ

(2π)3
Q
P FA(Q,ω)

Q−Q2

}
. (5.5)

For each integral (i.e. Qj = Q1, Q2 respectively), let us analyze the asymptotic behavior

of the integrand at large momentum values, say for Q > Q∗, with Q∗ an arbitrary but
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large momentum scale. In this regime,

P FA(Q,ω)

Q−Qj

∼ 8π2Qj

Q2

(
Q2
j

(
−2m2v4

F + 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+ 2m2Qjv

3
F (ω + 2iε)− 2im2ωv2

F ε+ 2m2v2
F ε

2

+Q3
jvF

(
−4mv2

F + ω + 2iε
)
− 2Q4

jv
2
F

)

+ 8π2Q

(
− 2m2v4

F + ω
(
2mv2

F +QjvF − iε
)
− 4mQjv

3
F

+ 4imv2
F ε− 2Q2

jv
2
F + 2iQjvF ε+ ε2

)

+
8π2

Q

(
Q2
j

(
−2m2v4

F + 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+ 2m2Qjv

3
F (ω + 2iε)− 2im2ωv2

F ε+ 2m2v2
F ε

2

+Q3
jvF

(
−4mv2

F + ω + 2iε
)
− 2Q4

jv
2
F

)

+ 8π2

(
Qj

(
−2m2v4

F + 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+ 2m2ωv3

F + 4im2v3
F ε+Q2

jvF
(
−4mv2

F + ω + 2iε
)

− 2Q3
jv

2
F

)
+ 8π2Q2vF

(
−4mv2

F + ω − 2QjvF + 2iε
)

− 16π2q3v2
F +O[Q−3]

≡ PAsymp
FA (Q,ω,Qj) +O[Q−3] , (5.6)

where we have defined PAsymp
FA (Q,ω,Qj) as the polynomial obtained by truncating the

asymptotic expansion above up to O[Q−3], for Q > Q∗. Therefore, using this expansion,

we regularize each of the integrals using the prescription (d = 2− s)∫ ∞
0

dQ

(2π)3
Q
P FA(Q,ω)

Q−Qj

→
∫ Q∗

0

dQ

(2π)3
Q
P FA(Q,ω)

Q−Qj

+

∫ ∞
Q∗

dQ

(2π)3
Q

[
P FA(Q,ω)

Q−Qj

− PAsymp
FA (Q,ω,Qj)

]
+

∫ ∞
Q∗

dQ

(2π)3
msQ1−sPAsymp

FA (Q,ω,Qj) . (5.7)

After lengthy but straightforward algebra, we obtain in the limit ε→ 0+

ΠFA
11 (ω,0) =

e2

4m2

{
i
m2ω

4πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]}
. (5.8)

Let us now consider the expression for ΠRF
11 (ω,0), as obtained after calculating the
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trace and angular integration according to Eq.(4.5)

ΠRF
11 (ω,0) =

e2

4m2

∫ ∞
0

dQ

(2π)3
Q

∫ ∞
−∞

dq0

BRF

{
− 8π

(
Q2 + 2m2v2

f

)
q2

0

+ 8
π

m

(
Q4 − ω

(
mQ2 + 2m3v2

f

)
− 2m2Q2v2

f

)
q0

+ 2
π

m2
Q2
(
2mω

(
Q2 − 2m2v2

f

)
+ 2m2Q2v2

f −Q4
)}

, (5.9)

with

BRF =

(
q0 + iε− Q2

2m
− vFQ

)(
q0 − iε−

Q2

2m
+ vFQ

)
×
((

ω + q0 + iε− Q2

2m

)2

− v2
FQ

2

)
. (5.10)

In this case, on the q0-plane the integrand has three poles on the negative imaginary

plane, q
(1,2)
0 = −iε − ω + Q2/(2m) ± vFQ, q

(3)
0 = −iε + Q2/(2m) + vFQ, and a single

pole on the positive imaginary plane at q
(4)
0 = iε + Q2

2m
− vFQ. Therefore, we calculate

the integral over q0 using the residue theorem, by choosing a contour that closes on the

upper complex plane. Thus,

ΠRF
11 (ω,0) =

e2

4m2

×
∫ ∞

0

dQ

(2π)3

QPRF (Q,ω)

(ω + 2iε) (ω − 2vFQ+ 2iε) (ivFQ+ ε)
. (5.11)

The numerator of the resulting integrand is defined by the quartic polynomial function

PRF (Q,ω) =
(
16π2m2v2

F ε
2 − 16iπ2m2ωv2

F ε
)

+Q
(
16π2m2ωv3

F + 32iπ2m2v3
F ε
)

+Q2(−16π2m2v4
F − 16π2mωv2

F − 32iπ2mv2
F ε− 8iπ2ωε+ 8π2ε2)

+Q3
(
32π2mv3

F + 8π2ωvF + 16iπ2vF ε
)
− 16Q4

(
π2v2

F

)
, (5.12)

and then the integral is clearly divergent. A consistent regularization procedure is

applied in this case as well. By performing the same partial fraction expansion of the

denominator, as in Eq.(5.4), we find that the integral splits into two pieces (Q1 = iε/vF ,

Q2 = (ω + 2iε)/(2vF ))

ΠRF
11 (ω,0) =

e2

4m2

1

2iωv2
F (ω + 2iε)

{∫ ∞
0

dQ

(2π)3
Q
PRF (Q,ω)

Q−Q1

−
∫ ∞

0

dQ

(2π)3
Q
PRF (Q,ω)

Q−Q2

}
. (5.13)

For each integral (i.e. Qj = Q1, Q2 respectively), we analyze the asymptotic behavior
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of the integrand at large momentum values, say for Q > Q∗. In this regime,

PRF (Q,ω)

Q−Qj

∼ 8π2Qj

Q2

(
− 2im2ωv2

F ε+ 2m2v2
F ε

2 + 2m2Qjv
3
F (ω + 2iε)

+Q2
j

(
−2m2v4

F − 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+Q3

jvF
(
4mv2

F + ω + 2iε
)
− 2Q4

jv
2
F

)

+
8π2

Q

(
Q2
j

(
−2m2v4

F − 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+ 2m2Qjv

3
F (ω + 2iε)− 2im2ωv2

F ε+ 2m2v2
F ε

2

+Q3
jvF

(
4mv2

F + ω + 2iε
)
− 2Q4

jv
2
F

)

+ 8π2

(
Qj

(
−2m2v4

F − 2mv2
F (ω + 2iε) + ε(ε− iω)

)
+ 2m2ωv3

F

+ 4im2v3
F ε+Q2

jvF
(
4mv2

F + ω + 2iε
)
− 2Q3

jv
2
F

)

+ 8π2Q

(
− 2m2v4

F + ω
(
−2mv2

F +QjvF − iε
)

+ 4mQjv
3
F

− 4imv2
F ε− 2Q2

jv
2
F + 2iQjvF ε+ ε2

)
+ 8π2Q2vF

(
4mv2

F + ω − 2QjvF + 2iε
)
− 16π2Q3v2

F +O[Q−3]

≡ PAsymp
RF (Q,ω,Qj) +O[Q−3], (5.14)

where we have defined PAsymp
RF (Q,ω,Qj) as the polynomial obtained by truncating the

asymptotic expansion above up to O[Q−3], for Q > Q∗. Therefore, using this expansion,

we regularize each of the integrals using the prescription (d = 2− s)∫ ∞
0

dQ

(2π)3
Q
PRF (Q,ω)

Q−Qj

→
∫ Q∗

0

dQ

(2π)3
Q
PRF (Q,ω)

Q−Qj

+

∫ ∞
Q∗

dQ

(2π)3
Q

[
PRF (Q,ω)

Q−Qj

− PAsymp
RF (Q,ω,Qj)

]
+

∫ ∞
Q∗

dQ

(2π)3
msQ1−sPAsymp

RF (Q,ω,Qj) . (5.15)

After straightforward manipulations, we obtain in the limit ε→ 0+

ΠRF
11 (ω,0) =

e2

4m2

{
i
m2ω

4πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]}
. (5.16)

Finally, let us consider the term Eq.(3.32). After tracing and performing the angular
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integral,

ΠRA
11 (ω,0) =

e2

4m2

∫ ∞
0

dQ

(2π)3
Q

∫ ∞
−∞

dq0

BRA

{
− 8π

(
Q2 + 2m2v2

f

)
q2

0

+ 8
π

m

(
Q4 − ω

(
mQ2 + 2m3v2

f

)
− 2m2Q2v2

f

)
q0

+ 2
π

m2
Q2
(
2mω

(
Q2 − 2m2v2

f

)
+m2Q2v2

f −Q4
)}

, (5.17)

with

BRA =

((
ω + q0 + iε− Q2

2m

)2

− v2
FQ

2

)

×
((

q0 − iε−
Q2

2m

)2

− v2
FQ

2

)
. (5.18)

Clearly, on the q0-plane, the integrand has two poles on the positive imaginary plane

at q
(1,2)
0 = iε + Q2

2m
± vFQ, and two poles on the negative imaginary plane at q

(3,4)
0 =

−iε − ω + Q2

2m
± vFQ. We evaluate the q0 integral by the residue theorem, closing the

contour on the upper plane. Thus,

ΠRA
11 (ω,0) =

e2

4m2∫ ∞
0

dQ

(2π)3
Q

PRA(Q,ω)

(ω + 2iε) (ω − 2vFQ+ 2iε) (ω + 2vFQ+ 2iε)
.(5.19)

The numerator of the resulting integrand is defined by the quartic polynomial function

PRA(Q,ω) = − 16iπ2

(
ω2
(
2m2v2

F +Q2
)

+ 2iωε
(
2m2v2

F +Q2
)

− 2ε2
(
2m2v2

F +Q2
)
− 4Q2v2

F

(
m2v2

F +Q2
))

, (5.20)

and hence the diverging integral needs also a regularization. As in the former two cases,

we first do a partial fraction decomposition of the denominator, to obtain

ΠRA
11 (ω,0) =

e2

4m2

(Q3 −Q4)−1

−4v2
F (ω + 2iε)

{∫ ∞
0

dQ

(2π)3
Q
PRA(Q,ω)

Q−Q3

−
∫ ∞

0

dQ

(2π)3
Q
PRA(Q,ω)

Q−Q3

}
, (5.21)

where we have defined Q3 = (ω + 2iε)/(2vF ), Q4 = −Q3. For each integral (i.e.

Qj = Q3, Q4 respectively), we analyze the asymptotic behavior of the integrand at
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large momentum values, say for Q > Q∗. In this regime,

PRA(Q,ω)

Q−Qj

∼ −16iπ2Qj

Q2

(
ω2
(
2m2v2

F +Q2
j

)
+ 2iωε

(
2m2v2

F +Q2
j

)
− 2

(
Q2
j

(
2m2v4

F + ε2
)

+ 2m2v2
F ε

2 + 2Q4
jv

2
F

))

− 16iπ2Q

(
− 2

(
2m2v4

F + 2Q2
jv

2
F + ε2

)
+ ω2 + 2iωε

)

− 16iπ2

Q

(
ω2
(
2m2v2

F +Q2
j

)
+ 2iωε

(
2m2v2

F +Q2
j

)
− 2

(
Q2
j

(
2m2v4

F + ε2
)

+ 2m2v2
F ε

2 + 2Q4
jv

2
F

))

− 16iπ2Qj

(
− 2

(
2m2v4

F + 2Q2
jv

2
F + ε2

)
+ ω2 + 2iωε

)
+ 64iπ2v2

FQ
3 + 64iπ2Qjv

2
FQ

2 +O[Q−3]

≡ PAsymp
RA (Q,ω,Qj) +O[Q−3], (5.22)

where we have defined PAsymp
RA (Q,ω,Qj) as the polynomial obtained by truncating the

asymptotic expansion above up to O[Q−3], for Q > Q∗. Therefore, using this expansion,

we regularize each of the integrals using the prescription (d = 2− s)∫ ∞
0

dQ

(2π)3
Q
PRA(Q,ω)

Q−Qj

→
∫ Q∗

0

dQ

(2π)3
Q
PRA(Q,ω)

Q−Qj

+

∫ ∞
Q∗

dQ

(2π)3
Q

[
PRA(Q,ω)

Q−Qj

− PAsymp
RA (Q,ω,Qj)

]
+

∫ ∞
Q∗

dQ

(2π)3
msQ1−sPAsymp

RA (Q,ω,Qj) . (5.23)

After lengthy but straightforward algebra, we obtain in the limit ε→ 0+

ΠRA
11 (ω,0) =

e2

4m2

{
i
m2ω

2πs
− im

2ω

4π
log

[
−(ω + 2iε)

2mvF

]

− im
2ω

4π
log

[
(ω + 2iε)

2mvF

]}
. (5.24)

Notice that the final result does not depend on the arbitrary scale Q∗, as it must.
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