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a b s t r a c t

One of the key issues in the development of iron aluminides is the thermodynamic modeling of alloying
effects on the long-range and short-range order states of the underlying bcc phase, needed for the proper
description of their effects upon phase equilibria and physical properties of multicomponent alloys.
The present work describes results obtained by the present research group in the development of
a thermodynamic database using the cluster variation method (CVM) in the irregular tetrahedron
approximation, combined with ab initio results obtained from FP-LAPW electronic structure calculation
in the GGA approximation, as embodied in the WIEN2k package. The ordering phase equilibria in
isothermal sections of systems Fe–Al–Mo, Fe–Al–Nb and Fe–Al–Ti are compared. These equilibria,
particularly in the technologically important iron-rich corner, are characterized by radically different
behaviors, ranging from very large solubility of Ti in the L21/D03 and B2 phases, to a very small solubility
of Mo. The behavior of Nb is somewhat intermediate between these two extremes, and shows a limited
solubility in the B2 phase, which is, however, found in metastable equilibrium with a L21 phase. It can be
shown that these different behaviors can be understood as a consequence of the different metastable
equilibria in the binary Fe–Mo, Fe–Nb and Fe–Ti systems. The results are discussed in reference with
experimental data on the stable and metastable ordering equilibria in these systems and are illustrated
by their impact of aluminide physical properties, like diffusion and APB energies, with its implications for
plastic deformation.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Iron aluminides, as technological materials, are multicompo-
nent alloys, which, besides iron and aluminum, typically contain
varying amounts of Cr, B, C, Mo, Nb, Ti, Zr, among others, as
alloying elements [1–3]. While chromium and boron are added
mainly to control and minimize the phenomenon known as
“environmental embrittlement” [4,5], the remaining alloying addi-
tions aim at increasing strength by means of different mechan-
isms, like solid solution, precipitate and long-range or short-range
ordering strengthening [2].
ll rights reserved.

: +55 113 091 5243.
The control of these strengthening mechanism for an eventual
alloy project relies, deeply, in the knowledge of the respective
phase diagrams. The experimental approach has been employed
and a great deal of information is known about the equilibria in
the ternary Fe–Al–M (M¼Cr, Mo, Nb, Ti, Zr) systems [2]. It happens
that the phase equilibria in the region of interest (the iron-rich
corner, involving the body centered cubic disordered solid solu-
tion, A2, or its ordered superlattices, the B2, D03 and L21 phases)
varies considerably among these systems. For example, comparing
the Fe–Al–Ti and Fe–Al–Mo systems, we observe that in the first
system the L21 superlattice dissolves up to 20 at% Ti at 800 1C
without precipitating more complex intermetallics [6,7], while in
Fe–Al–Mo the maximum Mo solubility in the bcc ordered super-
lattice at 800 1C is about 5 at% [8].

In a previous work by some of the present authors these
differences were traced back to the different equilibria observed
in the stable or metastable binary bcc equilibrium in the Fe–M
systems: Fe–Ti has a stable B2 phase at the center of the phase
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diagram, while Fe–Mo has a miscibility gap, no ordered bcc
superlattices being observed, not even as metastable phases [9].
The aim of the present work is to test this hypothesis by analyzing
also the metastable equilibria in bcc Fe–Al–Nb system, which can
be considered as an intermediate case in relation to Fe–Al–Mo and
Fe–Al–Ti. The equilibria in the three systems will be compared and
the results will be checked against available experimental results
on metastable equilibria involving the L21 in Fe–Al–Nb [10].

Next, the impact of the different equilibria will be discussed in
connection with two important non-equilibrium processes: tern-
ary diffusion and antiphase boundary (APB) energies, with its
implications to superdislocation properties and, hence, to plastic
deformation.
2. Methodology

The procedure used for the phase diagram calculation is based on
the so-called cluster expansion method [11]. In this approach, the
total energies at the ground state (T¼0 K) of a set of stoichiometric
ordered compounds (which are related to a common disordered
lattice) are calculated by solving one-particle Schrödinger equations.
This set forms an orthonormal basis for the truncated expansion of
the internal energy of the lattice at all temperatures and composi-
tions, which are then used in conjunctionwith a statistical mechanics
method to calculate the phase diagram.

The set used in the present work is defined by the adopted
approximation, the irregular tetrahedron cluster, which corre-
sponds to the unary disordered bcc compounds A2, the binary
ordered B2, D03 and B32 compounds and the ternary ordered L21
and F43m compounds.1 This choice of basis is not unique and
other approaches are found in the literature. Ghosh et al. [12], for
example, used 38 compounds to model the bcc phase in the Hf–Nb
system, and, more recently, Ravi et al. [13] used a unspecified, but
very large, number of compounds to model the V–Nb, V–Ta and
Nb–Ta systems. The basis set is kept limited here on purpose since
only a simplified thermodynamic description of the thermody-
namic properties of the bcc solid solution is sought. In addition,
the adopted ground states are highly symmetrical, such that no
relaxation of internal parameters are needed, and the compounds
were optimized only through their lattice parameters. Other less
symmetric ground states could, perhaps, be more stable than the
ones adopted here, but they are not included in the present
calculation since this would go beyond the scope of the chosen
approximation: a thermodynamic description of the bcc phase,
including its main ordered states, in the spirit of the CALPHAD
method.

The total energies of the ordered compounds have been
calculated using the WIEN2K code [14] in the framework of the
Kohn–Sham scheme of the density functional theory (DFT), using
the full potential-linearized augmented plane waves (FP-LAPW)
method. The equilibrium lattice constants at the ground state have
been determined through the calculation of the minimum value of
the total energy. The self-consistent process has been performed
until the difference of total energies per unit cell was smaller than
10�6 Ry in two subsequent calculations (1 Ry¼ 13:605698 eV).
The standard procedure used here to achieve self consistency
was already described in Ref. [15]. Exchange and correlation effects
were treated with the generalized gradient approximation (GGA),
using the implementations proposed by Perdew et al. [16]. All
calculations were performed with the non-relativistic code, for
compatibility with previously published results. A recent work by
1 The “F43m structure” corresponds to the prototype CuHg2Ti and has no
Strukturbericht designation; we therefore decided to represent this compound by
its space group symbol.
some of the present authors [15] suggests that the particular
settings of the ab initio calculation (like the introduction of
relativistic corrections) do have an impact on the obtained forma-
tion energies, but that phase diagram topology, in particular, is not
affected.

The procedure used here is equivalent to the one employed in a
previous work [9]. For easy reference, we rewrite the main equations
for the present context. The calculated total energies for compound Φ

(with Φ¼ B2, B32, D03, L21 or F43m) with FexAlyMz stoichiometry
(where n¼ xþ yþ z is the number of atoms in the unity formula
and M¼Ti, Nb, Mo) are denoted by UΦ

FexAlyMz
. These can be converted

into formation energies, Δf UΦ
FexAlyMz

, per mol of atoms in the

reference state of the mechanical mixture of the components (with
bcc structure), using

Δf UΦ
FexAlyMz

¼
UΦ

FexAlyMz
�xUA2

Fe�yUA2
Al �zUA2

M

n
ð1Þ

As the A2 structure of iron is known to be ferromagnetic, all iron-
containing compounds were calculated allowing for spin polariza-
tion. The calculated formation energies correspond, therefore, to
magnetically ordered compounds in some of the cases.

The formation energies of the calculated compounds are used
as input parameters to the cluster variation method (CVM), the
statistical mechanics formalism adopted for the calculation of the
phase diagrams. The CVM was first proposed by Kikuchi [17,18] as
a method to derive entropy expressions for arbitrary lattices in
arbitrary approximations. Later it was recognized that the CVM
furnishes a standard procedure to derive factorizable partition
functions of lattice systems within the mean-field approach [11].
The central concept of the CVM is the “basic cluster”, which
corresponds to a geometric figure contained in the reference
lattice (not necessarily restricted to lattice points, see [19]) which
represents the range of correlation lengths explicitly considered in
the approximation. In the present work the irregular tetrahedron
(IT) cluster approximation for the bcc lattice has been employed
and is shown schematically in Fig. 1. The CVM formalism in the IT
cluster approximation has been thoroughly outlined in several
previous publications by the present group [20,21,9] and therefore
only the aspects which are relevant to the discussion of the results
will be reproduced here.

The internal energy (U) of a bcc lattice with N sites (containing
6N irregular tetrahedra) is written as [22]

U ¼ 6N ∑
i;j;k;l ¼ Fe;Al;M

εαβγδi;j;k;lρ
αβγδ
i;j;k;l: ð2Þ

In this expression, ραβγδijkl represents the probability of finding an
fαβγδg IT cluster with configuration fijklg (i.e., species i occupying
cluster position α, j in cluster position β and so on) out of the 6N
tetrahedra which correspond to the system and εαβγδijkl represents the
eigenenergy associated with this configuration. The stoichiometric
compounds at the ground state correspond to particular configura-
tions: a B2 FeNb stoichiometric compound with N lattice points,
for example, may be built by 6N tetrahedra with configuration
FeFeNbNb, while the B32 FeNb, D03 Fe3Nb and FeNb3 stoichiometric
compounds are similarly obtained using the FeNbFeNb, FeFeFeNb
and FeNbNbNb configurations. Eq. (2) may be now applied to these
Fig. 1. The irregular tetrahedron (IT) cluster in the bcc lattice.



2 Raoult's law states that in the limit of infinite dilution the solvent (that is, the
alloy) behaves as an ideal solution, regardless of the diluted species (in the present
case, the vacancies) [26]. In other words, the activities of the elements in the alloy
are only marginally affected by the presence of vacancies.
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particular cases and the compound formation energies are associated
with the corresponding cluster eigenenergies. In the case of the B2
FeNb compound, for example

εαβγδFe;Fe;Nb;Nb ¼
Δf UB2

FeNb

6N
ð3Þ

It must to be reminded that the eigenenergy matrix fεαβγδi;j;k;lg is
highly degenerate due to symmetry constraints imposed by the
crystal lattice. Both configurations FeNbFeNb and NbFeNbFe, for
example, represent a B32 FeNb stoichiometric compound, differing
only by a translation of the origin of the lattice by the vector
a0=2½1 1 1� (where a0 represents the lattice constant of the B32
structure). Since the energy of a compound cannot depend on the
choice of the origin, it follows that εαβγδFe;Nb;Fe;Nb ¼ εαβγδNb;Fe;Nb;Fe. The same
is true for the two remaining degenerate configurations FeNbNbFe
and NbFeFeNb.

The set fεαβγδijkl g, including the three reference values, εαβγδM;M;M;M ¼
εαβγδFe;Fe;Fe;Fe ¼ εαβγδAl;Al;Al;Al ¼ 0, contains all information needed for the
description of the system. It is a common practice in the literature,
however, to further decompose the configuration eigenenergies
into pair contributions (nearest and next-nearest neighbors),
completing the set with other cluster interactions (see e.g.,
[22,23]). This will not be done in the present work, since the
results are better appreciated using directly the compound for-
mation energies instead.

2.1. Cluster variation method (CVM) calculations

With the definition of the internal energy, Eq. (2), we may build
the free energy, F, of the system as

F ¼U�TS� ∑
i;j;k;l ¼ Fe;Al;M

μn

i þ μn

j þ μn

k þ μn

l

4
ραβγδi;j;k;l ð4Þ

In this expression, S stands for the configurational entropy of a bcc
lattice in the irregular tetrahedron cluster approximation, which is
found, e.g., in Ref. [24]. Variable μn

i represents the chemical potential
of component i in the “baricentric” reference state, defined by
condition

μn

i ¼ μi�
1
3

μFe þ μAl þ μM
� �

⇒ ∑
j ¼ Fe;Al;M

μn

j ¼ 0 ð5Þ

where μFe, μAl and μM are the chemical potentials of iron, aluminum
and M¼(Mo,Ti,Nb) in any reference state (e.g., the standard element
reference, SER [25]). Using the identity [26]

U�TS¼N ∑
i ¼ Fe;Al;M

μixi ð6Þ

and substituting it, with (5), into (4), we obtain

F ¼N
μFe þ μAl þ μM

3

� �
ð7Þ

Using Eq. (5) and solving for the chemical potential of component i,
we obtain

μi ¼ F þ μn

i ð8Þ
Eq. (4) is minimized using a specific algorithm called “natural

iteration method” (NIM) [27]. The NIM is a numerical self-consistent
iterative algorithm and, therefore, requires the setting of a conver-
gence criterion. In the present work the convergence condition to
reach a stable or metastable configuration was set to a difference
smaller than 10�4 kB units (≈10�3 J mol�1; kB is Boltzmann constant)
between two values of F obtained in subsequent iterations of the
NIM. For given values of T and fμn

Al; μ
n

Mg one may eventually obtain
different solutions for the minimum (either global or local) of F using
suitable choices of initial conditions. Whenever the algorithm con-
verges to different phases (say, λ and ξ), the equilibrium condition
will be given by

FλjT ;μn
Al
;μnM

¼ FξjT ;μn

Al
;μn

M
ð9Þ

A calculation of an isothermal section of a ternary phase
diagram corresponds to mapping all possible solutions of Eq. (9)
as functions of μn

Al and μn

M , for all pairs of stable configurations, λ
and ξ, at a given temperature T. As it was already discussed by
some of us in a previous publication [21], although the topology of
the calculated phase diagrams is expected to be well reproduced,
the approach used in this work is known to lead to significant
overestimation of the temperature scale in many intermetallic
systems (see e.g., Ref. [28]) and, as a consequence, the transition
temperatures and phase boundary compositions may differ sig-
nificantly from the experimental data. The disagreement can be
attributed either to the fact that we ignore relevant thermody-
namic degrees of freedom [29] and the different approximations
involved in our calculations (for example, contributions to the free
energy originated from magnetic and vibrational entropy were not
taken into account), or to a lack of convergence of the cluster
expansion [30]. These approximations are necessary due to the
complexity of the system under study. It is also well-known that
DFT may present problems in the description of Fe–Al alloys
[21,31,32]. However, the main features and the qualitative trends
of the metastable phase diagrams are reproduced correctly,
providing useful insights and important physical information on
iron aluminides.

2.2. Impact of thermodynamics on the aluminide physical properties

Thermodynamics, although referring to equilibrium states, has
an impact also over the physical properties (which usually are
defined only in non-equilibrium situations) of the corresponding
aluminides. Below we address two important non-equilibrium
processes:
1.
 Ternary diffusion.

2.
 Antiphase boundary (APB) energies, leading to superdislocation

geometry.

As stated in Ref. [33], the impact of thermodynamics in diffusion in
ternary ordering systems is well represented by a simple substitu-
tional atom exchange diffusion model. Although it is well known
that diffusion in metallic alloys (including superlattices) is vacancy-
mediated, this simple model allows a better appreciation of the
effects of second-order boundaries and stoichiometric lines without
the complexity of introducing vacancies in the thermodynamic
model. This model is representative, however, since the vacancy
concentration in alloys is usually very small, always close to the
limit of infinite dilution, so Raoult's law holds.2

According to the simple exchange model, in the linear regimen
of irreversible thermodynamics [34] the atom fluxes of the three
components, j

!
i, are coupled due to the mass balance condition,

leading to the generalized phenomenological law

j
!

i ¼�∑
k
Mi;k∇

!ðμk�μFeÞ ði; k¼ Al;MÞ ð10Þ

where Mi;j represent the species' mobilities and μj represent the j
species’ chemical potential. Functions ϕ¼ ðμAl�μFeÞ and ρ¼
ðμM�μFeÞ act, therefore, as generalized thermodynamic forces
for diffusion. In binary diffusion it is usual to express this as a



Table 1
Results of the electronic structure calculations for the compounds of systems
Fe–Al–M (M¼Ti,Nb) performed using the FP-LAPW method (Wien2k code). Lattice
parameters (a0) are expressed in nanometers. Formation energies are given in
kJ mol�1.

Compound Structure a0 Δf UΦ

Fe A2 0.286 0.0
Ti A2 0.326 0.0
Nb A2 0.332 0.0
Mo A2 0.318 0.0
Al A2 0.324 0.0

FeNb B2 0.308 �0.788
Fe3Nb D03 0.593 �3.774
FeNb B32 0.615 +6.892
FeNb3 D03 0.638 +2.691

TiAl B2 0.319 �36.888
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multiplicative factor which is added to the conventional Fick's
law.3 This multiplicative factor is called the “thermodynamic factor
for diffusion”. As one of the present authors showed, this factor
present discontinuities across second-order boundaries and max-
ima associated to stoichiometric compositions of superlattices
[36]. In principle, in the case of ternary diffusion, a similar
transformation could be performed but, instead, here we use
directly the functions ϕ and ρ, as suggested in Ref. [33].

The second case discussed here refers to the calculation of
antiphase boundary (APB) energies. APBs are planar defects
intrinsic of superlattices and are characterized by a discontinuity
in the distribution of species among the crystal sublattices. APBs
are the superlattice equivalents of magnetic domain walls in
antiferromagnetic crystals. In iron aluminides, APBs are potentially
formed by two processes.

In the first process, APBs may be formed in the course of the
transition from the disordered to the ordered structure, i.e., when-
ever a second-order boundary is crossed during cooling. By this
process different parts of the disordered crystal start ordering by a
local symmetry break wave which forms a partition of the original
lattice into sublattices, with different site occupancies. Two different
and uncorrelated regions, hence, start growing by propagation of this
perturbation and when they impinge in each other, this preferential
occupation may not agree in both sides of the interface. The formed
defect (the interface) is an APB. By its own nature, this defect forms
in conditions where short-range diffusion is fast, hence, it forms
under local equilibrium. This kind of defect is referred to as a
“thermal” APB. Its free energy may be calculated using the CVM in
two different methods: the “sum” method (S-CVM) [37] and the
“scalar product” method (SP-CVM) [38,39].

APBs, however, may also be formed as a consequence of
dislocation slip. A dislocation produces a displacement of one part
of a crystal relative to the other across the slip plane, hence, it
may disturb the superlattice order producing an APB. Contrary to
thermal APBs, however, these defects may be formed under
conditions in which short-range diffusion is suppressed or delayed
(for example, by cold working). This kind of defect is referred to as
a “mechanical” APBs and they are modeled by setting boundary
conditions corresponding to the equilibrium correlations observed
in the perfect crystal in thermodynamic equilibrium, except across
the defect plane. The standard method to calculate the energy of
such defects is to count the correlations which are broken by the
passage of the dislocation, subtracting them from the bonds which
are reformed by the process [40]. This method is referred as the
bond-counting (BC) method and has been applied by one of
the present authors to the irregular tetrahedron approximation
of the CVM in bcc lattices [41,42]. This formalismwill be employed
in the present work.
Ti3Al D03 0.647 �26.583
TiAl B32 0.641 �20.577
TiAl3 D03 0.640 �7.417

NbAl B2 0.324 �10.896
Nb3Al D03 0.658 �10.502
NbAl B32 0.647 �15.097
NbAl3 D03 0.642 +4.627

Fe2AlTi L21 0.579 �48.079
Fe2AlTi F43m 0.585 �25.535

Al2TiFe L21 0.601 �27.534
Al2TiFe F43m 0.598 �43.157
Ti2FeAl L21 0.614 �33.869
Ti2FeAl F43m 0.608 �30.456

Fe2AlNb L21 0.592 �36.462
Fe2AlNb F43m 0.609 �10.502

Al2NbFe L21 0.620 �12.307
3. Results and discussion

3.1. Electronic structure calculations

The rather extensive list of compounds needed for a complete
assessment of three ternary systems in the irregular tetrahedron
approximation can be reduced by observing that many of the
corresponding subsystems have already been investigated by the
present authors in previously published works, namely, the Mo–Al
[9,20], the Fe–Al [21] the Fe–Ti [43], and the Fe–Mo and Fe–Al–Mo
[9,15] systems. These results will not be reproduced here and the
reader is referred to the original works for details on the results
3 Which expresses the diffusion fluxes as a function of concentration gradients
instead of the gradient of the chemical potentials [35].
of the electronic structure calculations for these systems. The
remaining systems will be described in what follows. Table 1
shows the results of the electronic structure calculations for the
compounds of the investigated systems.

Direct interpretation of Table 1 is not trivial. A conclusion about
stability of compounds in the ground state of the respective systems
depends on the determination of the so-called “convex hull”. For
example, the B2 phase in system Fe–Nb, in spite of showing a
negative formation enthalpy, will not be stable in the ground state
since its formation energy is less negative than the one correspond-
ing to a heterogeneous state formed by the D03-Fe3Nb and the A2-Nb
phases at xNb ¼ 0:5. Analysis of the stability on ternary compounds is
even more complex, since the convex hull corresponds to a set of
planes, but both systems show larger stabilities for the L21-Fe2AlM
and F43m�Al2FeM compounds, while compounds close to the
stoichiometry M2AlFe in either structures have mixed tendencies,
but with smaller formation energies. This same behavior is observed
in system Fe–Al–Mo [9], pointing out to a trend in the ternary
transition metal iron aluminides.

The present results agree well with independent results obtained
by Alonso et al. [44]. Small differences in the compound formation
energies may be attributed either to the use of different electronic
structure calculation methods or to the inclusion of relativistic
corrections. Qualitatively, however, the compound stability sequence
observed by Alonso et al. [44] for systems Fe–Al–Ti and Fe–Al–Nb
agrees with the present results.

Comparison with experimental values is only possible for the
L21-Fe2AlTi compound. Palm et al. [6] report a room temperature
lattice parameter value for a D03 phase containing 25 at% Ti (i.e.,
the L21 compound) previously annealed at 1000 1C (1273 K) and
Al2NbFe F43m 0.617 �22.711
Nb2FeAl L21 0.632 �3.873
Nb2FeAl F43m 0.632 �1.838
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quenched in water thereafter. The reported value corresponds to
a0¼0.5878 nm. This result is in agreement with a more recent
value by Yan et al. [45] for the stoichimetric compound after
annealing at 900 1C (1173 K) followed by water quenching, which
corresponds to a0¼0.58813 nm. Both values are consistent with
the present calculation. The small difference may be attributed
either to lattice expansion from the ground state to room tem-
perature or to minor uncertainties intrinsic to the electronic
structure calculations in the framework of the Kohn–Sham scheme
of the DFT.

3.2. Phase equilibria

3.2.1. Binary systems
Fig. 2 shows the calculated phase diagrams for the binary

systems with iron. A central point of the present work relies on the
different topologies of the Fe–M (M¼Mo,Nb,Ti) phase diagrams. In
particular the Fe–Ti and Fe–Mo systems show radically different
topologies. In the first case the system is dominated by a central
field of stability of the B2 phase. This phase is observed as a
stable phase in the experimental Fe–Ti phase diagram [46,47]. The
formation energy of the B2-FeTi phase amounts �48 kJ mol�1

[43], which is substantially larger than the formation energy of the
B2-FeAl phase (�36 kJ mol�1) [48]. The Fe–Mo system, on the
contrary, shows a miscibility gap, so no ordered bcc compound,
based on the irregular tetrahedron approximation, is even pre-
dicted to be metastable in this system. The experimental Fe–Mo
phase diagram presents, however, other stable phases with more
complex structures (for example, the μ�Fe7Mo6, phase). A ther-
modynamic assessment of the system shows that the mixing
enthalpy of Fe and Mo in the bcc phase is positive [49], showing
that a metastable miscibility gap in the bcc phase is indeed
expected for this system, although it cannot be experimentally
observed. A simple thermodynamic calculation using this model,
but suppressing all intermetallic phases result in a miscibility gap
which is qualitatively in agreement with the one shown in Fig. 2b.
The Fe–Nb system corresponds to an intermediate case between
both limits. This system shows both a miscibility gap (at the
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Fig. 2. Binary metastable bcc phase diagrams of the iron-containing sy
Nb-rich side) and metastable ordered compounds (at the Fe-rich
side). In the Fe–Nb system, demixing and ordering occur at
considerably lower temperatures than in the other Fe containing
systems.

Fig. 3 shows the metastable phase diagram of the aluminum-
containing binary systems. As in the previous cases, all three
systems present different topologies. In the present cases, how-
ever, the differences are less significant. For example, all three
systems present an ordered compound at the AlM stoichiometry: a
B2 phase in the case of Al–Ti and a B32 compounds in Nb–Al and
Mo–Al. In addition, the Al–Ti and Al–Nb systems show stable D03
phases at the transition metal-rich side, while Mo–Al shows a
heterogeneous state composed by A2-Fe and B32-AlMo in the
same region. Similar to Fe–Nb, the temperature scale of the Al–Nb
phase diagram is considerably lower than the others. Concerning
the experimental phase diagrams, the observed ζ2 phase in the
Al–Mo phase diagram [50], close to the equiatomic composition,
could actually correspond to a B32 structure, as we have discussed
in a previous publication [20]. The Al–Ti system shows a small
region of stability of the B2-AlTi phase in the region 0:3≲xAl≲0:44
and 1473 K≲T≲1623 K [51,52]. This result is consistent with the
present calculations if the already mentioned overestimation of
the temperature scale is taken into account. The case of system
Al–Nb is more complex, since the bcc phase is stable only in a
small region close to the Nb corner (up to xAl≈0:15), so no ordered
compound is expected to be experimentally observed. The most
recent thermodynamic assessment of this system [53], however,
suggests that interaction between Al and Nb in the bcc phase is
small, but negative, at the Nb-rich side, so this assessment predicts
ordering tendency in the bcc solid solution, but with low transi-
tion temperatures, which is consistent with our calculations.

3.2.2. Ternary systems
Fig. 4 shows three isothermal sections of the Fe–Al–Mo phase

diagram, depicting the interaction of the miscibility gap which
originated from the binary Mo–Fe phase diagram with the two
phase fields involving the B2 and A2 phases. As explained in Ref. [9],
this interaction limits the maximum Mo solubility in the B2 phase at
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low temperatures, justifying the sharp decrease in solubility experi-
mentally observed [8,54].

Fig. 5 shows three isothermal sections of the metastable bcc
Fe–Al–Ti system. In contrast with the Fe–Al–Mo system, this case
shows a large field of homogeneous states corresponding to the
disordered solid solution and to its ordered states stable up to very
high titanium contents. This large field occupies the entire iron-rich
corner and heterogeneous states are limited to a quite small two-
phase field involving the L21 phase and the B2 phase. This topology is
observed in the experimental phase diagram [7] and results in very
large titanium solubilities in the L21 phase when in equilibrium with
the Laves (Fe,Al)2Ti compound. The topology in the titanium-rich
corner in the 2000 K isotherm (Fig. 5a) shows that the A2-Ti+
B2-TiFe equilibria is, in fact, originated from a B2–B2′ miscibility
gap in concentrated ternary alloys and not from a multicritical
point in the A2-Ti/B2-TiAl second-order line, as predicted by the
phenomenological CVM calculation (which was fitted to phase equi-
libria data in the iron-rich corner) shown by Ohnuma et al. [7]. This
miscibility gap, however, is experimentally observed in the 1273 K
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isotherm in the Ti–Al–Fe system [51]. This can be better seen
using the additional isotherm at 1750 K shown in Fig. 6, which is
limited to the Ti-rich corner to allow for direct comparison with
Kainuma et al. [51] results. We notice that the comparison between
isotherms at different temperatures was performed due to the fact
that we expect to have an overestimated temperature scale. Similar
miscibility gaps form in ternary B2 fields whenever the strong B2
phases are found in the three limiting binary systems, a feature
which has been attributed (by two of the present authors) to
frustrated states in the B2 structure [55].

Another relevant feature observed in the present calculations is
the existence of a F43m phase close to the Al2FeTi stoichiometry
(see Fig. 5). A stable phase at this stoichiometry, labeled T2, is
indeed observed experimentally in the Fe–Al–Ti system [56]. This
stable phase is found in equilibrium with the L21 and B2 super-
lattices and has cubic symmetry, but with a more complex crystal
structure, which is labeled “G-phase” [57]. Although it is intriguing
to find a complex ordered superlattice in the same region, the
investigation of a close relationship between the crystal structure
of the T2 phase and the F43m superlattice is out of the scope of
the present work.

Finally, Fig. 7 shows three isothermal sections of the metastable
bcc Fe–Al–Nb system. As predicted, the phase diagram topology is
intermediate between both previous cases. The A2 and B2 phases have
a limited solubility of a third element, not extending far into the
ternary. This is mainly due to the equilibrium with a quite stable L21
compound. The two phase fields (A2+L21 and B2+L21), therefore, are
an expanded version of the one observed in Fe–Al–Ti (Fig. 5). Although
the Nb solubility in the B2 phase close to the Fe–Al binary system is as
low as observed in the case of system Fe–Al–Mo (Fig. 4), the nature of
the heterogeneous equilibrium which limits this solubility is totally
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different. In the case of Nb, the second phase in (metastable)
equilibrium is also an aluminide and not a complex intermetallic, as
the A15-Mo3Al phase. It is interesting to observe that a metastable
heterogeneous equilibrium between the L21 and the B2 phase has
been experimentally observed in the Fe–Al–Nb system [10]. These
authors observed needle-like transition precipitates of the Heusler
phase in quenched and aged-hardened samples of alloys with 15–20
at% Al and 2–5 at% Nb. The needle-like morphology was attributed to a
large difference in specific volume for both alloys, which points-out to
a large difference in composition between both phases (close to the
multicritical point, where the first-order equilibrium turns into a
second-order transition, the difference in specific volume between
the phases must vanish since the later transition is, by definition,
continuous).
3.3. Isopotential lines

Fig. 8 shows a detail of the Fe–Al–Mo system in the stability
region of the D03-Fe3Al compound, in order to be able to do so, a
smaller temperature (600 K) was selected. Superimposed to this
section, the isopotential lines of ϕ and ρ (defined in Section 2.2)
are plotted. Since only the differences Δϕ and Δρ are physically
relevant, no attempt was made to identify the values correspond-
ing to each isopotential line. Instead, the lines are spaced such that
this difference amounts 2.5 kJ mol�1 between two neighboring
lines.

The first apparent feature in this figure is that the behavior of
the isopotential lines (and hence, of the thermodynamic potential
for diffusion in the ternary alloy) is markedly non-linear. Further,
the slope of the lines is discontinuous at the D03/B2 second-order
boundary. Similar discontinuities have been observed in a phe-
nomenological calculation of system bcc Fe–Cr–Al [33], suggesting
it should be a general feature of second-order boundaries.

The solution of a diffusion problem in a ternary system, of
course, depends on many factors, including the set of boundary
conditions and the composition dependence of the mobilities. The
thermodynamic effect clearly shows, however, that straight diffu-
sion paths are unlikely to be observed in systems which present
configurational order. In particular, if the diffusion path crosses a
composition corresponding to a second-order boundary, it will
show a discontinuity in its slope. This kind of slope discontinuities
in diffusion paths has been experimentally reported (e.g., [58,59]),
and metallographically associated with the position of the bound-
ary between the ordered and the disordered phases at the
equilibration temperature (i.e., the second-order boundary).

Fig. 9 shows the region of stability of the ordered aluminides in
system Fe–Al–Ti at the 1000 K isotherm, including the isopotential
lines (which are spaced by a 5 kJ mol�1 difference). Due to the
larger composition range in this figure, compared to the previous
case, the behavior of the isopotential lines is also richer. In
particular, a concentration of isopotential lines is observed along
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the section which joins the B2-FeAl and B2-FeTi compounds. This
is the ternary equivalent of the maximum in the thermodynamic
factor for diffusion observed at stoichiometric compositions in
binary systems [36]. As in the case of Fe–Al–Mo, the behavior of
the isopotential lines in the Fe–Al–Ti system is markedly non-
linear and presents slope discontinuities in the second-order
boundaries. It is interesting to notice that the isopotential lines
can provide ‘hints’ about equilibria observed at lower tempera-
tures. For example, the isopotential lines of the μTi�μFe function
seem to diverge when approaching the binary Fe–Ti side, close to
xTi ¼ 0:25. This is an indication of the onset of the two-phase
B2+A2 equilibria below ≈450 K (see Fig. 2d).

In order to complete the set, Fig. 10 shows a detail of the 1100 K
isotherm in the Fe–Al–Nb system, in the region of stability of the L21
compound. The main features observed in the Fe–Al–Ti system are
also observed in this section, but the strong concentration of
isopotential lines at the Fe(Nby;Al1�y) section is limited by the two-
phase L21+A2 field, which coincides with the ideal stoichiometry of
the L21 superlattice (xAl ¼ 0:25 and xNb ¼ 0:25). However, contrary to
Fe–Al–Ti, the isopotential lines seem to irradiate from this point,
showing that the thermodynamic properties of the Heusler phase is
fundamentally different in both systems.
3.4. APB energies

Plastic deformation by slip in superlattices takes place by
propagation of the so-called “superdislocations”, which corre-
spond to ordinary dislocations decomposed into two, three or
even four partial dislocations, bound by planar defects like stack-
ing faults (SF), anti-phase boundaries (APBs) or combinations of
both [60]. In the case of the bcc-based superlattices, superdisloca-
tions are composed of four-fold (for D03 and L21) or two-fold (for
B2) aggregates of a0=2〈1 1 1〉 partials slipping in f0 1 1g planes.
These dislocations are mostly observed in near-screw orientations
and each partial is bound to the group by APBs (in the case of D03
and L21, of two kinds) [42,61,62].

In the course of plastic deformation one of the components of
the superdislocation may become immobilized, while the remain-
ing ones continue to slip. This results in the growing of a ribbon of
the corresponding plane defect (i.e., an APB), which contributes to
the stored plastic deformation energy. The superdislocation may
also interact with other APBs lying in intersecting planes becoming
blocked or extending the area of the plane defect (see e.g., [62,63]).
These processes dissipate energy even if the formed APB is
destroyed by diffusion afterwards, since it is thermodynamically
irreversible. Therefore the formation of these defects probably
affect strain hardening as well (increasing the strain hardening
exponent).

The symmetry and composition of the superlattice may, thus,
have a strong impact in the morphology of the superdislocation
and hence, on plastic deformation by slip. One of the present
authors previously investigated the composition dependence of
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the energy of mechanical APBs formed by the slip of multiple
a0=2〈1 1 1〉 dislocations slipping in f0 1 1g planes in Fe–Al alloys
[42]. The results showed that large variations in the energy (of one
order of magnitude) are expected to be observed in relatively
small composition ranges, already in binary alloys.

Fig. 11 shows the composition dependence of mechanical APB
energies in two partial isothermal sections of systems Fe–Al–Ti
at T¼500 K (Fig. 11a) and Fe–Al–Nb at T¼1100 K (Fig. 11b). The
temperatures were chosen such that the aluminide fields covers
approximately the same composition range in both diagrams. The
first obvious differences refers to the values of the energies in both
systems. Both defects in Fe–Al–Nb are considerably more energetic
in comparison with Fe–Al–Ti, as can be observed comparing the
values, in spite of the lower temperature in the second calculation,
which should result in larger order parameters. The form of the
composition dependence, however, is also different in both sys-
tems. The APB energies grow smoothly towards the stoichiometric
compositions in Fe–Al–Ti, while in Fe–Al–Nb both energies pre-
sent a sharper maximum near the Fe2AlNb composition. This
shows not only that the conclusions of Ref. [42] referring to the
binary aluminides are corroborated in the case of the ternary
alloys (that is, the APB energies vary largely in relatively small
composition ranges), but also that the behavior observed in diffe-
rent systems is peculiar of each system.

vThe present results (Fig. 11) show that the expected composi-
tion dependence of plastic deformation modes is also complex in
ternary aluminides and that predicting this behavior in true
multicomponent alloys is only viable within a proper multicom-
ponent thermodynamic model, capable of dealing with the fine
details of the crystal lattice symmetry.
4. Conclusions

In the present work, the metastable ordering equilibria in three
ternary systems which are important for the development of iron
aluminides are described. The different observed equilibria are experi-
mentally observed (in systems Fe–Al–Ti and Fe–Al–Nb) or resemble
features of experimental equilibria involving an iron aluminide matrix
and more complex intermetallics (in the Fe–Al–Mo, the B2 phase
is found in equilibrium with the A15 Mo3Al phase [8,54]). These
equilibria, in the iron-rich corner, are fundamentally defined by the
equilibria in the binary Fe–M systems, which, with the sole exception
of the existence of the B2 phase in the Fe–Ti system are all metastable.

This points out to very complex multiphase relations in the
technical iron aluminides. As an example, the presence of a strong
B2-FeTi phase could counteract the phase separation tendency in the
Fe–Mo system, potentially increasing the Mo solubility in a quaternary
system. The investigation of the metastable bcc ordering equilibria,
therefore, assumes a crucial importance in aluminide alloy project.

The results shown here, however, are not only relevant to under-
stand the phase relationships in ternary aluminides. The composition
dependence of the thermodynamic force for diffusion and APB
energies show complex non-linear dependencies, which are marked
by discontinuities in second-order lines and sharp maxima in stoichio-
metric points or sections. This shows that the aluminide physical
properties are also expected to be strongly affected by the different
metastable equilibria, which require a proper thermodynamics mod-
eling, unlikely to be reproduced by simpler solution models as the
ones presently adopted in the CALPHAD method.
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