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Abstract 

We studied the effect of insulin resistance (IR) induced by administration of a fructose-rich diet 

(FRD) to normal Wistar rats for 21 days, upon islet plasma membrane calcium ATPases (PMCAs) 

and insulin secretion. FRD rats showed significantly higher triglyceride and insulin levels, 

insulin:glucose ratio and HOMA-IR index than controls. FRD islets released significantly more 

insulin in response to glucose and showed a) marked changes in PMCA isoform protein content 

(decreased PMCA2 and increased PMCA3),  b) a decrease in total PMCAs activity, and c) higher 

levels of cytosolic calcium [Ca2+]i. The lower PMCAs activity with the resultant increase in [Ca2+]i 

would favor the compensatory greater release of insulin necessary to cope with the IR state present 

in FRD rats and to maintain normal glucose homeostasis. Thus, changes in PMCAs activity and 

isoform expression play a modulatory role upon insulin secretion during long-term adaptation to an 

increased hormone demand.  

 

Keywords: Calcium pumps; PMCAs; Insulin resistance; Insulin secretion; PMCA isoforms; 

Pancreatic islets 
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Glucose-induced insulin secretion is regulated by a complex process that includes increase in 

islet glucose metabolism and ATP/ADP ratio [1], closure of the KATP-dependent channel [2], 

depolarization of the plasma membrane, opening of Ca2+ channels, and increase of the cytosolic 

Ca2+ concentration that finally triggers insulin release [3].   

Ca2+ homeostasis during cellular activity involves its removal from the cell by two different 

mechanisms, the Na+/Ca2+ exchanger (NCX) [4] and the plasma membrane calcium adenosin 

triphosphatase transporters (ATPases) (PMCAs) [5,6]. PMCAs belong to a family of ionic ATPases 

of the P-type and the P2 subfamily (subtype 2B) [7,8] with high affinity-low capacity for Ca2+ 

extrusion through the plasma membrane and responsible for the fine-tuning of intracellular Ca2+ 

concentration (0.1-0.2 µM) [5,9]. While PMCAs 1 and 4 are expressed in most tissues [10], PMCAs 

2 and 3 display a more restricted expression; in adult animals they are predominantly expressed in 

brain and muscle, and in smaller amounts in uterus, liver, kidney, pancreas and mammary gland 

[11].   

Several authors have reported the presence of PMCAs in rat islets [12-18]; in β-cells, a unique 

combination of PMCAs subtypes is present [17-19] and their amount is 10 times higher than in the 

exocrine pancreas [19]. Our group has demonstrated that while glucose produces a transient and 

dose-dependent inhibition of islet PMCAs activity, this activity is increased by insulin secretion 

blockers [16]. Therefore, islet PMCAs activity is modulated by insulin secretagogues or blockers, 

and consequently participates in the short-term regulation of insulin secretion [13,16,20,21].  

Despite the extensive knowledge about islet PMCAs patterns and regulatory role upon insulin 

secretion under normal conditions, there are scarce reports on their possible changes and 

participation in the pathogenesis of diseases affecting islet function, such as type 2 diabetes, 

(T2DM) and impaired glucose tolerance (IGT). Considering that insulin resistance (IR) is an early 

functional abnormality that precedes the development of T2DM, knowledge about PMCAs state in 

that condition could help to understand their possible participation in the pathogenesis of that 

disease. 
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Administration of a fructose-rich diet (FRD) to normal rats induces IR together with other 

metabolic abnormalities similar to those observed in human IGT, T2DM and the metabolic 

syndrome, i.e., IR, dyslipidemia, hypertension, and hyperinsulinemia [22-24]. On the other hand, 

FRD-induced hyperglycemia and dyslipidemia are associated with an increased production of 

reactive oxygen species (ROS) and a reduction of antioxidant defenses, thus promoting an oxidative 

stress [25,26]. Since pancreatic islets have a low concentration of antioxidant enzymes, long-time 

feeding of a FRD causes β-cell damage [25-28], as shown by the development of T2DM [23]. 

Under such circumstances, islet PMCAs activity could undergo modifications due to a direct 

inhibitory effect of ROS upon the pump´s activity [29,30], while islet membrane nonenzymatic 

glycosylation, consecutive to hyperglycemia, could also contribute to decrease its activity [31,32].   

In an attempt to explain the mechanism of the process of β-cell adaptation/failure to an increased 

demand of insulin, we studied the effect of IR and IGT induced by FRD administration to normal 

rats upon islet PMCA transcription, expression and activity, and the relationship between these 

changes and insulin secretion.  

 

Materials and methods  

Materials 

PMCA antibodies were generously provided by Dr. J.T. Penniston and Dr. E.E. Strehler (Mayo 

Clinic, Rochester, Minnesota, USA). Anti-mouse and anti-rabbit IgG antibodies were obtained from 

Vector (Burlingame, CA, USA). PCR reagents were from Invitrogen Argentina. All other highly 

purified reagents were obtained from Sigma (St. Louis, MO, USA).  

Animals 

Normal adult male Wistar rats weighing 180-200 g were housed in climate-controlled conditions 

and received either a standard commercial diet and tap water (control group, C) or the same food 

plus 10% fructose (Invertose 026430 Productos de Maiz S.A., Argentina) added to the drinking 
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water (FRD). Twenty-one days after this treatment, the animals were killed to perform the studies 

described below.  

Plasma determinations 

Before sacrifice, blood samples were drawn from the retroorbital plexus under light isoflurane 

anesthesia, and collected in heparinized tubes to measure plasma glucose (One Touch Ultra, 

Johnson & Johnson, USA), triglyceride (enzymatic kit, BioSystems S.A., Barcelona, Spain) and 

insulin (radioimmunoassay, RIA) [33] levels. IR was assessed with the HOMA-IR index, calculated 

as insulin (µU/ml) x glucose (mmol/L)/22.5 [34].  

Islet isolation  

Pancreatic islets were isolated by collagenase digestion (Roche, Mannheim, Germany) [35]. The 

islets were collected and resuspended in specific buffers to study insulin secretion and PMCAs 

expression and activity.  

Insulin secretion studies 

Groups of 5 islets isolated from C and FRD rats were incubated for 1 h in 0.6 ml of Krebs-

Ringer bicarbonate (KRB) buffer, pH 7.4 (gassed with 95% O2, 5% CO2), with different glucose 

concentrations (2, 4, 8, 12, 16 and 20 mM). Insulin released to the incubation media was measured 

by RIA [33]. 

Islet insulin content 

Groups of 30 islets were homogenized in 400 µl of distilled water and the insulin content was 

determined by RIA [33].  

RNA preparation and RT-PCR 

Total RNA was isolated from C and FRD islets using Trizol reagent (Gibco) following the 

manufacturer´s protocol [36]. RNA integrity was verified by electrophoresis on agarose-

formaldehyde gels. Total RNA (1 µg) was reverse-transcribed and cDNA was submitted to PCR 
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[37]. Specific pairs of primers were designed to detect the different isoform mRNAs based on the 

rat´s PMCA cDNA sequences: PMCA1 (GenBank accession no. J03753) forward, 5′-GAA AAC 

ATC TCC CAA TGA AGG-3′; reverse, 5′-ACC TGA AAG AAG CAA GGG GT-3′; PMCA2 

(GenBank accession no. J03754) forward, 5′GCC TCA AAA CCT CTC CTG TT-3′; reverse, 5′-

ATG TCC CCA ACC ACA ATC TC-3′; PMCA3 (GenBank accession no. J05087) forward, 5′-

CAC AGC CTT CAA TGA CTG-3′; reverse, 5′-CCT TCC ATG ACA TGA GTG-3′; and PMCA4 

(GenBank accession no. U15408) forward, 5′-AGC GTA GAC TTG TTT TTG GG-3′; reverse, 5′-

CCC TTC AAT CCA GCC AGT T-3′. β-actin (GenBank accession no. V01217: forward, 5′-CGT 

AAA GAC CTC TAT GCC AA-3′; reverse, 5′-AGC CAT GCC AAA TGT CTC AT-3′) was used 

as internal standard. A semi-quantitative RT-PCR method was performed to determine the levels of 

each PMCA cDNA by co-amplification with β-actin. Optimal conditions to co-amplify each 

isoform with β-actin were determined by testing the number of cycles that correspond to the 

exponential phase of the PCR amplification (25 to 39 cycles). Accordingly, we chose 32 cycles for 

PMCA 1, 2 and 4, and 35 cycles for PMCA 3. All experiments were performed with equimolar 

primer concentrations (0.5 µM). At the end of the amplification, a 20 µl aliquot was subjected to 

electrophoresis in 1.5% (w/v) agarose gel with ethidium bromide in 1x TBE buffer. The intensity of 

the bands was quantified by densitometry using a Kodak DC290 digital camera and the Kodak 1D 

Image Analysis Software (Eastman Kodak Company). Quantitation was done by comparing the 

intensity of a given band towards that of its internal standard (β-actin).  

Preparation of islet microsomal fractions 

Islets were collected and washed in PBS containing 1 mM EDTA. Tissue was homogenized after 

15 min equilibration in a solution of 10 mM Tris-HCl, pH 7.5, containing 1 mM MgCl2, 0.1 mM 

PMSF, 4 µg/ml aprotinin and 2 mM DTT. An equal volume of 10 mM Tris-HCl, pH 7.5, containing 

0.3 M KCl, 0.5 M sucrose and 2 mM DTT was added to the homogenates and the mixture was 

further homogenized. The homogenate was centrifuged at 4000 × g for 15 min to discard unbroken 

cells, tissue debris and nuclei. The supernatant was centrifuged at 100,000 × g for 90 min, and the 
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pellet resuspended in 10 mM Tris/HCl, pH 7.2, 120 mM NaCl, 2 mM DTT, 2 mM EDTA, 0.1 mM 

PMSF, 0.1 mM benzamidine, and 8 µg/ml aprotinin. The microsomal fraction was kept in liquid 

nitrogen until further use.  

Electrophoretic transfer and imnmunoblot analysis of islet membrane samples  

Twenty microliters of islet membrane samples (equivalent to 600 islets) from C and FRD islets 

were loaded on a 4% acrylamide stacking gel. Electrophoresis was performed on 7.5% 

polyacrylamide gels in the presence of SDS [38]. Proteins were then transferred onto PVDF 

membranes (Biorad). Membranes were blocked with 10% non-fat dry milk in PBS and incubated 

overnight with the specific antibody: 5F10 monoclonal anti- (human erythrocyte) Ca2+-ATPase 

antibody (1:1000), JA9 monoclonal anti-PMCA4, polyclonal PMCA1 (NR1), PMCA2 (NR2) or 

PMCA3 (NR3) (1:200) antibody. After washing with PBS containing 0.05 % (v/v) Tween 20, 

membrane filters were incubated for 30 min with anti-mouse or anti-rabit antibody (Vector; 

1:2,000) and another 30 min with streptavidine (1:2000). Bound antibodies were visualized by 

addition of DAB (Sigma). The density of the bands was measured using Kodak 1D Image Analysis 

Software (Eastman Kodak Company).  

PMCA activity 

PMCA activity was determined by measuring the release of phosphate from ATP, following the 

Baginski modified method [39]. Islet homogenates (10 and 15 µg of protein) from C and FRD islets 

were incubated in Tris-HCl buffer (pH 7.2 at 37 ºC), 2 mM ATP, and sufficient CaCl2 to attain 1.7 

µM of free calcium.  

Ca2+-ATPase activity was expressed as the difference between the activity measured in the 

aforementioned medium with and without calcium; under these conditions, the activity measured 

pertains to the expression of PMCA isoforms [40]. After 60 min incubation, the tubes were 

transferred to an ice/water bath and further incubated for 6 min in the presence of 250 µl of 

33mg/ml ascorbic acid/0.5N HCl/0.1% ammonium heptamolybdate. Incubation was stopped by the 



ACCEPTED MANUSCRIPT 
8 

 
addition of 750 µl of acetic acid, 20% Na+ arsenite and Na+ citrate. Pump activity was determined 

by spectrophotometry at 750 nm. Free calcium was measured with a Ca2+-sensitive electrode.  

To confirm that SERCA activity was not measured with our method, we measured PMCA 

activity in a set of islets in the presence or absence of 200 nM Thapsigargin, the most widely used 

SERCA inhibitor [41].  

To assess the possible participation of calmodulin in the changes induced by FRD upon PMCA 

activity, PMCA activity was also measured in the presence of different concentrations (0-300 µM) 

of calmidazolium, a calmodulin inhibitor [42]. 

Measurement of intracellular Ca2+ ([Ca2+]i)  

Groups of islets islolated from C and FRD rats were transferred to plates containing Krebs-

bicarbonate buffer with 3.3 mM glucose and 1% albumin gassed with 95% O2--5% CO2 and 

incubated for 1 h at 37 °C. Thereafter, 5 µM fura2/AM (Invitrogen, CA, USA) and pluronic acid F-

127 (Invitrogen, CA, USA) in a 1:1 ratio were added to the islets and incubated for another 2 h. 

Islets were then transferred to an open chamber thermostatically regulated (37° C), placed on the 

stage of an inverted microscope (Nikon Eclipse TE 2000-U UK, Kingston, UK) and perifused (flow 

rate, 1.5 ml/min) with Krebs-bicarbonate buffer without albumin plus diferent glucose 

concentrations (3.3, 16.7 and 32 mM) and/or 30mM K+. The excitation wavelength was set at 

340/380 nm and the emitted light was collected at 510 nm by a photomultiplier connected to a 

digital converter and stored in a computer (Ion Optix, Milton, MA USA). Before obtaining the 

signal, background fluorescence was subtracted [43].  

Immunohistochemical analysis 

The whole pancreas was removed and weighed, and a piece of the gland was fixed in 10% 

formaldehyde and embedded in paraffin. Serial sections of fixed pancreases (5 µm) were obtained 

from three different levels of the blocks and mounted on silanized slides (3-aminopropyltriethoxy-

silane; Sigma). Sections were deparaffinized, incubated for 30 min in 3% H2O2 in methanol to 
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block endogenous peroxidase activity, and rehydrated in a descending ethanol series, followed by 

incubation with 2.5% porcine serum to reduce non-specific binding. The slides were then 

sequentially incubated for 24 h at 4 °C in a humidified chamber with our own insulin antibody 

(1:20,000) and a mixture of antibodies against somatostatin (1:6,000; Dako, Glostrup, Denmark), 

glucagon (1:400; Peninsula Laboratories, San Carlos, USA) and pancreatic-polypeptide (1:10,000; 

NovoNordisk, Denmark) to identify β- and non-β-cells, respectively. All these cell types were 

finally stained through a 30 min incubation with the streptavidin-biotin complex appropriately 

diluted (1:40 and 1:20 respectively; Sigma), and alkaline phosphatase (1:40; Sigma).  

PMCA-positive cells were revealed using appropiate dilutions of 5F10 PMCA antibody (1:100) 

together with the streptavidin-biotin complex, peroxidase and carbazole [19]. 

Statistical analysis 

Data were statistically analyzed using ANOVA and the paired t-test. Results were expressed as 

means ± SEM. Differences between groups were considered significant when p values <0.05. 

 

Results  

C and FRD rats ate an average of 18.26 ± 2.02 and 10.74 ± 0.67 g/animal/day solid food, 

respectively; the latter group also consumed 5.26 g/day fructose in the drinking water. The intake of 

the fructose solution modified the food composition consumed by the two groups as follows: 45% 

carbohydrates, 43% proteins and 12% lipids for C vs. 64% carbohydrates, 28% proteins and 8% 

lipids for FRD rats. Consequently, there was a small but not significant difference in caloric intake 

between C and FRD rats (C vs. FRD, 55.6 ± 4.54 vs. 50.8 ± 3.43 kcal/day). Both groups of animals 

had similar body weight at the beginning (C vs. FRD, 192.4 ± 1.66 vs. 190.4 ± 1.16 g) and at the 

end (261.6 ± 2.50 vs. 262.7 ± 2.44 g) of the 21 days of treatment.  

Plasma glucose, triglyceride and insulin levels 

There were no significant differences in the plasma glucose levels of both groups; (C vs. FRD, 



ACCEPTED MANUSCRIPT 
10 

 
130.1 ± 4.4 vs. 131.6 ± 3.2 mg/dl); however, triglyceride and insulin levels were significantly 

higher in FRD rats (C vs. FRD, triglyceride, 98.5 ± 3.5 vs. 158.9 ± 5.5 mg/dl; p < 0.0001; insulin, 

0.77 ± 0.05 vs. 1.16 ± 0.07 ng/ml; p < 0.02). The higher insulin:glucose ratio (0.017 ± 0.0015 vs. 

0.027 ± 0.0017; p < 0.0001) and HOMA-IR values (9.70 ± 1.42 vs. 22.11 ± 3.2; p < 0.001) 

measured in FRD rats demonstrate that they developed an IR state.  

Insulin secretion and islet insulin content  

In both experimental groups, insulin secretion in response to different glucose concentrations (2, 

4, 8, 12, 16 and 20 mM) showed an increasing dose-response pattern. Islets from FRD rats, 

however, released more insulin than C in response to high glucose (8, 12, 16 and 20 mM; p < 0.05, 

0.02, 0.005 and 0.0005, respectively; Fig. 1). Insulin content was higher in FRD islets, but this 

difference was not statistically significant (C, 69.2 ± 4.4; FRD, 75.0 ± 8.1 ng/ml).  

Identification and quantification of PMCA mRNA 

Figure 2 shows that none of the PMCA isoforms modified their transcription level with respect 

to the control (semi quantitative PCR).  

Western blot 

The different bands of the PMCA isoforms were identified by their molecular weight (~ 134 

kDa) using purified enzyme from normal human erythrocytes as standard. The specificity of the 

reaction was tested by omission of the specific first antibody. 

No significant differences between groups were observed when PMCA protein expression was 

measured using the 5F10 antibody, which reacts with all PMCA isoforms (Fig. 3A). Conversely, 

using specific antibodies against each PMCA isoform, FRD islets showed a clear decrease in 

PMCA2 protein expression (p < 0.001), an increase in PMCA3 (p < 0.01), and no significant 

changes in the housekeeping isoform 1 (Fig. 3B and C). We detected, however, a small but not 

significant increase in isoform 4 (Fig. 3B and C).  

PMCA activity 
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No differences were recorded in islet homogenates when PMCA activity was measured in the 

presence or absence of 200 nM thapsigargin (2.75 ± 0.11 vs. 2.82 ± 0.33 µmol Pi/h/mg prot), thus 

confirming that our method specifically measured only PMCA activity.  

Total PMCA activity measured in islet homogenates was significantly lower in FRD islets (C vs. 

FRD, 2.8 ± 0.1 vs. 2.2 ± 0.1 µmol Pi/h/mg prot; p < 0.001; n=33; Fig. 4). 

To assess the possible participation of calmodulin in the changes induced by FRD upon PMCA 

activity, we measured such activity in islets from both experimental groups incubated with different 

calmidazolium concentrations. Calmidazolium reduced the activity of the pump at all the 

concentrations tested (0-300 µM), reaching the greatest inhibition (~ 75%) at 40 µM. Thereafter, we 

tested the effect of 0 to 40 µM calmidazolium upon isolated islet PMCAs from C and FRD rats 

(Fig. 4).  

Calmidazolium reduced the PMCA activity measured in C and FRD islets in a dose-response 

manner. While C islets still had higher PMCA activity than FRD ones in the presence of low 

calmidazolium concentrations (5 and 10 uM), such difference was no longer evident when 

calmodulin effect was totally inhibited by 40 µM calmidazolium (Fig. 4).  

Intracellular Ca2+ concentration ([Ca2+]i ). 

Islets isolated from both experimental groups incubated in 3.3 mM glucose showed an increase 

in [Ca2+]i when perfused with either high glucose (16.7 and 32 mM) or high K+ (30 mM) medium 

(Fig. 5A and B), indicating the integrity of the Ca2+ handling mechanisms. At every glucose 

concentrations tested, islets from FRD-treated rats elicited a significantly higher increment in 

[Ca2+]i (3.3 mM glucose: 100.0 ± 7.6 vs. 159.8 ± 16.4, p<0.005; and 16.7 mM glucose: 100.0 ± 3.1 

vs. 116.6 ± 4.2, p<0.01; Fig 5C); this difference in [Ca2+]i between groups resembled that observed 

in glucose-induced insulin secretion. 

Immunohistochemical studies 

Imunocytochemical staining using 5F10 – an antibody that recognizes all the calcium pump 
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isoforms – showed the presence of PMCA in the plasma membrane of β- (central zone of the islets) 

and non-β- (islet periphery) cells from both experimental groups. No marked changes were 

observed in the PMCA distribution pattern between groups (Fig. 6). 

 

Discussion 

Our study confirms that FRD administration to normal rats induces a state of IR characterized by 

normal plasma glucose levels, increased triglyceride and insulin levels, as well as high 

insulin:glucose molar ratio and HOMA-IR index [22-24]. The combination of high insulin with 

normal glucose levels displayed by FRD rats can be interpreted as a compensatory response of β 

cells to cope with the increased demand of insulin induced by the IR state, in order to maintain 

glucose homeostasis within normal range.   

Consistent with the higher serum insulin levels measured in FRD rats (50.6 %), their islets 

showed a comparable higher [Ca2+]i (59.8%) at basal glucose and released in vitro more insulin in 

response to glucose than C rat islets. Since PMCA activity decreased in FRD rats by 27%, other 

mechanisms might contribute to reach the above mentioned increase in [Ca2+]i. The concomitant 

increase in glucose metabolism measured in islets from rats with FRD-induced IR [44] with the 

consequent rise in the ATP/ADP ratio and activation of Ca2+ channels could be one of those 

mechanisms. These results would suggest that PMCA exerts in vivo a long-term modulation of 

insulin secretion through changes in cytosolic Ca2+ concentration. The fact that increased PMCA2b 

activity – obtained by its over-expression in β-cell lines – results in a decreased concentration of 

cytosolic Ca2+ (confirming an inverse correlation between expression [and activity] levels of the 

calcium pump and cytosolic Ca2+ concentration; [45,46]) supports this assumption. 

The decreased PMCA activity found in FRD islets could be ascribed to significant and uneven 

changes in the protein expression of PMCA isoforms, namely, a significant decrease of PMCA2 in 

parallel with an increase of PMCA3, and no significant changes in the expression of housekeeping 

isoforms 1 and 4. Dissociation between transcription (mRNA levels) and protein expression as the 
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one currently found is not an unusual finding which has been reported already [47]. The absence of 

significant changes in the immunocytochemical PMCA distribution pattern of islet cells suggests 

that such pattern does not play a major role in the mechanism by which IR modulates their activity, 

at least at this early stage of the process.  

The decreased PMCA activity observed in our FRD animals could be ascribed to a direct effect 

of the increased production of ROS [25,29,30,48]. The decrease in PMCA2 protein level was not 

apparently completely compensated by the simultaneous increase in the protein level of PMCA3, 

supporting the concept that the function of PMCA isoforms is not redundant [49]. Since islet 

PMCA2 (spliced “b” isoform) has the highest affinity for calmodulin, and PMCA3 (spliced “a” and 

“c” isoforms) has the lowest, the changes recorded would render islet PMCAs less responsive to 

calmodulin. This fact could explain why calmidazolium inhibition removed the difference in PMCA 

activity between C and FRD islets. However, we cannot discard the possibility that such difference 

was due to FRD-induced changes on the stimulatory effectiveness of endogenous calmodulin upon 

PMCA activity. Our current design cannot define whether one or the sum of all these mechanisms 

induced the decrease in PMCA activity and the changes in the transcription/expression of its 

isoforms in FRD animals.  

Briefly, our results demonstrate that administration of a FRD to normal rats for 3 weeks induces 

an IR state and a significant decrease in islet PMCA activity, with a concomitant [Ca2+]i. increase. 

These functional changes would favor the compensatory higher release of insulin necessary to cope 

with the increased hormone demand and to maintain glucose homeostasis within normal range. The 

decreased PMCA activity could be ascribed to a decreased expression of PMCA2 isoform, highly 

sensitive to calmodulin stimulation, together with a probably lower stimulatory effect of calmodulin 

upon PMCA activity. These results suggest that changes in islet PMCA activity, due to changes in 

isoform expression, play a modulatory role upon insulin secretion during both short-acute and long-

term adaptation periods.  
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Figure legends  

Fig. 1. In vitro insulin secretion. Insulin released by islets isolated from C (white circles) and FRD 

(black circles) rats in response to different glucose concentrations (2, 4, 8, 12, 16 and 20 mM). Both 

experimental groups showed an increasing dose-response pattern although FRD islets released more 

insulin than C in response to high glucose Results represent the means ± SEM of three independent 

experiments; p values between groups *<0.05; **<0.02; ***<0.005.  

Fig. 2. Semi-quantitative RT-PCR. Analysis of the expression levels of the different PMCA 

isoforms in islets from C (white bars) and FRD (black bars) rats. Each panel shows a representative 

picture of the agarose gel together with the quantification chart (panel A: PMCA1, panel B: 

PMCA2, panel C: PMCA3, panel D: PMCA4). None of the PMCA isoforms modified their 

transcription level with respect to the control. The ratio between the gene of interest (GOI) and the 

internal standard is shown in relative units with respect to the ratio measured in C islets. Results 

represent the means ± SEM of three different independent experiments.  

Fig. 3. Panel A: PMCAs Western blot from C and FRD isolated islets performed with 5F10 

antibody, which reacts with all PMCA isoforms. Lane 1: Relative molecular weight marker. Lanes 

2 and 3: Islets isolated from C rats (300 and 400 islets, respectively). Lanes 4 and 5: Islets isolated 

from FRD animals (300 and 400 islets, respectively). Arrows show the position and size (KDa) of 

the relative standard molecular weight. Panel B: Western blot of PMCA isoforms identified in islets 

from C and FRD rats using specific antibodies (NR1, NR2, NR3 and JA9). First lane, relative 

molecular weight markers; lanes 2-9, each pair represents islets from C (left) and FRD (right) 

animals; lanes 2 and 3, isoform 1; lanes 4 and 5, isoform 2; lanes 6 and 7, isoform 3; lanes 8 and 9, 

isoform 4. The arrow indicates the position and size (KDa) of the relative standard molecular 

weight. The figure is a representative picture from three independent experiments. Panel C: 

Quantitative expression of band intensity from C (white bars) and FRD (black bars) rat islets; FRD 

islets showed a decrease in PMCA2 and an increase in PMCA3 protein expression, with no 

significant changes in PMCA1 and 4. Results represent the means ± SEM of three independent 
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experiments expressed as relative values with respect to the intensity found in C islets. In every 

case, we considered the main (most intense) band for quantitation. FRD vs.C; *p<0.001; **p<0.01  

Fig. 4. Total PMCA activity measured in homogenates of islets isolated from C (white circles) and 

FRD (black circles) rats in the presence of 1.77 µM Ca2+ and in the absence or presence of different 

calmidazolium concentrations (0 to 40 µM). Calmidazolium reduced the PMCA activity measured 

in C and FRD islets in a dose-response manner. C islets showed higher PMCA activity than FRD 

ones in the absence of calmidazolium, and this diference was no longer evident when 

calmidazolium was present at a high concentration (40 µM). Results represent the means ± SEM of 

four independent experiments, where each determination was performed in triplicate. FRD vs. C, p 

* <0.05; **<0.02; ***<0.001.  

Fig. 5. Measurement of [Ca2+]i in islets isolated from C and FRD rats. Panel A: Islet [Ca2+]i 

increased when glucose concentration in the perifusion medium shifted from 3.3 mM to either 16.6 

mM or 32.0 mM. Panel B: The same effect was observed in the presence of 30 mM K+ in the 

medium. Charts are representative of 6 individual experiments. Panel C: FRD islets (black bars) 

showed significantly higher [Ca2+]i than C islets (white bars) at both glucose concentrations tested 

(3.3 mM, *p<0.005; and 16.6 mM **p <0.01). Units are expressed as relative values with respect to 

the levels measured in C islets and represent the means ± SEM of 6 independent experiments.  

Fig. 6. Pancreatic islets stained with PMCA 5F10 antibody. PMCA immunopositive cells were 

found in the periphery (non-β cells) and in the central zone (β cells) of the islets in C (left panel) 

and FRD (right panel) rats. No marked changes were observed in the PMCA distribution pattern 

between groups (× 40) . 
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