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PDisorders of androgen production can occur in all steps of testos-

terone biosynthesis and secretion carried out by the foetal Leydig
cells as well as in the conversion of testosterone into dihy-
drotestosterone (DHT).
The differentiation of Leydig cells from mesenchymal cells is the
first walk for testosterone production. In 46,XY disorders of sex
development (DSDs) due to Leydig cell hypoplasia, there is
a failure in intrauterine and postnatal virilisation due to the
paucity of interstitial Leydig cells to secrete testosterone. Enzy-
matic defects which impair the normal synthesis of testosterone
from cholesterol and the conversion of testosterone to its active
metabolite DHT are other causes of DSD due to impaired androgen
production. Mutations in the genes that codify the enzymes acting
in the steps from cholesterol to DHT have been identified in
affected patients.
Patients with 46,XY DSD secondary to defects in androgen
production show a variable phenotype, strongly depending of the
specific mutated gene. Often, these conditions are detected at birth
due to the ambiguity of external genitalia but, in several patients,
the extremely undervirilised genitalia postpone the diagnosis until
late childhood or even adulthood. These patients should receive
long-term care provided by multidisciplinary teams with experi-
ence in this clinical management.

� 2009 Elsevier Ltd. All rights reserved.
C

Fax: þ55 11 3083 7519.
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td. All rights reserved.
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Prenatal disorders of sexual development (DSDs) are congenital conditions in which the develop-
ment of chromosomal, gonadal or anatomical sex is a typical. They are secondary to multiple causes
and this article focusses on revising the current bibliography on disorders of androgen production. For
this purpose, we systematically review the main steps of testosterone biosynthesis and secretion
carried out by foetal Leydig cells and the conversion of testosterone in DHT. Often, these conditions are
detected at birth because of ambiguity of external genitalia but, in several patients, the extremely
undervirilised genitalia postpone the diagnosis until late childhood or even adulthood. A proposed
classification of 46,XY DSD due to disorders of androgen production is displayed in Table 1.
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F46,XY DSD due to impaired leydig cell differentiation (LHCGR defects)

The differentiation of Leydig cells from mesenchymal cells is the first step in testosterone
production. Multiple genes have been involved in the specification of foetal Leydig cell lineage, such as
X-linked aristaless-related homeobox gene (Arx), Desert Hedgehog (Dhh) and platelet-derived growth
factor receptor alpha (Pdgfa) genes. Dhh, a Sertoli cell product, specifies the foetal Leydig cell lineage in
the primordial gonad through a paracrine signalling mechanism. Postnatally, these cells are replaced in
the testes by morphologically distinct adult Leydig cells. The absence of Dhh results in decreased
number in foetal Leydig cell without affecting migration or proliferation of precursor cells or Sertoli
cells differentiation. Steroidogenic factor 1 (Sf1) is a transcriptional regulator of hormone-biosynthesis
genes, thus serving a central role in the Leydig cell. A combinatorial expression of Dhh, a paracrine
signalling factor, and Sf1, a transcriptional regulator of hormone-biosynthesis genes, is required for
Leydig cell development.1–3

In 46,XY DSD due to Leydig cell hypoplasia, there is a failure of intrauterine and pubertal virilisation
due to the scarcity of interstitial Leydig cells to secrete testosterone. Leydig cells are stimulated by both
hormones, chorionic gonadotrophin (CG) and luteinising hormone (LH), which act by binding and
activating a common receptor (LHCGR) located in the cell membrane. The human LHCGR is a member of
the G-protein-coupled super-family of receptors and, simultaneously with the receptors for thyroid-
stimulating hormone (TSHR) and follicle-stimulating hormone (FSHR), belongs to the glycoprotein
hormone-receptor family. The LHCGR has a modular architecture consisting of an ectodomain or
extracellular hormone-binding domain, linked to a seven-transmembrane signal-transduction
domain. This receptor has 11 exons and most of the long extracellular domain is codified by the first 10
exons and the rest of the protein by exon 11. The LHCGR consists of 674 amino acids and has a molecular
mass of w85–95 kDA based on the extent of glycolysation.4 LHCGR is located on chromosome 2p21 in
humans, close to the FSHR gene. Following human CG (hCG)/LH binding, the receptor undergoes
a conformational change activating the G protein (Gas) that is bound to the receptor internally.
U
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R
RTable 1

Classification of 46,XY DSD due to impaired androgen production.

46,XY DSD due to impaired leydig cell differentiation (LHCGR defects)
46,XY DSD associated with cholesterol synthesis defects

Smith-Lemli-Opitz syndrome
46,XY DSD due to testosterone synthesis defects

Enzymatic defects in adrenal and testicular steroidogenesis
StAR deficiency
P450scc deficiency
3-b-hydroxysteroid dehydrogenase type II deficiency
17a-hydroxylase and 17,20 lyase deficiency

Altered steroidogenesis due to disrupted electron transfer
P450 oxidoreductase defect
Cytochrome b5 defect

Defects in testicular steroidogenesis
Isolated 17,20-lyase deficiency
17b-hydroxysteroid dehydrogenase III deficiency

Defects in testosterone metabolism
5a-reductase type 2 deficiency

Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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Following the binding of LHCGR, the protein Gas interchanges guanosine diphosphate (GDP) for
guanosine triphosphate (GTP), releases the receptor and binds to adenylcyclase to activate cyclic
adenosine monophosphate (cAMP) production. Next, cAMP activates cAMP-dependent protein kinase
A. This is a tetramer of two regulatory and two catalytic subunits. cAMP binds to regulatory subunits,
releasing the catalytic subunits to phosphorylate several proteins (P-proteins).5 Some of these
P-proteins migrate to the nucleus and are bound to responsive elements in the promoter zones of
certain genes to modulate transcription. This process is modified by prostaglandins and other intra-
cellular regulators.

Phenotype: In 1976, Berthezene et al.6 described the first patients with Leydig cell hypoplasia and,
subsequently, other cases have been reported.7–10 The syndrome of Leydig cell hypoplasia has variable
phenotypes.11

The typical phenotype of 46,XY DSD due to the complete form of Leydig cell hypoplasia is a female
external genitalia leading to female sex assignment, no development of sexual characteristics at
puberty, undescended testes slightly smaller than normal (Figure 1) with relatively preserved semi-
niferous tubules and absence of mature Leydig cells (Figure 2), presence of epidydimis and vas deferens
(Figure 3) and absence of uterus and fallopian tubes. It is noteworthy that well-developed epidydimis
and vas deferens can be found even in patients with female external genitalia. In one of our patients
with Leydig cell hypoplasia, testosterone levels from the testicular vein was 108 ng dl�1 in comparison
with peripheral levels of 24 ng dl�1, indicating that small amounts of testosterone are sufficient to
developed Wolffian duct derivatives (Figure 3). In contrast to the homogeneous phenotype of the
complete form of Leydig cell hypoplasia, the partial form can have a broad spectrum.12–18 Most patients
have predominantly male external genitalia with micropenis and/or hypospadias. Testes are cryp-
torchidic or in the scrotum. While complete forms are usually not detected at birth (46,XY subjects are
raised as normal girls), partial forms might be suspected because of signs of incomplete function of
foetal testes. Spontaneous gynaecomastia does not occur. During puberty, partial virilisation occurs and
testicular size is normal or only slightly reduced, while penile growth is significantly impaired. A milder
phenotype of Leydig cell hypoplasia was recently reported in a Portuguese family that constituted
U
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E

Figure 1. A: External genitalia of a 46,XY patient with a complete form of Leydig cells hypoplasia due to inactivating mutation in
LHCGR. B: Right testis slightly smaller than normal.

Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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Figure 2. A Photomicrograph of testis section of a 46,XY patient with a complete form of Leydig cell hypoplasia. Seminiferous
tubules contain just Sertoli cells and occasional immature germ cells and interstitium contains a sparse cell population and no
mature Leydig cells, B: Normal testicular architecture with seminiferous tubules with Sertoli cells and germ cells. In the interstitium,
the presence of mature Leydig cells.
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a male patient with micropenis, hypogonadism with elevated LH levels and oligospermia and two
infertile sisters.19

Histological analysis of the testis in both forms of Leydig cell hypoplasia did not display Leydig cells
in prepubertal testes, while, in post-pubertal patients, absence or decreased numbers of Leydig cells
without Reinke’s crystalloids are associated with normal-appearing Sertoli cells and seminiferous
tubules with spermatogenic arrest8,9,20 (Figure 2).

Inheritance: 46,XY DSD due to Leydig cell hypoplasia presents an autosomal recessive mode of
transmission. However, Leydig cell hypoplasia was found to be a genetic heterogeneous disorder since
Zenteno et al. ruled out molecular defects in the LHCGR as the cause of Leydig cell hypoplasia in three
siblings with 46,XY DSD, using segregation analysis.21 In addition, the absence of causative mutations
U
N
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R
R
E
C

Figure 3. Presence of male ducts in a 46,XY patient with the complete form of Leydig cells hypoplasia due to inactivating mutation
in LHCGR. A: Vas deferens, B: Epididymis duct.

Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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in LHCGR, in several patients strongly suspected to have Leydig cell hypoplasia, supported the idea that
other genes must be implicated in the molecular basis of this disorder.

Biochemical diagnosis: In the complete form of Leydig cell hypoplasia, there is absence of gonadal
steroid synthesis. In children, this is usually evidenced by determination of serum testosterone and its
precursors following hCG stimulation test. Adrenal function is normal. In the patients with partial form
of Leydig cell hypoplasia, prior to puberty the testosterone response to the hCG test is subnormal
without abnormal step-up in testosterone-biosynthesis precursors.6–9

Following puberty, both the serum gonadotrophins are elevated but with clear predominance of LH
over FSH levels; testosterone levels are intermediate between those of children and normal males.

Molecular defects: Several different mutations in the LHCG receptor gene were reported in patients
with Leydig cell hypoplasia.11,12,14,15,22–25 Inactivated mutations have been described in the three
domains (extramembrane, transmembrane and intramembrane) of the protein.26 The function is
disrupted by several mechanisms, such as absence of ligand binding, interaction with G protein or
transport to the cell membrane.27 Mutations in the LHCGR gene have been identified in patients with
complete and partial form of Leydig cell hypoplasia.12–15 In vitro studies showed that cells transfected
with LHCGR gene containing these mutations had an impaired hCG-stimulated cAMP production.14,15

Latronico et al.12 reported a homozygous mutation in the LHCGR (Ser616Tyr) in a boy with micropenis.
Subsequently, mutations were identified in further patients with the partial form of Leydig cell
hypoplasia.13–15 A good correlation was observed between in vitro activity and clinical phenotype.19

Recently, the identification and characterisation of a novel, primate-specific bona fide exon (exon
6A) within the LHCGR determined a new regulatory element within the genomic organisation of this
receptor and a new potential mechanism of this disorder.28 The presence of mutations in the cryptic
exon 6A were detected in three out of 16 patients with 46,DSD due to Leydig cell hypoplasia without
molecular diagnosis. Functional studies revealed a dramatic increase in the expression of the mutated
exon 6A transcripts, resulting in the generation of the predominantly non-functional LHCGR isoform
thereby preventing its proper expression and functioning.28

46,XX sisters of patients with the complete form of 46,XY DSD due to Leydig cell hypoplasia, with
the same homozygous mutation in the LHCGR, present spontaneous breast development, primary or
secondary amenorrhoea, infertility and normal or enlarged cystic ovaries. The hormonal profiles of
these women show elevated LH and LH/FSH ratio, measurable oestradiol levels and normal androgen
levels.12,16,29–32

46,XX sisters of patients with the partial form of 46,XY DSD due to Leydig cell hypoplasia were
recently described and include regular ovarian cycles for years, infertility and elevated or even normal
LH levels.19

46,XY DSD due to testosterone-synthesis defects

46,XY DSD associated with cholesterol-synthesis defects

Cholesterol deficiency and abnormal increase of pre-defect sterols might be involved in the multiple
anomalies reported. 46,XY DSD is one of possible phenotypes and could be present in severe defects.

Smith–Lemli–Opitz syndrome (SLOS)
This syndrome, caused by a deficiency of 7-dehydrocholesterol reductase, is the first true metabolic

syndrome leading to multiple congenital malformations.33,34 The first step of testosterone biosynthesis
begins with the uptake of cholesterol from the extracellular space and/or the endogenous synthesis of
cholesterol by Leydig cells. In both instances, the action of 7-dehydrosterol reductase is necessary for
cholesterol synthesis from 7-dehydrocholesterol (Figure 4). SLOS is caused by an inborn error of post-
squalene cholesterol biosynthesis.

Phenotype: The SLOS phenotypic spectrum is broad and variable – from early embryonic non-
viability to varying levels of severity postnatally, including distinctive facial appearance, growth and
mental retardation, autistic behaviour, hypotonia, failure to feed, decreased life span and variable
structural anomalies of the heart, lungs, brain, gastrointestinal tract, limbs, genitalia and kidneys.
Typical facial appearance is characterised by a short nose with anteverted nostrils, blepharoptosis,
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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Figure 4. A cartoon of human foetal Leydig cell showing all steps involved in androgen production.
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genital ambiguity. Adrenal insufficiency maybe be present or may evolve with time. Ambiguity of the
external genitalia is a frequent feature in males (71%) and ranges from hypospadias to female external
genitalia despite normal 46,XY karyotype and SRY sequences. Müllerian derivative ducts can also be
present35,36 The mechanisms of undervirilisation of foetal external genitalia in 46,XY DSD patients is
still unclear but might be due to decrease testosterone synthesis by the foetal testes secondary to lack
of precursors or abnormal LH-receptor response to hCG stimulation because of abnormal plasma
membrane fluidity, secondary to low cholesterol levels or excessive cholesterol precursors.37

However, the description of patients with SLOS who present with hyponatraemia, hyperkalaemia
and decreased aldosterone-to-renin ratio suggest that the lack of substrate to produce adrenal and
testicular steroids is the cause of adrenal insufficiency and genital ambiguity.38

Inheritance: SLOS is an autosomal recessive disorder.
Molecular defect: Loss-of-function mutations in the sterol delta-7-reductase (DHCR7) gene, which

maps to 11q12-q13 cause SLOS.39 It has nine exons and spans w14 kilobases. The protein has 475 amino
acids and is located in the endoplasmic reticulum of cholesterol-synthesising cells. Nine putative
transmembrane segments have been identified in the amino acid sequences. The key morphogen
(Sonic hedgehog and its related proteins Indian and Desert hedgehog) is affected, as this protein needs
covalently attached cholesterol for regulated short- and long-range signalling processes.

Biochemical diagnosis: Low-to-undetectable levels of oestriol have been observed in the urine,
amniotic fluid and serum of pregnant women carrying foetuses affected with SLOS. Affected children
present with low plasma cholesterol and elevations of plasma 7-dehydrocholesterol. Considering the
relative high frequency of SLOS, approximately 1:20 000–60 000 births, we suggest that at least
cholesterol levels should be routinely measured in patients with 46,XY DSD.

Treatment: Treatment strategies of dietary cholesterol supplementation are focussed on supplying
exogenous crystalline cholesterol by various vehicles in an attempt to increase body cholesterol levels
and to secondarily decrease the levels of 7DHC/8DHC, through feedback inhibition of HMG-CoA
reductase. Dietary cholesterol supplementation is recommended (e.g., two egg yolks per day), although
there are no controlled studies to validate their efficacy. Some reports of isolated cases have demon-
strated the beneficial impact of cholesterol supplementation (20–40 mg kg�1 per day) on patients’
behaviour and feelings.40,41
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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Another therapy proposed is the use of HMG-CoA reductase inhibitors, such as statins, which are
recommended only in patients without residual DHCR7 enzymatic activity.42,43 Direct cholesterol
delivery to the central nervous system has been recently proposed and may allow the brain to remodel
and develop normally, especially if this can be carried out as early as possible following diagnosis.44

46,XY DSD due to testosterone-synthesis defects

Five enzymatic defects that alter the normal synthesis of testosterone from cholesterol have been
described to date (Figure 5). Three of these defects are associated with defects in cortisol synthesis
leading to congenital adrenal hyperplasia. All of them present an autosomal recessive mode of
inheritance. Genetic counselling is mandatory, since every additional sibling has a 25% chance of being
affected with the same synthesis defect.
P
R
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O

Defect in corticosteroid and testosterone synthesis

Adrenal hyperplasia syndromes are congenital disorders associated with hypoadrenocorticism
or a mixed of hypo- and hyper-corticoadrenal steroid secretion. Synthesis of just cortisol or both
gluco- and mineralocorticoids is impaired. When cortisol production is impaired, there is
a compensatory increase in adrenocorticotrophic hormone (ACTH) secretion whereas impaired
mineralocorticoid synthesis results in a compensatory increase in renin–angiotensin production.
These compensatory mechanisms may return cortisol or aldosterone production to normal or near-
normal levels, but at the expense of excessive production of other steroids causing undesirable
hormonal effects.
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Figure 5. Adrenal and testicular steroidogenesis.
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Cholesterol side-chain-cleavage defects
The earliest step in the conversion of cholesterol to hormonal steroids is hydroxylation at

carbon 20, with subsequent cleavage of the 20–22 side chain to form pregnenolone. In
steroidogenic tissues, such as the adrenal cortex, testis, ovary and placenta, the initial and rate-
limiting step in the pathway leading from cholesterol to steroid hormones is the cleavage of the
side chain of cholesterol to yield pregnenolone. This reaction, known as cholesterol side-chain
cleavage, is catalysed by a specific cytochrome P450, called P450scc or P45011A, and by the
steroidogenic acute regulatory (StAR) protein, a mitochondrial phosphoprotein.45 Cholesterol is
taken up from both low-density lipoprotein (LDL) and apolipoprotein A (apoA)/high-density
lipoprotein (HDL) receptors in caveolin-rich domains. Late endosomes mediate this transfer to the
mitochondria via the activities of Niemann–Pick disease type C-1 (NPC-1) and possibly the StAR-
like protein MLN64. Acyl-CoA:cholesterol acyltransferase converts free cholesterol derived from
organelles (e.g., endosomes, endoplasmic reticulum) to the cholesterol esters that represent the
predominant components of lipid droplets. StAR mRNA expression is determined by the balance
between transcription and mRNA turnover, each of which is regulated by multiple factors.
Promoter elements and mRNA sequence elements are subject to regulation by physiological
changes, such as hormonal stimulation (which increases cAMP levels) and cholesterol depletion
(which activates sterol regulatory element-binding protein (SREBP)). StAR mRNA stability is also
regulated by suppression of transcription or translation. Stabilisation of an otherwise rapidly
degraded mRNA is a regulatory mechanism that allows to extremely rapid and sensitive control of
gene expression.46

Deficiency of the acute steroidogenesis regulatory protein (StAR)
It is the most severe form of congenital adrenal hyperplasia (CAH).47 Lipoid adrenal hyperplasia is

rare in Europe and America but it is thought to be the second most common form of adrenal hyper-
plasia in Japan. The gene for StAR is located on chromosome 8p11.2.48 The protein has 285 amino acids
and undergoes truncation when it performs its transfer function. StAR is located within the mito-
chondria of the adrenal and gonadal cells but has not been found in the placenta and brain.48

Lipoid congenital adrenal hyperplasia is caused by StAR mutations resulting in deficient steroido-
genesis and 46,XY DSD.

Phenotype: Problems caused to persons with lipoid CAH can be divided into: a) mineralocorticoid
deficiency, b) glucocorticoid deficiency, c) sex steroid deficiency and d) damage to gonads (and
adrenals) caused by lipid accumulation. Affected subjects are, in general, phenotypic females irre-
spective of gonadal sex or, sometimes, have slightly virilised external genitalia with or without
cryptorchidism, underdeveloped internal male organs and an enlarged adrenal cortex, engorged with
cholesterol and cholesterol esters.49 Adrenal steroidogenesis deficiency leads to salt-wasting, hypo-
natraemia, hyperkalaemia, hypovolaemia, acidosis and death in infancy. Adrenal sex steroid deficiency
is present during pregnancy resulting in a low steroid production by the foeto-placental unit. ACTH
stimulates growth of the adrenal cells and increases LDL receptors to amplify transport of cholesterol
into the adrenal cells, where it accumulates because little is transferred into the mitochondria. The
adrenals become markedly enlarged by the combination of ACTH-induced hyperplasia and accumu-
lated lipid.50 Lipid accumulation is thought to damage the cells further (‘‘second-hit hypothesis’’).
Because the StAR protein is also involved in cholesterol transport into testicular and ovarian cells for
sex steroid synthesis, testicular production of testosterone and ovarian production of oestrogen are
also impaired. Lipid accumulation damages the Leydig cells of the testes more completely than the
granulosa cells of the ovaries.

Recently, a mild form of congenital lipoid adrenal hyperplasia was described in two families. The
affected children presented with late primary adrenal insufficiency at 2–4 years of age and 46,XY
subjects had normal male external genital. DNA sequencing identified homozygous StAR mutations in
these two families and functional studies of StAR showed that these mutants retained approximately
20% of wild-type activity.51

Histopathological findings of excised XY gonads included accumulation of fat in Leydig cells since 1
year of age, positive placental alkaline phosphatase and octamer-binding transcription factor (OCT4)
staining indicating neoplastic potential.52
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003



B.B. Mendonca et al. / Best Practice & Research Clinical Endocrinology & Metabolism xxx (2009) 1–20 9

ARTICLE IN PRESS

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

YBEEM630_proof � 1 December 2009 � 9/20
U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Biochemical diagnosis: It is based on high ACTH, renin and gonadotrophin levels and the presence of
undetectable or low levels of all glucocorticoids, mineralocorticoids and androgens. In the mild form,
partial steroid production can be found.

Molecular defects: The disease was firstly attributed to P450scc deficiency, but most of the cases
studied through molecular analysis showed an intact P45011A and its RNA.53 Since StAR is also required
for the conversion of cholesterol to pregnenolone, molecular studies were performed in StAR and
mutations were found in most of the affected patients.50 Congenital lipoid adrenal hyperplasia in most
Palestinian cases is caused by a founder c.201_202delCT mutation, causing premature termination of
the StAR protein.

Treatment: Patients treated with appropriate mineralocorticoid- and glucocorticoid-replacement
therapy survive to adulthood.54

Deficiency of P450scc
In the next step of steroid biosynthesis (Figure 5), intra-mitochondrial cholesterol is converted into

pregnenolone by P450scc. cP450scc has cholesterol monooxygenase (side-chain-cleaving) activity.
CYP11A1 is located on chromosome 15q23-24. The protein has 521 amino acids. P450scc is located in
the mitochondria of the adrenals and gonads. Type I P450 enzymes are found in mitochondria, and
receive electrons from nicotinamide adenine dinucleotide phosphate (NADPH) via the intermediacy of
two proteins, ferredoxin reductase (a flavoprotein) and ferredoxin (an iron/sulfur protein). Type I P450
enzymes include P450scc, the two isozymes of 11-hydroxylase (P450c11beta and P450c11AS) and
several vitamin D-metabolising enzymes.55

Phenotype: The phenotype of CYP11A1 mutations is similar to that observed in StAR loss-of-function
mutations.56 However, in contrast to congenital lipoid adrenal hyperplasia caused by StAR mutations,
adrenal hyperplasia has not been reported in patients with P450scc deficiency.57 The phenotypic
spectrum of P450scc deficiency ranges from severe loss-of-function mutations associated with
prematurity, complete underandrogenisation and severe early-onset adrenal failure, to partial defi-
ciencies found in children born at term with mild masculinisation and later-onset adrenal failure.58

Biochemical diagnosis: High ACTH and renin levels and the presence of undetectable or low levels of
all glucocorticoids, mineralocorticoids and androgens.

Molecular defects: It has been thought that CYP11A mutations are incompatible with human term
gestation, because P450scc is needed for placental biosynthesis of progesterone, which is required to
maintain pregnancy. However, a patient has been described with congenital lipoid adrenal hyperplasia
with normal StAR and SF1 genes presenting a de novo heterozygous inactivating mutation in CYP11A.59

This patient was atypical for congenital lipoid adrenal hyperplasia, having survived for 4 years without
hormonal replacement.59 More recently, the study of infants with adrenal failure and disorder of sexual
differentiation identified compound heterozygous or homozygous mutations in CYP11A1 recognising
that the disorder may be more frequent than originally thought.56,57,60,61

Treatment: Glucocorticoid and mineralocorticoid replacement are necessary. Androgen replace-
ment in male patients and oestrogen and progesterone replacement in females is usually necessary.

3b-hydroxysteroid dehydrogenase type II deficiency
The following step in testosterone biosynthesis is the conversion of dehydroepiandrosterone

(DHEA) in androstenedione by 3b-hydroxysteroid dehydrogenase (3b-HSD) type II (Figure 5). 3b-HSD
converts 3b-hydroxy D5 steroids to 3-keto D4 steroids and is essential for the biosynthesis of miner-
alocorticoids, glucocorticoids and sex steroids.62 Two forms of the enzyme have been described in
man: type I and type II enzymes.63 The types I and II genes are known to be closely linked on chro-
mosome 1p13.1. The type II gene (HSD3B2), which encodes a protein of 371 amino acids, shares 93.5%
identity with the type I gene and is almost exclusively expressed in the adrenals, ovary and testis.
HSD3B1 encodes an enzyme of 372 amino acids predominantly expressed in the placenta and
peripheral tissues, such as the skin, mammary gland, prostate and several other normal and tumour
tissues. 3b-HSD subcellular localisation patterns are unique in that they show varying degrees of
endoplasmic reticular and mitochondrial distribution. The two forms are very closely related in
structure and substrate specificity, although the type I enzyme has higher substrate affinities and
a fivefold greater enzymatic activity than type II.64 The structure of each of the HSD3B2 and HSD3B1
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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genes consists of four exons included on a 7.8-kb fragment of chromosome 1p13.1.19 Five related
pseudogenes have also been cloned.

Phenotype: Male patients with 3b-HSD type II deficiency present with ambiguous external genitalia,
characterised by micropenis, perineal hypospadias, bifid scrotum and a blind vaginal pouch that may or
may not be associated with salt loss.62 Gynaecomastia is common at pubertal stage. Most of the
patients were raised as males and retained the male social sex at puberty. In one Brazilian family, two
cousins with 46,XY DSD due to 3b-HSD type II deficiency were reared as females; one of them was
castrated in childhood and maintained the female social sex; the other was not castrated at childhood
and changed to male social sex at puberty.65 The phenotype of affected 46,XX subjects may or may not
include salt wasting and absent or minimal virilisation except for one untreated adult patient with
bilateral adrenal rests which developed severe virilisation.66 Premature pubarche, acne and pubertal
hirsutism were also described in affected females.67,68 Male subjects with 46,XY DSD due to 3b-HSD
type II deficiency without salt wasting showed clinical features in common with the deficiencies of
17b-HSD 3 and 5a-reductase 2.

Biochemical diagnosis: Based on the high serum levels of D-5 steroids (pregnenolone, 17a-hydrox-
ypregnenolone, DHEA and DHEA-sulphate (DHEAS) as well as 17OHPreg:17OHP ratio. Basal and post-
ACTH serum 17-hydroxypregnenolone and the 17a-hydroxypregnenolone/cortisol ratio are the gold
standard biochemical parameters for 3b-HSD type II deficiency diagnosis, although molecular studies
for diagnostic confirmation are advisable.67,68 Serum D-4 steroids are slightly increased due to the
peripheral action of 3b-HSD type I enzyme but the ratio of D-5/D-4 steroids is elevated. Cortisol
secretion is reduced but the response to exogenous ACTH stimulation varies from decreased (in more
severe deficiency) to normal.65,69

Molecular defects: There are nearly 40 mutations in 3b-HSD type II gene that have already been
described. Mutations that lead to the abolition of 3b-HSD type II activity lead to CAH with severe salt
loss.64,70–72 Mutations that reduce but do not abolish type II activity lead to CAH with mild or no salt
loss, which, in males, is associated with 46,XY DSD due to the reduction in androgen synthesis.69,73

Treatment: Glucocorticoid replacement is necessary along with mineralocorticoids in salt-losing
patients. In male patients, androgen replacement is usually necessary when they present low levels of
testosterone. However, affected males can reach normal or almost normal levels of testosterone due to
the peripheral conversion of elevated D-5 steroids by 3b-HSD type I enzyme and also due to testicular
stimulation by the high LH levels.65

CYP17 (17-hydroxylase and C-17-20 lyase deficiency)
The next step in the biosynthesis is the conversion of pregnenolone into 17a-hydroxypregnenolone

and further down into DHEA by P450c17 (Figure 5). CYP17A1 gene contains eight exons over 6.4 kb of
DNA and is located on chromosome 10q24.3. The protein has 509 amino acids.74 P450c17 is
a steroidogenic enzyme that has hydroxylation and lyase functions and is located in the endoplasmic
reticulum of the fasciculata and reticularis zone of the adrenal cortex and in gonadal tissues.75

Phenotype: Deficiency of adrenal 17a-hydroxylation activity was first demonstrated by Biglieri
et al.76 The phenotype of 17a-hydroxylase deficiency in most of the male patients described is a female-
like or slightly virilised external genitalia with blind vaginal pouch, cryptorchidism and high blood
pressure, usually associated with hypokalaemia. In 1970, New reported the first affected patient with
ambiguous genitalia, who was assigned to the male sex.77 At puberty, patients usually present sparse
axillary and pubic hair. Male internal genitalia are hypoplastic and gynaecomastia can appear at
puberty. Most of the male patients were reared as female and were sought treatment due to primary
amenorrhoea or lack of breast development. Female patients may also be affected and present normal
development of internal and external genitalia at birth and hypergonadotrophic hypogonadism and
amenorrhoea at post-pubertal age, enlarged ovaries as adults and infarction from twisting can
occur.78,79 These patients do not present signs of glucocorticoid insufficiency due to the elevated levels
of corticosterone, which has a glucocorticoid effect. The phenotype is similar to 46,XX or 46,XY
complete gonadal dysgenesis and the presence of systemic hypertension and absent or sparse pubic
hair in post-pubertal patients suggests the diagnosis of 17a-hydroxylase deficiency.80

Biochemical diagnosis: 17a-hydroxylase deficiency is characterised by a five- to tenfold increase in the
17-deoxysteroids – corticosterone, deoxycorticosterone and progesterone – in basal and ACTH-stimulated
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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conditions, while aldosterone, 17OH-progesterone, cortisol, androgens and oestrogens levels are
decreased. Excessive production of deoxycorticosterone and corticosterone results in vascular hyper-
tension and suppression of renin levels and inhibition of aldosterone synthesis. In addition, 17a-
hydroxylase deficiency is characterised by elevated production of 18-hydroxycorticosterone and 18-
hydroxy-DOC, in contrast to 11-hydroxylase and 21-hydroxylase deficiencies. Progesterone is always
elevated in 17a-hydroxylase deficiency and its measurement is available in most laboratories. Basal
progesterone measurement is a useful and practical screen for diagnosis of 17a-hydroxylase deficiency,
particularly if the clinical presentation excludes other forms of CAH.75 Basal progesterone measurement
should reduce the misdiagnosis of 17a-hydroxylase deficiency in patients with 46,XY DSD, primary or
secondary amenorrhoea associated to mineralocorticoid-excess syndrome.

Molecular defects: Several mutations in the CYP17 gene have been identified in patients with
combined 17a-hydroxylase and 17,20 lyase deficiencies.75,78,79,81 Both P450c17 activities were abol-
ished in four novel homozygous mutations recently described; the mutant proteins were normally
expressed, suggesting that the loss of enzymatic activity is not due to defects of synthesis, stability or
localisation of P450c17 proteins.81

Treatment: Glucocorticoid replacement is necessary for hypertension management. In the begin-
ning of treatment, the use of spironolactone is, sometimes, necessary to control blood pressure. These
patients are very sensitive to glucocorticoids and low doses of dexamethasone (0.125–0.5 mg at night)
are sufficient to control blood pressure. Gonadectomy and oestrogen replacement at puberty are
indicate for patients reared in the female social sex. In male patients, androgen replacement is usually
necessary since they present very low levels of testosterone. In some patients, however, oestrogens
might aggravate hypertension. The control of blood pressure can be initially achieved by salt restriction
although mineralocorticoid antagonists might be necessary.81

Defects in testicular steroidogenesis

Two defects in testosterone synthesis that are not associated with adrenal insufficiency have been
described: isolated 17,20-lyase deficiency (CYP17 deficiency) and 17b-HSD III deficiency (17-b-HSD 3
deficiency) (Figure 5).

CYP17 (17,20 lyase activity) deficiency

Human male sexual differentiation requires production of foetal testicular testosterone, whose
biosynthesis requires steroid 17,20-lyase activity. The existence of true isolated 17,20-lyase deficiency
has been questioned because 17-a-hydroxylase and 17,20-lyase activities are catalysed by a single
enzyme and because combined deficiencies of both activities were found in functional studies of the
mutation found in a patient thought to have had isolated 17,20-lyase deficiency.82 Later, clear
molecular evidence of the existence of isolated 17,20 desmolase deficiency was demonstrated.79,83

Phenotype: The patients present ambiguous genitalia with micropenis, perineal hypospadias and
cryptorchidism. Gynaecomastia Tanner stage V can occur at puberty.83

Biochemical diagnosis: Elevated serum levels of 17-OHP and 17-OHPreg, with low levels of
androstenedione, DHEA and testosterone. The hCG stimulation test results in a slight stimulation in
androstenedione and testosterone secretion with an accumulation of 17-OHP and 17-OHPreg.

Molecular defects: These comprise mutations that alter the electrostatic charge distribution in the
redox-partner binding site, so that the electron transfer for the 17,20-lyase reaction is selectively lost.83 The
CYP17 gene of two unrelated Brazilian 46,XY DSD patients with clinical and hormonal findings indicative of
isolated 17,20-lyase deficiency, since they produced cortisol normally, carrier homozygous mutations in
CYP17.83 When expressed in COS-1 cells, the mutants retained 17a-hydroxylase activity and had minimal
17,20-lyase activity.83 In addition, POR mutations can be misdiagnosis as isolated 17,20-lyase deficiency.84

46,XY DSD due to 17b-HSD 3 deficiency

Final biosynthetic step in foetal Leydig cell is the conversion of androstendione to testosterone,
activated by type III 17b-HSD (Figure 5). This disorder consists of a defect in the last phase of
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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steroidogenesis, when androstenedione is converted into testosterone and oestrone into oestradiol.
This disorder was described by Saez and his colleagues85 and it is the most common disorder of
androgen synthesis, reported in several parts of the world.86

There are five steroid 17b-HSD enzymes which catalyse this reaction87 and 46,XY DSD results from
mutations in the gene encoding the 17b-HSD3 isoenzyme.87,88 The HSD17B3 gene contains 11 exons
and is located on chromosome 9q22. The protein has 310 amino acids. At least 14 isozymes have been
described. They can be predominantly reductive (types 1, 3, 5 and 7) or oxidative (types 2, 4 and 8).
Many are involved in the oestrogen balance in peripheral tissues. Type 1 is expressed in the ovary. Type
3 catalyses the reduction of androstenedione to testosterone, and it is almost exclusively expressed into
the testis.87,88

Phenotype: Patients present female-like or ambiguous genitalia at birth, with the presence of
a blind vaginal pouch, intra-abdominal or inguinal testes and epididymides, vasa deferentia, seminal
vesicles and ejaculatory ducts. Most affected males are raised as females89,90, but some have less
severe defects in virilisation and are raised as males.87 Virilisation in subjects with 17b-HSD3
deficiency occurs at the time of expected puberty (Figure 6). This late virilisation is usually
a consequence of the presence of testosterone in the circulation as a result of the conversion of
androstenedione to testosterone by some other 17b-HSD isoenzyme (presumably 17b-HSD5) in
extra-gonadal tissue and, occasionally, of the secretion of testosterone by the testes when levels of
LH are elevated in subjects with some residual 17b-HSD3 function.87 However, the discrepancy
between the failure of intrauterine masculinisation and the virilisation that occurs at the time of
expected puberty is poorly understood. A limited capacity to convert androstenedione into testos-
terone in the foetal extragonadal tissues may explain the impairment of virilisation of the external
genitalia in the newborn. Bilateral orchiectomy resulted in a clear reduction of androstenedione
levels, indicating that the principal origin of this androgen is the testis.87,90 46,XY DSD phenotype is
sufficiently variable in 17b-HSD3 deficiency to cause problems in accurate diagnosis, particularly in
distinguishing it from partial androgen insensitivity syndrome.89,91
U
N
C
O
R
R
E
C
T
E

Figure 6. Adult 46,XY patient with 17b-HSD3 deficiency before and after masculinising genitoplasty.
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Most 46,XY patients are raised as girls during childhood and change to male gender-role behaviour
at puberty has been frequently described in individuals with this disorder who were reared as
females90,92–94, including members of a large consanguineous family in the Gaza strip.95 46,XX subjects
homozygous for HSD17B3 mutations presented with normal phenotype.96

Biochemical diagnosis: Laboratory diagnosis is based on elevated serum levels of androstenedione
and oestrone and low levels of testosterone and oestradiol in basal conditions and following hCG
stimulation resulting in elevated androstenedione/testosterone and oestrone/oestradiol ratios indi-
cating impairment in the conversion of 17-keto into 17-hydroxysteroids. At the time of expected
puberty, serum LH and testosterone levels increase in all affected 46,XY subjects and testosterone
levels may be into the normal adult male range.90

Molecular defect: The disorder is due to homozygous or compound heterozygous mutations in the
gene that encodes the 17b-HSD3 isoenzyme and several mutations have been reported.87,97

Treatment: Gonadectomy and oestrogen replacement at puberty are indicative of patients reared in
the female social sex. In male patients, androgen replacement is necessary when they present low
levels of testosterone. In the patients with mild defects, testosterone replacement is not usually
necessary.
 O
P
RAltered steroidogenesis due to disrupted electron donor proteins

Two defects in steroid synthesis due to disrupted electron donor have been described: cytochrome
P450 reductase (POR) deficiency and cytochrome b5 defect.
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Cytochrome P450 reductase (POR) deficiency

POR is required for the activity of all 50 human type II P450 enzymes including POR and the
steroidogenic enzymes P450c17, P450c21 and P450aro.49

Nevertheless, mutation of the human POR gene is compatible with life, causing multiple
steroidogenic defects and a skeletal dysplasia called Antley–Bixler syndrome.98 P450 oxidoreductase
deficiency typically presents a steroid profile suggesting combined deficiencies of steroid 21-
hydroxylase and 17a-hydroxylase/17,20-lyase activities. The clinical spectrum of P450 oxidoreductase
deficiency ranges from severely affected, 46,XX children with ambiguous genitalia, adrenal insuffi-
ciency or polycystic ovary syndrome and the Antley–Bixler skeletal malformation syndrome to normal
or mildly affected 46,XY individuals.98,99 P450 oxidoreductase deficiency, with or without Antley–
Bixler syndrome, is autosomal recessive, whereas Antley–Bixler syndrome without disordered
steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations.100

A complete revision on P450 reductase deficiency can be find in chapter X.

Methaemoglobinaemia, type IV, with 46,XY DSD due to cytochrome b5 defect
Cytochrome b5 is a heme protein associated primarily with the endoplasmic reticulum codified by

CYB5A gene located at 18q23 locus. The reductase contains flavin adenine dinucleotide and is nearly
twice the size of cytochrome b5. Enhancement of P450 reactions by b5 occurs by a direct electron
transfer of both required electrons from NADH-cytochrome b5 reductase to P450, in a pathway
separate and independent of NADPH-cytochrome P450 reductase. Another pathways are the transfer of
the second electron to oxyferrous P450 from either cytochrome b5 reductase or cytochrome P450
reductase and allosteric stimulation of P450 without electron transfer.101

A single patient with type IV hereditary methaemoglobinaemia and with 46,XY DSD was
described.102 The patient exhibited female genitalia at birth and had a homozygous 16-bp deletion in
the cytochrome b5 mRNA leading to a new in-frame termination codon and a truncated meth-
aemoglobin.103 The parents and six siblings had normal methaemoglobin levels, whereas the patient’s
levels varied between 12% and 19%.

The aetiology of 46,XY DSD in this patient was attributed to the cytochrome b5 defect since cyto-
chrome b5 has been shown to participate in 17a-hydroxylation in adrenal steroidogenesis by serving as
an electron donor.103
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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46,XY DSD due to defects in testosterone metabolism

5a-Reductase type 2 deficiency

There are two steroid 5a-reductase enzymes that catalyse 5a-reductase reaction.104–106 46,XY
DSD results from mutations in SRD5A2 gene which encodes the steroid 5a-RD2 isoenzyme.107–

109 The 5a-RD2 isoenzyme promotes the conversion of testosterone to its 5a-reduced metab-
olite DHT. The 5a-RD2 gene contains five exons and four introns and is located at chromosome
2 p23.

Phenotype: Affected patients present with ambiguous external genitalia, micropenis, normal
internal male genitalia, prostate hypoplasia and testes with normal differentiation with normal or
reduced spermatogenesis (Figure 7). The testes are usually located in the inguinal region,
suggesting that DHT influences testis migration to the scrotum.109 Virilisation and deep voice
appear at puberty, along with penile enlargement and muscle-mass development without
gynaecomastia. These patients present scarce facial and body hair and absence of temporal male
baldness, acne and prostate enlargement, since these features depend on DHT action. Most of the
patients are reared in the female social sex due to female-like external genitalia at birth, but many
patients who have not been submitted to orchiectomy in childhood undergo male social sex
change at puberty.109–113 In our experience with 30 cases of 46,XY DSD due to 5-a-RD 2 deficiency,
from 18 families, all subjects were registered in the female social sex except for two cases – one
who has an affected uncle and the other who was diagnosed before being registered.112,114 Four-
teen patients changed to the male gender role (Figure 7). No correlation was observed between
SRD5A2 mutation, testosterone/DHT ratio and gender-role change in these patients. In one family,
the two siblings carried the same mutation but presented a different gender role.112 Ten cases are
adults now and nine of them are married. Three cases adopted children and in two cases in vitro
fertilisation using the patient’s sperm cells resulted in twin siblings in one family and in
a singleton pregnancy in the other.112,114 Fourteen patients maintained the female sexual identi-
fication. Three of them were castrated in childhood and the others, despite the virilisation signs
developed at puberty, kept the female social sex and sought medical treatment to correct absence
of breast development and primary amenorrhoea. None of the 10 adult female patients, now in the
age range of 22–49 years, are married but eight of them have satisfactory sexual activity. The main
differential diagnosis of 5a-RD2 deficiency is with 17b-HSD3 deficiency and partial androgen
insensitivity syndrome although in these two disorders it is common to observe the presence of
gynaecomastia.

Inheritance: The mode of inheritance for 5a-RD2 deficiency is autosomal recessive. A different mode
of transmission of 5-a RD2 deficiency due to uniparental disomy was described in two unrelated
patients.115

Biochemical diagnosis: Following hCG stimulation, affected children show lower DHT levels and
elevated testosterone/DHT ratio.88,116 Post-pubertal affected patients present normal or elevated
testosterone levels, low DHT levels and elevated testosterone/DHT ratio in basal conditions. Low DHT
production following exogenous testosterone administration is also capable of identifying 5a-RD2
deficiency.112 Elevated 5b/5a urinary metabolites ratio is also an accurate method to diagnose 5a-
reductase 2 even at prepubertal age and in orchiectomised adult patients.112,117

Molecular defects: There are more than 50 families with this disorder described in several parts of
the world.109–111,113 In a few cases of 46,XY DSD due to 5-a RD2 deficiency diagnosed by clinical and
hormonal findings, no mutations were identified in SRD5A2 gene.107,109–111,113

Treatment: In male patients with 5-a RD2 deficiency, higher doses of testosterone esters (250–
500 mg twice a week) are used to increase DHT levels and consequently penis size and male
secondary characteristics. Maximum penis enlargement is obtained following 6 months of high
doses and after that the normal dosage is re-instituted.109,112 The use of topic DHT gel is also useful
to increase penis size with the advantage of not causing gynaecomastia and promoting a faster
increase of penis size as it is 50 times more active than testosterone. DHT is not aromatised, allowing
the use of higher doses than testosterone during prepubertal age and consequently attaining
a higher degree of virilisation.
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
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Figure 7. A Prepubertal 46,XY due to 5a-reductase 2 deficiency children with ambiguous genitalia, small phallus and bifid scrotum.
B: Adult males with 46,XY DSD due to 5a-reductase 2 deficiency after masculinising genitoplasty.
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Investigation of 46,XY DSD patients with androgen-production defects
In patients with androgen-production defects, post-pubertal diagnosis is made through basal

steroid levels. Testosterone levels are low and steroids past the enzymatic blockage are elevated. This
pattern can be confirmed with an hCG-stimulation test, which increases the accumulation of steroids
past the enzymatic blockage with a slight elevation of testosterone. In prepubertal individuals, hCG-
stimulation test is essential for the diagnosis, since basal levels are not altered.

There are several hCG-stimulation protocols and normative data have to be established to each of
them. We established normal testosterone response 72 and 96 h following the last of four doses of hCG,
Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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50–100 U per kilogram of body weight, given intramuscularly every 4 days in boys with cryptorchidism
but an otherwise normal external genitalia. Peak testosterone levels reached 391�129 ng dl�1

(17.5� 5.7 nMol l�1) and we consider a subnormal response a value <130 ng dl�1 (5.8 nMol l�1) (cor-
responding to �2 SD).118

We also established the normal levels of DHT in prepubertal boys using the same hCG protocol. DHT
peak was 29� 8 ng dlL1 (1.0� 0.27 nMol lL1) and testosterone/DHT ratio was 14� 5. In adult males,
basal DHT levels was 46�10 ng dlL1 (1.6� 0.34 nMol lL1) with a testosterone/DHT ratio of 14� 5;
following a single 6000 IU hCG intramusculary whereas DHT peak value was 64�16.5 ng dlL1

(2.2� 0.57 nMol lL1) with a testosterone/DHT ratio of 21�9.7.109

Markers of Sertoli cell function (serum AMH and inhibin B) are useful in the differential diagnosis
of 46,XY DSD due to disorders of androgen production and 46,XY DSD due to abnormalities of
gonadal development. In 46;XY DSD due to impaired androgen production, but not in gonadal
dysgenesis, Sertoli cell function is normal. This is particularly useful in the newborn period and in
prepubertal ages.

Imaging is indicated in neonatal period when genital ambiguity is identified. If apparent female
genitalia with clitoral hypertrophy, posterior labial fusion, foreshortened vulva with single opening
or inguinal/labial mass is present, imaging study may also be performed. A family history of DSD
and later presentations as abnormal puberty or primary amenorrhoea, cyclic haematuria in a male
or inguinal hernia in a female require an imaging evaluation. The ultrasonography is always the
first and, often, the most valuable imaging modality in investigation of DSD patients. Ultrasound
shows the presence or absence of Müllerian structures at all ages and can locate the gonads and
characterise its echo texture. This exam can also identify associated malformations such as kidney
abnormalities.119 Genitography and cystourethrography can display the type of urethra, the pres-
ence of vagina, cervix and urogenital sinus. Although, the imaging features are non-specific for the
cause of DSD, these diagnostic methods are important in gender assignment and, specially, to the
planning of surgery. It is important, though, that the procedure be carried out by an experienced
examiner.

The genetic evaluation includes karyotype, fluorescence in situ hybridisation (FISH) and more
recently specific molecular studies to screen the presence of mutations or gene dosage imbalance.

In summary, 46,XY DSD secondary to defects in androgen production by the foetal testis show
a variable phenotype, strongly depending of the particularly mutated gene. The predominant
phenotype is female or poorly virilised external genitalia and absence of uterus and fallopian tubes.
This phenotype frequently results in a female sex assignment at birth and an accurate diagnosis can
avoid late problems to this patients.

Finally, it is important to keep in mind that patients with DSD of any aetiology should receive long-
term care provided by multidisciplinary teams in centres of excellence with ample experience in this
clinical management.
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Practice points

- The SLOS is caused by an inborn error of post-squalene cholesterol biosynthesis. Considering
the relative high frequency of this syndrome, we suggest that at least cholesterol levels
should be routinely measured in patients with 46,XY DSD.

- All of the enzymatic defects that alter the normal synthesis of testosterone present an
autosomal recessive mode of inheritance and genetic counselling is mandatory, since every
additional sibling has a 25% chance of being affected with the same synthesis defect.

- In prepubertal individuals with androgen production defects, hCG stimulation test is
essential for the diagnosis, since basal levels are not altered.

- Patients with 46,XY DSD of any aetiology should receive long-term care provided by qualified
multidisciplinary teams in tertiary hospital

Please cite this article in press as: Mendonca B.B, et al., 46,XY DSD due to impaired androgen production,
Best Practice & Research Clinical Endocrinology & Metabolism (2009), doi:10.1016/j.beem.2009.11.003
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Research agenda

- The absence of causative mutations in LHCGR in several patients strongly suspected to have
Leydig cell hypoplasia, supported the idea that other genes should be implicated in the
molecular basis of this disorder.
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