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Abstract. If H is a Hilbert space, S is a closed subspace of H, and A is a
positive bounded linear operator on H, the spectral shorted operator ρ(S ,A)

is defined as the infimum of the sequence Σ(S ,An)1/n, where Σ(S , B) denotes
the shorted operator of B to S . We characterize the left spectral resolution of
ρ(S ,A) and show several properties of this operator, particularly in the case
that dimS = 1. We use these results to generalize the concept of Kolmogorov
complexity for the infinite dimensional case and for non invertible operators.
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1. Introduction

Let H be a separable Hilbert space and L(H) the algebra of bounded operators
on H. Given a positive (i.e. semidefinite non negative) operator A ∈ L(H) and a
closed subspace S of H, the shorted operator Σ (S, A) was defined by Krein [8]
and Anderson-Trapp [2] by

Σ(S, A) = max{X ∈ L(H)+ : X ≤ A and R(X) ⊆ S},
where the maximum is taken for the natural order relation in L(H)+, the set of
positive operators in L(H) (see [8], [16], [15], [1], [2], [14] [9]).

In a previous paper [3], the authors have defined, under the assumption that
dimH < ∞, the spectral shorted matrix :

ρ (S, A) = lim
m→∞

Σ (S, Am)1/m = inf
m→∞

Σ (S, Am)1/m
. (1.1)
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This paper, which is a continuation of [3], is devoted to study the natural gener-
alization of ρ to the infinite dimensional setting. If dimH = ∞, A ∈ L(H)+ and
the subspace S is closed, the operator ρ (S, A) is also defined by equation (1.1).
We call this operator the spectral shorted operator associated to S and A.

Many properties of the spectral shorted matrices proved in [3] also hold for
spectral shorted operators, but some of them must be formulated in terms of the
spectral measure of A instead of eigenvalues and eigenspaces, as in [3].

As in the matrix case, the properties of ρ are strongly related with the so
called spectral order of positive operators. Recall the definition of the spectral
order � in L(H)+: given A, B ∈ L(H)+, we write A� B if Am ≤ Bm for all
m ≥ 1. The spectral order was extensively studied by M. P. Olson in [11], where
the following characterization is proved: given A, B ∈ L(H)+, then A�B if and
only if f(A) ≤ f(B) for every non-decreasing map f : [0, +∞) → R.

Section 2 contains preliminaries and a brief account of the main properties
of the shorting operation, spectral order and spectral resolutions. In section 3 we
collect those properties of ρ which can be generalized to the infinite dimensional
setting in a, more or less, direct way. The most subtle tool is the use of continuity
of the map t �→ tr (for 0 ≤ r ≤ 1) with respect to the strong operator topology on
L(H)+. It is used, for instance, for proving that for every t > 0,

ρ
(
S, At

)
= ρ (S, A)t

. (1.2)

This relevant property, which is not shared by the usual shorting operation, is one
of main reasons to study ρ (S, A).

The spectral order provides the following link with Krein and Anderson-
Trapp definition of the shorted operator: ρ (S, A) is the biggest (in both orders ≤
and �) element D of L(H)+ such that D �A and R(D) ⊆ S (see Theorem 3.5).
This shows the monoticity of ρ (S, ·) with respect to the preorder � and allows
us to get some results about limits of spectral shorted operators. In this section,
we also get a complete characterization of ρ (S, A) in terms of the (left) spectral
resolution of A: for every 0 < λ ∈ R,

ℵ[λ,∞)(ρ (S, A)) = ℵ[λ,∞)(A) ∧ PS .

This results allows us to get simple proofs in our context of several properties of
spectral shorted matrices. For example, given A ∈ L(H)+ and two closed subspaces
S and T of H,

1. ρ (S ∩ T , A) = ρ (T , ρ (S, A)) .
2. σ (ρ (S, A)) ⊆ σ (A).
3. f(ρ (S, A)) = ρ (S, f(A)), for every non-decreasing right continuous positive

function f defined on [0, +∞).
4. λmin(A)PS ≤ ρ (S, A), where λmin(C) = min σ (C), for C ∈ L(H)+.
5. If ρ (S, A) is considered as acting in S, then

λmin(ρ (S, A)) = min{µ ∈ σ (A) : PS ℵ[µ,µ+ε)(A) �= 0 ∀ ε > 0}.
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The case dimS = 1 is extensively studied in section 5. If S is the subspace gener-
alted by the unit vector ξ, we denote by ρ (A, ξ) the unique positive number such
that ρ (S, A) = ρ (A, ξ) PS . The following list contains the main results of this
section:

1. If A ∈ L(H)+ and ξ ∈ H is an unit vector, then

ρ (A, ξ) = min σ (ρ (S, A)) = min
{

µ ∈ σ (A) : ℵ[µ,µ+ε)(A)ξ �= 0 ∀ ε > 0
}
.

2. ρ (A, ξ) = max{λ ∈ σ (A) : ξ ∈ R(ℵ[λ,∞)(A))}.
3. If A is invertible, then ρ (A, ξ) = lim

m→∞
‖A−mξ‖−1/m = inf

m∈N
‖A−mξ‖−1/m.

4. If R(A) is closed and ξ ∈ R(A), then, ρ (A, ξ) = limm→∞ ‖(A†)mξ‖−1/m,
where A† is the Moore-Penrose pseudo-inverse of A. If ξ /∈ R(A), then
ρ (A, ξ) = 0.

5. If σsh (A) =
{
ρ (A, ξ) : ‖ξ‖ = 1

}
, then

σsh (A) = σ+ (A) ∪ σpt(A) =
{
λ ∈ σ (A) : ∀ ε > 0 , ℵ[λ,λ+ε)(A) �= 0},

where σpt(A) denotes the point spectrum of A, i.e the set of eigenvalues of A
and σ+ (A) is the set of points in σ (A) which are limit point of σ (A) \ {λ}
from the right. This shows that σsh (A) is dense in σ (A), but σsh (A) �= σ (A)
in general.

6. ρ (A, ξ) �= 0 if and only if ξ ∈ R0(A) :
⋃

λ>0 R(ℵ[λ,∞)(A)) ⊆ R(A).

In [5], J. I. Fujii and M. Fujii defined the Kolmogorov complexity

K (A, ξ) = lim
n→∞

log(〈Anξ, ξ〉)
n

= log lim
n→∞

〈Anξ, ξ〉1/n . (1.3)

for an invertible positive matrix A and a unit vector ξ and proved several properties
of K. In [3] it was proved that, if S is the subspace generated by ξ, then

K (A, ξ) = log ρ
(
A−1, ξ

)−1
.

For dimH∞ and A ∈ L(H)+ not necessarily invertible, we define a generalized
version of the Kolmogorov complexity as follows: given ξ ∈ H and A ∈ L(H)+, we
denote by

k (A, ξ) = lim
n→∞

〈Anξ, ξ〉1/n ,

so that, k (A, ξ) = expK (A, ξ) if K (A, ξ) is defined as in equation (1.3). Our
definition is without logarithms in order to avoid the value −∞.

If ξ ∈ H and A ∈ L(H)+, we prove:

1. If ‖ξ‖ = 1, then the sequence 〈Anξ, ξ〉1/n is increasing. So that, for every
ξ ∈ H, there exists lim

n→∞
〈Anξ, ξ〉1/n.

2. k (A, ξ) = k (A, aξ) for every 0 �= a ∈ C.
3. k (A, ξ) = k

(
A,ℵ[λ,∞)(A)ξ

)
for every λ > 0 such that ℵ[λ,∞)(A)ξ �= 0.

4. k (A, ξ) �= 0 (i.e. K (A, ξ) �= −∞) if and only if PR(A) ξ ∈ R0(A) \ {0}.
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5. If ξ �= 0, then k (A, ξ) ∈ σ (A). Moreover,
{
k (A, ξ) : ξ �= 0}

{
λ ∈ σ (A) : ℵ(λ+ε,λ](A) �= 0 , ∀ ε > 0 },

which is a dense subset of σ (A).
6.

k (A, ξ) = min
{
λ ∈ σ (A) : ξ ∈ R(ℵ(−∞,λ](A))

}

= max
{
µ ∈ σ (A) : ℵ(µ−ε,µ](A)ξ �= 0 ∀ ε > 0

}

= sup
{
µ ∈ σ (A) : ℵ[µ,∞)(A)ξ �= 0

}
.

7. If R(A) is closed, then
(a) If ξ ∈ R(A) then k (A, ξ) = ρ

(
A†, ξ

)−1.
(b) If ξ /∈ R(A), but Pξ �= 0, where P = PR(A), then

k (A, ξ) = ρ

(
A†,

P ξ

‖Pξ‖

)−1

.

2. Preliminaries

For an operator A ∈ L(H), we denote by R(A) the range of A, N(A) the null-space
of A, σ(A) the spectrum of A, A∗ the adjoint of A, ρ(A) the spectral radius of A,
and ‖A‖ the operator norm of A. L(H)sa is the space of selfadjoint operators in
L(H) and L(H)+ is the subset of L(H)sa of positive (i.e. semidefinite non-negative)
operators. If A ∈ L(H)sa, λmin(A) = min σ(A) = inf‖ξ‖=1〈Aξ, ξ〉.

Given a closed subspace S of H, PS is the orthogonal (i.e. selfadjoint) projec-
tion onto S. If P and Q are orthogonal projections, P ∧Q denotes the orthogonal
projection onto R(P ) ∩ R(Q). If B ∈ L(H) satisfies PSBPS = B, we sometimes
consider the compression of B to S (i.e. the restriction of B to S as a linear trans-
formation form S to S), and we say that we consider B as acting on S. Several
times this is done in order to consider σ(B) just in terms of the action of B on S.
For example, if B ≥ λPS for some λ > 0, then we can deduce that 0 /∈ σ(B), if we
consider B as acting on S.

We use in this note several standard results of spectral theory, functional
calculus and weak convergences of operators in L(H)sa. About these matters, we
refer the reader to the books of Pedersen [13] or Kadison and Ringrose [7]. If
A ∈ L(H)sa we denote by EA the spectral measure associated to A, defined by
EA(∆) = ℵ∆(A), for any Borel set ∆ ⊆ R. By SOT convergence or topology we
mean strong operator topology of L(H)sa. In the following subsections, we state
several known results which we shall need in the sequel and which we could not
find explicitly mentioned in the literature.
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Shorted operators

Definition 2.1 (Krein [8], Anderson and Trapp [1], [2]). Given A ∈ L(H)+ and a
closed subspace S of H, the shorted operator of A to S is defined by

Σ(S, A) = max{X ∈ L(H)+ : X ≤ A and R(X) ⊆ S},
where the maximum is taken for the natural order relation in L(H)+.

Among many results proved by M.G. Krein [8], Anderson and Trapp [2], and E.
L. Pekarev [14], we collect those which are relevant in this paper in the following
theorem.

Theorem 2.2. Let S and T be subspaces of H and let A, B ∈ L(H)+. Then:
1. If S ⊆ T , then, Σ (S, A) ≤ Σ (T , A).
2. Σ (S ∩ T , A) = Σ (S, Σ (T , A)).
3. If A ≤ B, then, Σ (S, A) ≤ Σ (S, B).
4. Let M = A−1/2(S). Then Σ (S, A) = A1/2PMA1/2.

There are also some results about the continuity of the shorting operation (see [2],
Corollary 3).

Proposition 2.3. Let An (n ∈ N) be a sequence of positive operators such that

An

SOT

↘
n→∞

A. Then, for every closed subspace S it holds Σ (S, An)
SOT

↘
n→∞

Σ (S, A) .

Proposition 2.4. Let Sn (n ∈ N) and S be closed subspaces such that PSn

SOT

↘
n→∞

PS .

Then, for every A ∈ L(H)+, it holds that Σ (Sn, A)
SOT

↘
n→∞

Σ (S, A) .

Proof. Since {Σ (Sn, A)} is a non-increasing sequence, it has a strong limit, say L.
As Σ (Sn, A) ≤ A for all n ∈ N, then L ≤ A. On the other hand, L ≤ Σ (Sn, A)
implies

R(L1/2) ⊆ R
(
Σ (Sn, A)1/2

)
⊆ Sn ∀ n ∈ N.

Therefore R(L) ⊂
⋂∞

n=1 Sn = S. Finally, if 0 ≤ X ≤ A and R(X) ⊂ S, then
R(X) ⊆ Sn, so that X ≤ Σ (Sn, A), for all n ∈ N. Therefore X ≤ L. �

Spectral order

The spectral order was considered by Olson (see [11]) with the purpose of reporting
an order relation with respect to which the real vector space of selfadjoint operators
form a conditionally complete lattice. Throughout this note we shall only use
the spectral order for positive operators, and this is the reason why we take the
following statement as definition of the spectral order.

Definition 2.5. Let A, B ∈ L(H)+. We write A� B if for every m ∈ N it holds that
Am ≤ Bm. The relation � defined on L(H)+ is a partial order called the spectral
order.
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Examples. Consider A, B ∈ L(H)+. Then
1. If AB = BA and A ≤ B, then, A�B.
2. If dimH = n < ∞, then A� B if and only if there is a positive integer k ≤ n

and an sequence of positive matrices {Di}0≤i≤k such that, D0 = A, Dk = B,
Di ≤ Di+1 and DiDi+1 = Di+1Di (i = 0, · · · , k − 1) (see [3]).

The next results was proved by Olson in [11].

Theorem 2.6. Let A, B ∈ L(H)+. The following statements are mutually equiva-
lent.
(1) A�B,
(2) ℵ[λ,∞)(A) ≤ ℵ[λ,∞)(B) (0 ≤ λ < ∞),
(3) f(A) ≤ f(B) for every non-decreasing continuous function f on [0,∞).

The following result about functions which are continuous relative to the SOT
topology of L(H)+ or L(H)sa is a key tool for the extension of the results about
spectral shorted operators from matrices to operators in Hilbert spaces. A proof
can be found, for example, in Pedersen’s book [12], proposition 2.3.2.

Lemma 2.7. Let f : R → R be a continuous function such that f(0) = 0 and
|f(t)| ≤ α|t| + β for some positive numbers α and β. Then, if {Aα}α∈Λ is a net
in L(H)sa such that Aα

SOT−−→ A ∈ L(H)sa, it holds that f(Aα) SOT−−→ f(A), i.e.
f : L(H)sa → L(H)sa is continuous for the SOT topology. In particular f(t) = tr

for 0 ≤ r ≤ 1 is SOT-continuous in L(H)+.

We shall use the next corollary of the lemma.

Proposition 2.8. Let {An} be a sequence in L(H)+ such that An+1 � An, n ∈ N and

An

SOT

↘
n→∞

A ∈ L(H)+. Then, for every k ∈ N, Ak
n

SOT

↘
n→∞

Ak. In particular, A� An,

n ∈ N.

Proof. Fix k ∈ N. Since the sequence {An} is non increasing with respect to the

spectral order, there exists B ∈ L(H)+ such that Ak
n

SOT

↘
n→∞

B. By Lemma 2.7,

applied to the map f(t) = t1/k, we can deduce that An

SOT

↘
n→∞

B1/k = A. So that,

B = Ak. �

Spectral resolutions

Given f : R → L(H), we say that f is a right (resp. left) spectral resolution if
1. There exist m, M ∈ R such that f(λ) = 0 for λ < m and f(λ) = I for λ > M

(resp. f(λ) = I for λ < m and f(λ) = 0 for λ > M).
2. f(λ) is a selfadjoint projection, for every λ ∈ R.
3. If λ ≤ µ then f(λ) ≤ f(µ) (resp. f(λ) ≥ f(µ)) as operators.
4. f is continuous on the right (resp. f is continuous on the left).
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Under these hypothesis, by standard results of spectral theory, there exists a unique
A ∈ L(H)sa such that f is its spectral resolution, i.e.

f(λ) = EA( (−∞, λ]) = ℵ(−∞,λ] (A) (2.1)

(resp. f(λ) = EA( [λ,∞) ) = ℵ[λ,∞)(A)). Conversely, if A ∈ L(H)sa, then the map
f defined by equation (2.1) is a right (resp. left) spectral resolution (see [7],[13]).

The relation between right and left spectral resolutions is given by the fol-
lowing identity: if A ∈ L(H)sa, then EA( [−λ,∞) ) = E−A( (−∞, λ]). On the
other hand, if f is a left spectral resolution, then g(λ) = f(−λ) is a right spectral
resolution. Then, if A is the operator associated to g, then −A is the operator
associated to f .

3. The spectral shorted operator

In this section we define the spectral shorted operator in the infinite dimensional
setting, and we prove its basic properties. All results and proofs of this section
are very similar as those which appear in [3] for the finite dimensional case; the
main difference is that here we must use SOT-convergence instead of convergence
in norm. Thus, in the proof of Proposition 3.4, we need to apply Lemma 2.7 about
SOT-continuity of the map A �→ Ar for 0 ≤ r ≤ 1. Also Proposition 3.7 is a
properly infinite dimensional result.

Throughout this section A ∈ L(H)+ and S is a closed subspace of H.

Proposition 3.1. The map t �→ Σ(S, At)1/t, t ∈ [1,∞) is non-increasing.

Proof. Fix t ≥ 1. Then Σ(S, At) ≤ At. Since 0 ≤ 1/t ≤ 1, by Löwner theorem we
can deduce that Σ(S, At)1/t ≤ A. On the other hand R(Σ(S, At)1/t) ⊆ S. So, by
the definition of shorted operator, Σ(S, At)1/t ≤ Σ(S, A). Now, given 1 ≤ r ≤ s,
take t = s/r ≥ 1. By the previous remarks, applied to Ar and t, we have that

Σ (S, Ar) ≥ Σ
(
S, Art

)1/t = Σ (S, As)r/s .

Since 1/r ≤ 1, again by Löwner theorem we get Σ (S, Ar)1/r ≥ Σ (S, As)1/s. �
Definition 3.2. If A ∈ L(H)+ and S is a closed subspace of H, the spectral shorted
operator of A to S is defined by

ρ(S, A) = inf
t≥1

Σ(S, At)1/t = lim
t→+∞

Σ(S, At)1/t,

where the limit is taken in the strong operator topology (SOT).

Remark 3.3. Let A ∈ L(H)+ and let S and T be closed subspaces.
1. If A = PT , then ρ(S, A) = Σ(S, At)1/t = PS∩T , for every t ∈ [1,∞).
2. If AP = PA, then ρ(S, A) = Σ(S, At)1/t = PA, for every t ∈ [1,∞).
3. ρ (S, cA) = c ρ (S, A) for every c ∈ [0, +∞).
4. If S ⊆ T , then, ρ (S, A) ≤ ρ (T , A), since Σ (S, At)1/t ≤ Σ (T , At)1/t for

every t ≥ 1.
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The next result shows one of the main advantages of ρ (S, A) over Σ (S, A).

Proposition 3.4. For every t ∈ (0,∞) it holds that

ρ (S, A)t = ρ
(
S, At

)

In particular, for every t ∈ (0,∞)

ρ (S, A)t ≤ At

Proof. Firstly, we prove the statement for t ≥ 1. By Lemma 2.7, the map x → xr

is continuous in the strong operator topology when 0 ≤ r ≤ 1. So, given t ∈ (1,∞),
since st → ∞ as s → ∞, we have that

ρ
(
S, At

)1/t =
(

lim
s→∞

Σ
(
S, (At)s

)1/s
)1/t

= lim
s→∞

Σ
(
S, Ast

)1/st = ρ (S, A) ,

where the limits are taken in the strong operator topology. This proves, for t ≥ 1,
that

ρ
(
S, At

)
= ρ (S, A)t . (3.1)

Now, if t ∈ (0, 1),

ρ
(
S, At

)
=

(
ρ

(
S, At

)1/t
)t

ρ
(
S, (At)1/t

)t

= ρ (S, A)t
,

where in the second equality, we have used equation (3.1) for
1
t
≥ 1. �

Recall that given two positive operators A and B we say that

A�B if An ≤ Bn ∀n ≥ 1

With respect to this order, the spectral shorted operator has a characterization
similar to Krein-Anderson-Trapp’s definition of shorted operator.

Theorem 3.5. If

Mρ(S, A) = {D ∈ L(H)+ : D � A, R(D) ⊆ S},
then ρ (S, A) = maxMρ(S, A), where the “maximum” is taken for any of the
orders ≤ and �.

Proof. Firstly, note that ρ (S, A) ∈ Mρ(S, A). In fact, ρ (S, A)m ≤ Am for every
m ∈ N by Proposition 3.4, and R(ρ (S, A)) ⊆ S by definition.

Suppose that D ∈ Mρ(S, A). Fix m ∈ N. As Dm ≤ Am, it holds that
Σ (S, Dm)1/m ≤ Σ (S, Am)1/m

. Since Σ (S, Dm)1/m = D, taking m → ∞ we have
D ≤ ρ (S, A) . This shows that ρ (S, A) = maxMρ(S, A) for the usual order.

Note also that, if D ∈ Mρ(S, A), then for every k ∈ N, Dk � Ak and Dk ∈
Mρ(S, Ak). By the previous case, applied to Ak, one gets

Dk ≤ ρ
(
S, Ak

)
= ρ (S, A)k

, k ∈ N.

Hence D � ρ (S, A). �
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Corollary 3.6. Let A and B be positive operators such that A�B and S and T be
closed subspaces such that S ⊆ T . Then ρ (S, A)� ρ (T , B).

Proof. It suffices to note that Mσ(S, A) ⊆ Mσ(T , B). �
Another application of Theorem 3.5 is the following result about the convergence
of sequences of spectral shorted operators.

Proposition 3.7. Let {An} be a sequence in L(H)+ such that An+1 �An, n ∈ N

and An
SOT−−−−→

n→∞
A, and let {Sn} be a sequence of subspaces such that Sn+1 ⊆ Sn.

Then

ρ (Sn, An)
SOT

↘
n→∞

ρ (S, A) ,

where S =
∞⋂

n=1

Sn.

Proof. By Corollary 3.6, for every n ∈ N, ρ (Sn+1, An+1) ≤ ρ (Sn, An). Then there
is a positive operator L such that ρ (Sn, An) SOT−−−−→

n→∞
L. On one hand, by Proposition

2.8, A� An, n ∈ N. As, in addition, S ⊆ Sn, we have that ρ (S, A) ≤ ρ (Sn, An),
n ∈ N. This shows that ρ (S, A) ≤ L. On the other hand, for every n > m and
k ≥ 1, by Corollary 3.6 and the definition of spectral shorted operators,

L ≤ ρ (Sn, An) ≤ ρ (Sm, An) ≤ Σ
(
Sm, Ak

n

)1/k
. (3.2)

Now fix k ≥ 1. By Proposition 2.8, Ak
n

SOT

↘
n→∞

Ak. Therefore, by Lemma 2.7,

Σ
(
Sm, Ak

n

)1/k SOT

↘
n→∞

Σ
(
Sm, Ak

)1/k
. (3.3)

In a similar way, using Proposition 2.4, we have that

Σ
(
Sn, Ak

)1/k SOT

↘
n→∞

Σ
(
S, Ak

)1/k
. (3.4)

Hence, joining equations (3.2) (3.3) and (3.4), we obtain L ≤ Σ
(
S, Ak

)1/k
. Finally,

since the last inequality is true for every k, by taking limit we have that L ≤
ρ (S, A). �

As the following example shows, the last Proposition does not hold, in general,
if the sequence of subspaces fails to be non-increasing.

Example. Let H be a separable Hilbert space, A a positive operator which is not
onto and L be a proper dense subspace of H such that R(A1/2)∩L = {0}. Take an
orthonormal basis {en} of H contained in L, and let Sn be the span of {e1, . . . , en}.
Then, PSn

SOT

↗
n→∞

I, but, ρ (Sn, A) = Σ (Sn, A) = 0 for all n ∈ N, because, as it was

proved in [2], R(Σ (Sn, A)1/2) = R(A1/2) ∩ Sn{0}.
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4. Main properties of ρ (S, A).

Throughout this section A ∈ L(H)+ and let S is a closed subspace of H. It is
proven in [3] that, if dimH < ∞ and 0 < λ ∈ R, then

⊕

µ≥λ

ker(ρ(S, A) − µI) = S ∩
⊕

µ≥λ

ker(A − µI).

This can be reformulated, in terms of spectral measures, as

ℵ[λ,∞)(ρ (S, A))ℵ[λ,∞)(A) ∧ PS .

This formula, which allows to compute the spectrum and the eigenvectors of
ρ (S, A), gives the complete characterization of ρ (S, A) in the matrix case.

In the infinite dimensional case, the result can be proved following the same
methods (with considerable more effort). Instead of following this way, it seems
more convenient to construct an operator by means of the left spectral resolution
given by

f(λ) =
{

ℵ[λ,∞)(A) ∧ PS λ > 0
I λ ≤ 0 (4.1)

and then to show that its associated operator agrees with ρ (S, A). This can be
done by using the characterization of ρ (S, A) given in Theorem 3.5. Note that the
verification of the fact that f is, indeed, a left spectral resolution is apparent from
the fact that λ �→ ℵ[λ,∞)(A) is the left spectral resolution of A.

Theorem 4.1. Let A ∈ L(H)+ and let S be a closed subspace of H. Then ρ (S, A)
is the operator defined by the left spectral resolution f defined in equation (4.1).
In other words, for 0 < λ ∈ R,

ℵ[λ,∞)(ρ (S, A)) = ℵ[λ,∞)(A) ∧ PS .

Proof. Let B be the operator defined by the spectral resolution f . By Theorem 2.6,
it is clear that B � A and every D ∈ Mρ(S, A) satisfies D � B. Indeed, suppose
that 0 ≤ D �A and R(D) ⊆ S. Then, for λ > 0, ℵ[λ,∞)(D) ≤ ℵ[λ,∞)(A) and

ℵ[λ,∞)(D) ≤ ℵ(0,∞)(D) ≤ PR(D) ≤ PS .

Therefore ℵ[λ,∞)(D) ≤ ℵ[λ,∞)(A)∧PSℵ[λ,∞)(B). Since ℵ[λ,∞)(D) = I = ℵ[λ,∞)(B)
for λ ≤ 0, we get that D �B by Theorem 2.6. Finally, since

ℵ[λ,∞)(‖A‖PS) =






0 ‖A‖ < λ
PS 0 < λ ≤ ‖A‖
I λ ≤ 0

,

we deduce that B � ‖A‖ PS and, in particular, R(B) ⊆ S. Then, by Theorem 3.5,

B = maxMρ(S, A) = ρ (S, A) . �

Corollary 4.2. Let S and T be closed subspaces of H. Then

ρ (S ∩ T , A) = ρ (T , ρ (S, A)) .
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Proof. It suffices to note that both operators have, as left spectral resolution, the
map

f(λ) =
{

ℵ[λ,∞)(A) ∧ PS ∧ PT λ > 0
I λ ≤ 0 . �

Remark 4.3. Let A ∈ L(H)+ and let S and T be closed subspaces of H. Then

ρ (S ∩ T , A) ≤ ρ (T , Σ (S, A)) .

Indeed, it can be deduced from inequalities

Σ
(
S ∩ T , A2m

)
≤ Σ

(
T , Σ

(
S, A2m

))
≤ Σ

(
T , Σ (S, A)2

m
)

∀m ∈ N.

Note that the mentioned statement can not be deduced from Corollary 4.2.

Proposition 4.4. Let µ = minσ (A), then

µP ≤ ρ(S, A).

In particular, if A is invertible then ρ(S, A) is invertible if it is considered as acting
on S.

Proof. Note that µm = min σ (Am) for all m ∈ N. Then µmPS ≤ µmI ≤ Am for
all m ∈ N. So that, µPS �A and the result follows by Theorem 3.5. �
Remark 4.5. Given an operator A ∈ L(H)+, then r /∈ σ (A) if and only if there
exists ε > 0 such that ℵ[r−ε,+∞)(A)ℵ[r+ε, +∞)(A).

Proposition 4.6. If ρ (S, A) is considered as acting on S, then

σ (ρ (S, A)) ⊆ σ (A) .

Proof. By Proposition 4.4, if 0 /∈ σ (A) then 0 /∈ σ (ρ (S, A)). On the other hand,
if r > 0 and r /∈ σ (A), then, by Remark 4.5, there exists ε > 0 such that
ℵ[r−ε,+∞)(A)ℵ[r+ε, +∞)(A). Hence,

ℵ[r−ε,+∞)(ρ (S, A)) = PS ∧ ℵ[r−ε, +∞)(A)
= PS ∧ ℵ[r+ε, +∞)(A)
ℵ[r+ε, +∞)(ρ (S, A)).

Thus, r /∈ σ (ρ (S, A)). �
Proposition 4.7. Let f : [0, +∞) → [0, +∞) be a non-decreasing right continuous
function. Then

f(ρ (S, A)) = ρ (S, f(A)) (4.2)

Proof. Given λ ≥ 0, since f is non-decreasing and right continuous there ex-
ist η ≥ 0 such that {µ : f(µ) ≥ λ} = [η, +∞) and, for every C ∈ L(H)+,
ℵ[λ,∞)(f(C))ℵ[η,∞)(C).

If η = 0, then ℵ[λ,∞)(f(ρ (S, A)))ℵ[λ,∞)(ρ (S, f(A))) = I. If η > 0, then

ℵ[λ,∞)(f(ρ (S, A))) = ℵ[η,∞)(ρ (S, A)) = ℵ[η,∞)(A) ∧ PS

= ℵ[λ,∞)(f(A)) ∧ PS = ℵ[λ,∞)(ρ (S, f(A))),
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which shows that f(ρ (S, A)) and ρ (S, f(A)) have the same (left) spectral resolu-
tion. Hence f(ρ (S, A)) = ρ (S, f(A)) �

In the remains of the section we compute the minimum of σ (ρ (S, A)) and
show, in two examples, how to calculate the whole spectrum of ρ (S, A).

Proposition 4.8. If ρ (S, A) is considered as acting on S, then

min σ (ρ(S, A)) = max{λ ≥ 0 : Am ≥ λmPS , ∀ m ∈ N}. (4.3)

Proof. Note that Am ≥ λmPS , m ∈ N, if and only if λPS �A. On the other hand,
since PS and ρ (S, A) commute, λPS ≤ ρ (S, A) if and only if λPS � ρ (S, A) if and
only if λPS ∈ Mρ(S, A) if and only if λPS � A. �

Theorem 4.9. If ρ (S, A) is considered as acting on S, then

min σ (ρ (S, A)) = max{λ ≥ 0 : PS ≤ ℵ[λ,∞)(A)}
= min{µ ∈ σ (A) : R(ℵ[µ,µ+ε)(A)) �⊆ S⊥ ∀ ε > 0}
= min{µ ∈ σ (A) : PS ℵ[µ,µ+ε)(A) �= 0 ∀ ε > 0}.

(4.4)

Proof. For any B ∈ L(S)+, min σ (B) = max{λ ≥ 0 : ℵ[λ,∞)(B) = IS}. Applying
this identity to our problem, we get λ0 = min σ (ρ (S, A)) = max{λ ≥ 0 : PS ≤
ℵ[λ,∞)(A)}. Then PS ≤ ℵ[λ0,∞)(A) and PS �≤ ℵ[λ0+ε,∞)(A) for every ε > 0. Then
λ0 ∈ {µ ∈ σ (A) : PS ℵ[µ,µ+ε)(A) �= 0 ∀ ε > 0}, because if PS ℵ[λ0,λ0+ε)(A) = 0,
then

PS ℵ[λ0+ε,∞)(A) = PS

(
ℵ[λ0,∞)(A) − ℵ[λ0,λ0+ε)(A)

)
PS ℵ[λ0,∞)(A) = PS ,

i.e. PS ≤ ℵ[λ0+ε,∞)(A). If λ0 = 0, then equation (4.4) is clear, since [λ0, λ0 + ε)
is an open subset of σ (ρ (S, A)). If λ0 > 0, let 0 ≤ λ < λ0 and 0 < ε < λ0 − λ.
Then λ + ε ≤ λ0. Since λ0 = max{λ ≥ 0 : PS ≤ ℵ[λ,∞)(A)}, it holds that
PSℵ[λ,∞)(A) = PSℵ[λ+ε,∞)(A) = PS . Hence

PS = PSℵ[λ,∞)(A)PSℵ[λ,λ+ε)(A) + PSℵ[λ+ε,∞)(A) = PSℵ[λ,λ+ε)(A) + PS .

Therefore PSℵ[λ,λ+ε)(A) = 0, which proves equation (4.4). �

Examples

Example. Consider the operator Mx ∈ L(L2([0, 1])) defined by

Mx(f)(t) = tf(t),

and let S be the orthogonal complement to the subspace of constant functions. We
claim that σ (ρ (S, Mx)) = [0, 1]. Since by Proposition 4.6 σ (ρ (S, Mx)) ⊆ σ (Mx),
it is enough to prove that (0, 1) ∈ σ (ρ (S, Mx)). Take r ∈ (0, 1). Then, by Theorem
4.1 it holds that

R(ℵ[r,+∞)(ρ (S, Mx))) = R(ℵ[r, +∞)(Mx)) ∩ S

=
{

f ∈ L2([0, 1]) : f |[0, r) ≡ 0, and
∫ 1

0

f(t) dt = 0
}



Vol. 55 (2006) Spectral Shorted Operators 181

So, given ε > 0, if we define fr,ε(t) = (t − r)ℵ[r−ε, r+ε)(t), then

fr,ε ∈ R
(
ℵ[r−ε, +∞)(ρ (S, Mx))

)
but fr,ε /∈ R

(
ℵ[r+ε,+∞)(ρ (S, Mx))

)
,

which shows, by Remark 4.5, that r ∈ σ (ρ (S, Mx)).

Example. Let H = 	2 and let {en} be the canonical (orthonormal) basis of 	2.
If w = (1, 2−1, 2−2, . . .), let S be the orthogonal complement to the subspace
generated by w. In L(	2)+ consider the compact operator A defined by

A =
∞∑

n=1

1
n

en ⊗ en

where (x⊗y)z = 〈z, y〉x, for x, y, z ∈ H. We shall study the spectral decomposition
of ρ (S, A). Since σ (ρ (S, A)) ⊆ σ (A), the spectrum of ρ (S, A) is also discrete.
Actually, ρ (S, A) is compact because ρ (S, A) � A. Let λ1 ≥ λ2 ≥ . . . be the
eigenvalues of ρ (S, A) arranged in non-increasing order.

By Theorem 4.1, λ1 < 1 because e1 /∈ S. However, the subspace T generated
by e1 and e2 intersects S, because dimS⊥ = 1. So, λ1 = 1/2. Moreover, by
Theorem 4.1,

ker(ρ (S, A) − 1
2

) =
[
ker(A − 1

2
) ⊕ ker(A − 1)

]
∩ S = T ∩ S.

It is easy to deduce that ker(ρ (S, A) − 1
2 ) is the subspace generated by f1 =

e1 − 2e2. Following in a similar way, the subspace generated by e1, e2 and e3

intersects S and the intersection has dimension two. This implies that λ2 = 1/3
with multiplicity one. On the other hand, to find and eigenvector f2 associated to
λ2, it suffices to look for a vector generated by e1, e2 and e3 and orthogonal to f1

and w. Take, for instance, f2 = e1 +(1/2)e2− (21/2)e3. Going on in a similar way,
we obtain that

σ (ρ (S, A)) = {1/n : n ≥ 2} ∪ {0},
each eigenvalue has multiplicity one, and the corresponding eigenvectors are:

f1 = (1 , −2 , 0 , . . . )
f2 = (1 , 1/2 , −5 , 0 , . . . )
f3 = (1 , 1/2 , 1/4 , 21/2 , 0 , . . . )
...

...
fn = (1 , 1/2 , 1/4 , . . . , 1/2n−1 , −(4n−1)

3·2n−2 , . . .)
...

...

5. The case dimS = 1

This final section is devoted to the study of ρ (S, A) when S is one dimensional.
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Definition 5.1. Suppose that dimS = 1 and let ξ ∈ S be a unit vector. For every
A ∈ L(H)+ there exist λ, µ ≥ 0 such that ρ(S, A) = λPS and Σ(S, A) = µPS .
Denote ρ (A, ξ) = λ and Σ (A, ξ) = µ.

Remark 5.2. Let S be the subspace generated by the unit vector ξ ∈ H. There are
several ways for computing ρ (A, ξ) in terms of ρ (S, A), and similarly Σ (A, ξ) in
terms of Σ (S, A). We mention four of them.

1. By Theorem 4.9,

ρ (A, ξ) = min σ (ρ (S, A))
= min

{
µ ∈ σ (A) : PSℵ[µ,µ+ε)(A) �= 0 ∀ ε > 0

}

= min
{

µ ∈ σ (A) : ℵ[µ,µ+ε)(A)ξ �= 0 ∀ ε > 0
}
.

(5.1)

2. By Proposition 4.8

ρ (A, ξ) = max{λ ≥ 0 : 〈Anη, η〉 ≥ λn|〈ξ, η〉|2 , ∀ n ∈ N, η ∈ H}.
3. Also ρ (A, ξ)=‖ρ (S, A) ξ‖=〈ρ (S, A) ξ, ξ〉. Similar formulae hold for Σ (A, ξ).
4. By Proposition 4.6, ρ (A, ξ) ∈ σ (A). Moreover, by Theorem 4.1 (or Theorem

4.9),
ρ (A, ξ) = max{λ ∈ σ (A) : ξ ∈ R(ℵ[λ,∞)(A))}. (5.2)

The following result relates the spectral short of an operator to one dimensional
subspaces and the spectral order.

Proposition 5.3. Let A, B ∈ L(H)+. Then A� B if and only if ρ (A, ξ) ≤ ρ (B, ξ)
for every unit vector ξ ∈ H.

Proof. One implication follows from Corollary 3.6. On the other hand, suppose
that ρ (A, ξ) ≤ ρ (B, ξ) for every unit vector ξ ∈ H. Given λ ≥ 0 such that
ℵ[λ,∞)(A) �= 0, let ζ ∈ R(ℵ[λ,∞)(A)). By equation (5.2), λ ≤ ρ (A, ζ). Since
ρ (A, ζ) ≤ ρ (B, ζ), we have that ζ ∈ R(ℵ[λ,∞)(B)). Hence, for every λ ≥ 0,
R(ℵ[λ,∞)(A)) ⊆ R(ℵ[λ,∞)(B)). By Theorem 2.6, we deduce that A� B. �

Proposition 5.4. Let A ∈ L(H)+ and let S be the subspace of H generated by the
unit vector ξ. If A is invertible, then for m ∈ N,

Σ
(
A2m, ξ

)1/2m
= ‖A−mξ‖−1/m = 〈A−2mξ, ξ〉−1/2m, (5.3)

and
ρ (A, ξ) = lim

m→∞
‖A−mξ‖−1/m = inf

m∈N
‖A−mξ‖−1/m (5.4)

If R(A) is closed, then:
1. If ξ �∈ R(A), then ρ (A, ξ) = 0.
2. If ξ ∈ R(A) and B = A†, then

ρ (A, ξ) = lim
m→∞

‖Bmξ‖−1/m = inf
m∈N

‖Bmξ‖−1/m.
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Proof. Using Theorem 4.9, the closed range case easily reduces to the invertible
case, by considering A as acting on R(A), because A† acts on R(A) as the inverse of
A. Note that, if R(A) is closed, then there exists ε > 0 such that ℵ[0,ε)(A) = PN(A).
Therefore ξ �∈ R(A) implies that PSℵ[0,ε)(A) �= 0, and, by Remark 5.2, we get
ρ (A, ξ) = 0.

Suppose that A is invertible. For m ∈ N, denote by ηmA−m/2ξ. Fix m ∈ N.
By Theorem 2.2, if Mm = A−m/2(S), then Σ (S, Am) = Am/2PMmAm/2, and

Σ (Am, ξ) = ‖Σ (S, Am) ξ‖ = ‖Am/2PMmAm/2ξ‖.
Note that Mm is the subspace generated by ηm, so PMmρ = ‖ηm‖−2〈ρ, ηm〉ηm,
ρ ∈ H. Then

Σ (Am, ξ) = ‖Am/2PMmAm/2 ξ‖
∥∥
∥Am/2

(
‖ηm‖−2〈Am/2 ξ, ηm〉ηm

)∥∥
∥

‖ηm‖−2‖〈ξ, ξ〉 ξ‖ = ‖ηm‖−2.

Therefore Σ
(
A2m, ξ

)
= ‖A−mξ‖−2, so that

Σ
(
A2m, ξ

)1/2m
= ‖A−mξ‖−1/m , m ∈ N.

Equation (5.4) follows using Remark 5.2 and the definition of ρ (S, A). �
Remark 5.5. Equation (5.3) and, consequently, Proposition 5.4, can also be de-
duced from the following formula: for every invertible B ∈ L(H)+ and ξ ∈ H with
‖ξ‖ = 1,

Σ (B, ξ) = 〈B−1ξ, ξ〉−1.

This formula is the one dimensional version of the characterization of Schur com-
plements in terms of the block representation of the inverse of an operator (see
[10] Lemma 4.7 or, for a matrix version, Horn-Johnson book [6]).

Let A ∈ L(H)+. Consider the set

σsh (A) =
{
ρ (A, ξ) : ‖ξ‖ = 1

}
.

By Proposition 4.6, we have that σsh (A) ⊆ σ (A). If dimH < ∞, it was shown
in [3] (see also [5]) that σsh (A) = σ (A). We shall see that this property fails in
general in the infinite dimensional case. First we fix some notations:

1. For B ∈ L(H)+ we denote

σ+ (A) =
{
λ ∈ σ (A) : ∃ (µn)n∈N in σ (A) with µn > λ and µn ↘n→∞ λ

}

=
{
λ ∈ σ (A) : ∀ ε > 0 , ℵ(λ,λ+ε)(A) �= 0},

i.e. those points λ ∈ σ (A) which are limit point of σ (A)\ {λ} from the right.
2. σpt(A) =

{
λ ∈ σ (A) : N(A − λI) �= {0}

}
, the point spectrum of A.

Proposition 5.6. Let A ∈ L(H)+. Then

σsh (A) = σ+ (A) ∪ σpt(A) =
{
λ ∈ σ (A) : ∀ ε > 0 , ℵ[λ,λ+ε)(A) �= 0}.

In particular, σsh (A) is dense in σ (A).
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Proof. Let λ ∈ σ (A) and let (µn)n∈N be a sequence in σ (A) such that µn ↘n→∞ λ.
Denote by λ0 = µ1 + 1 and λn = 1

2 (µn+1 + µn), n ∈ N. Note that, since µn ∈
(λn, λn−1), then ℵ(λn,λn−1)(A) �= 0. We take, for every n ∈ N, an unit vector
ξn ∈ R(ℵ(λn,λn−1)(A)). Consider the unit vector

ξ =
∑

n∈N

ξn

2n
.

From formula (5.2) and the construction of ξ, it is clear by that ρ (A, ξ) = λ,
because λ = infn µn = infn λn. If λ ∈ σpt(A), just take ξ ∈ N(A− λI) and clearly
ρ (A, ξ) Σ (A, ξ) = λ.

Now suppose that λ ∈ σ (A) but λ /∈ σ+ (A)∪ σpt(A). This means that there
exists ε > 0 such that ℵ[λ,λ+ε)(A) = 0. Therefore, for any unit vector ξ, it is
impossible that

λ = max{µ ∈ σ (A) : ξ ∈ R(ℵ[µ,∞)(A))},
because if ξ ∈ R(ℵ[λ,∞)(A)), then ξ ∈ R(ℵ[λ+ε,∞)(A)). �

Remark 5.7. If A ∈ L(H)+ is not invertible, then 0 ∈ σ (A). If 0 is an isolated point
of σ (A) then A has closed range. So that, N(A) �= {0}. Otherwise ℵ(0,ε)(A) �= 0
for every ε > 0. This shows that 0 ∈ σsh (A). More generally, for A ∈ L(H)+, it
holds that λmin(A) = min σ (A) ∈ σsh (A). On the other hand, by Proposition 5.6,
‖A‖ ∈ σsh (A) if and only if ‖A‖ is an eigenvalue of A.

Remark 5.8. For A ∈ L(H)+, we shall denote by R0(A) the subspace

R0(A) =
⋃

λ>0

R(ℵ[λ,∞)(A)).

If R(A) is closed, then R0(A) = R(A), because 0 is an isolated point of σ (A). If
R(A) is not closed, then, R0(A) is properly included in R(A), but it is still a dense
subspace of R(A). We are interested in this subspace because, by formula (5.2), if
ξ ∈ H an unit vector, then ρ (A, ξ) �= 0 if and only if ξ ∈ R0(A).

5.1. Kolmogorov complexity

Given an invertible matrix A ∈ L(Cm)+ and a unit vector ξ ∈ Cm , J. I. Fujii and
M. Fujii [5] define the Kolmogorov complexity:

K (A, ξ) = lim
n→∞

log(〈Anξ, ξ〉)
n

= log lim
n→∞

〈Anξ, ξ〉1/n
. (5.5)

Using formula (5.3), we can see that the limit is, in fact, a supremum; and we have
the identity

K (A, ξ) = log ρ
(
A−1/2, ξ

)−2

= log ρ
(
A−1, ξ

)−1
. (5.6)

Using formulae (5.1) and (5.2), we get

expK (A, ξ) = min
{
λ ∈ σ (A) : ξ ∈ R(ℵ(−∞,λ](A))

}

= max
{

µ ∈ σ (A) : ℵ(µ−ε,µ](A)ξ �= 0 ∀ ε > 0
}

.
(5.7)



Vol. 55 (2006) Spectral Shorted Operators 185

With these identities in mind we generalize the notion of Kolmogorov complexity in
two directions: firstly, we define it for infinite dimensional Hilbert spaces; secondly,
we remove the hypothesis of invertibility of A. Note that the own notion of spectral
shorted operator is, in some sense, a generalization of the Kolmogorov complexity
relative to arbitrary (not necesarily one dimensional) closed subspaces of a Hilbert
space H.

If H is a Hilbert space and A ∈ L(H)+ is invertible, then we just have to
define K (A, ξ) as in equation (5.6) or, equivalently (5.7). It is easy to see that this
is equivalent to define it as in the finite dimensional setting, as in (5.5). We should
mention that some of the properties of K (A, ξ) proved by J. I. Fujii and M. Fujii
fail if H is infinite dimensional. As an example, the identity

σ(A) =
{

exp(K (A, ξ)) : ‖ξ‖ = 1
}
.

fails in general.

Definition 5.9. Given ξ ∈ H and A ∈ L(H)+, define

k (A, ξ) = lim
n→∞

〈Anξ, ξ〉1/n
.

Observe that k (A, ξ) = expK (A, ξ) in the cases where K (A, ξ) is defined.

Remark 5.10. Let ξ ∈ H and A ∈ L(H)+. Then:

1. if ‖ξ‖ = 1, then the sequence 〈Anξ, ξ〉1/n is increasing and lim
n→∞

〈Anξ, ξ〉1/n

exists for every ξ ∈ H,
2. k (A, ξ) = k (A, aξ) for every 0 �= a ∈ C,
3. k (A, ξ) = k

(
A,ℵ[λ,∞)(A)ξ

)
for every λ > 0 such that ℵ[λ,∞)(A)ξ �= 0.

Indeed, by Hölder inequality for states (also by Jensen inequality, see [4]), if ‖ξ‖ =
1, p ≥ 1 and 1/p + 1/q = 1, then

〈Apξ, ξ〉1/p 〈Iqξ, ξ〉1/q = 〈Apξ, ξ〉1/p ≥ 〈Aξ, ξ〉 .

Applying this inequality to An with p = (n + 1)/n one gets that 〈Anξ, ξ〉1/n ≤
〈
An+1ξ, ξ

〉1/n+1
.

5.10.2 follows from the fact that |a|2/n −−−−→
n→∞

1. To show 5.10.3, suppose that

‖ξ‖ = 1 and denote by ξ1 = ℵ[λ,∞)(A)ξ and ξ2 = ξ − ξ1. Then, since ℵ[λ,∞)(A)
commutes with A, for every n ∈ N,

〈Anξ1, ξ1〉 ≤ 〈Anξ1, ξ1〉 + 〈Anξ2, ξ2〉 〈Anξ, ξ〉

≤ 〈Anξ1, ξ1〉 + λn ≤ (1 + ‖ξ1‖−2) 〈Anξ1, ξ1〉 .

This shows that k (A, ξ) = k (A, ξ1), since (1 + ‖ξ1‖−2) 1/n −−−−→
n→∞

1.

Recall that, for A ∈ L(H)+, we denote by R0(A) =
⋃

λ>0 R(ℵ[λ,∞)(A)).
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Proposition 5.11. Let A ∈ L(H)+ and ξ ∈ H, ξ �= 0. Then k (A, ξ) �= 0 if and only
if PR(A) ξ ∈ R0(A). Moreover, equation (5.7) holds in general:

k (A, ξ) = min
{
λ ∈ σ (A) : ξ ∈ R(ℵ(−∞,λ](A))

}

= max
{
µ ∈ σ (A) : ℵ(µ−ε,µ](A)ξ �= 0 ∀ ε > 0

}

= sup
{
µ ∈ σ (A) : ℵ[µ,∞)(A)ξ �= 0

}
.

(5.8)

Proof. Let λ = sup
{
µ ∈ σ (A) : ℵ[µ,∞)(A)ξ �= 0

}
. Suppose that µ > λ. Then

ξ ∈ R(ℵ(−∞,µ](A)), so that 〈Anξ, ξ〉 ≤ µn‖ξ‖2 for n ∈ N, and k (A, ξ) ≤ µ.
On the other hand, if µ < λ then ℵ[µ,∞)(A)ξ = ξ1 �= 0, and, by Remark 5.10,
k (A, ξ) = k (A, ξ1) ≥ µ, since 〈Anξ1, ξ1〉 ≥ µn‖ξ1‖2 for every n ∈ N. This shows
that k (A, ξ) = λ. The other equalities are straightforward, by spectral theory. �
By Proposition 4.6, we have that σsh (A) ⊆ σ (A) and, therefore, if A is invertible,

{
k (A, ξ) : ‖ξ‖ �= 0

}{
ρ

(
A−1, ξ

)−1
: ‖ξ‖ = 1

}
⊆ σ

(
A−1

)−1
= σ (A) .

As we shall see below, the reverse inclusion fails in general:

Proposition 5.12. If A ∈ L(H)+ is inversible, then
{
k (A, ξ) : ‖ξ‖ �= 0

}
σ− (A) ∪ σpt(A)

=
{
λ ∈ σ (A) : ℵ(λ+ε,λ](A) �= 0 , ∀ ε > 0 },

where σ− (A) is the set of points in σ (A) which are limit point of σ (A) \ {λ} from
the left. The set

{
k (A, ξ) : ‖ξ‖ = 1

}
is dense in σ (A).

Proof. It is a consequence of Proposition 5.6 (applied to A−1) and the identity
{
k (A, ξ) : ‖ξ‖ �= 0

}{
k (A, ξ) : ‖ξ‖ = 1

}{
ρ

(
A−1, ξ

)−1
: ‖ξ‖ = 1

}
. �

Remarks 5.13.
1. Proposition 5.12 is also true for a general A ∈ L(H)+. The proof is similar

to the proof of Proposition 5.6, by using equation (5.8) instead of (5.2).
2. Let H = 	2(N) and {en : n ∈ N} be the canonical orthonormal basis of H,

and consider the diagonal invertible operators A, B ∈ L(H)+ defined by

A(en) =
(
2 +

1
n

)
en , B(en) =

(
2 − 1

n

)
en , n ∈ N.

It is easy to see, using Propositions 5.6 and 5.12, that 2 /∈
{
k (A, ξ) : ‖ξ‖ = 1

}

and 2 /∈ σsh (B).
3. If C ∈ L(H)+, then ‖C‖ ∈

{
k (C, ξ) : ‖ξ‖1

}
and λmin(C) ∈ σsh (C). On

the other hand, if A and B are as in the previous example, then ‖B‖ = 2 /∈
σsh (B) and λmin(A) = 2 /∈

{
k (A, ξ) : ‖ξ‖ = 1

}
.

Remark 5.14 (Operators with closed range). Suppose that A ∈ L(H)+ and R(A) is
closed. Then, k (A, ξ) and ρ (A, ξ) can be explicitly computed in terms of ρ

(
A†, ξ

)
.

More precisely,
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1. If ξ ∈ R(A) is an unit vector, then, by Proposition 5.4, we can deduce that
k (A, ξ) = ρ

(
A†, ξ

)−1.
2. Let ξ ∈ H\(N(A) ∪ R(A)). By Proposition 5.4, ρ (A, ξ) = ρ

(
A†, ξ

)
= 0. On

the other hand, if P = PR(A), then Pξ �= 0 and

k (A, ξ) = lim
n→∞

〈AnPξ, Pξ〉1/n
k

(
A,

Pξ

‖Pξ‖

)
= ρ

(
A†,

P ξ

‖Pξ‖

)−1

�= 0.
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Facultad de Ingenieŕıa-UBA
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