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Abstract For a proper open set � immersed in a metric space with the weak homo-
geneity property, and given a measure μ doubling on a certain family of balls lying
“well inside” of �, we introduce a local maximal function and characterize the weights
w for which it is bounded on L p(�,wdμ) when 1 < p < ∞ and of weak type (1, 1).
We generalize previous known results and we also present an application to inte-
rior Sobolev’s type estimates for appropriate solutions of the differential equation
�mu = f , satisfied in an open proper subset � of R

n . Here, the data f belongs to
some weighted L p space that could allow functions to increase polynomially when
approaching the boundary of �.

1 Introduction

We start by describing the setting in which we are going to prove the main results of
this work. Let X be a metric space satisfying the weak homogeneity property, that is,
there is a fixed number N such that for any ball B(x, r) there are no more than N
points in the ball whose distance from each other is >r/2. As it is easy to check, the
same property holds if we replace r/2 by any other fraction λr with 0 < λ < 1. It is
clear that this property of the metric space, sometimes called geometrically doubling,
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610 E. Harboure et al.

implies separability. Also, we will denote by � any open proper and non empty subset
of X such that all balls contained in � are connected sets.

For 0 < β < 1 we consider a family of balls contained in � defined by

Fβ = {B = B(xB, rB) : xB ∈ �, rB ≤ β d(xB,�c)},

where B(xB, rB) denotes the ball with center xB and radius rB and d(xB,�c) the
distance from xB to the complementary set of �. Observe that the function d(·,�c)

is >0 over � and hence Fβ contains balls centered at each point of � that are small
enough.

Given a Borel measure μ defined on � such that 0 < μ(B) < ∞ for any ball
B ∈ F = ⋃

0<α<1 Fα , we shall say that μ is doubling on Fβ if there is some constant
Cβ such that for any ball B ∈ Fβ

μ(B) ≤ Cβ μ

(
1

2
B

)

, (1.1)

where, as usual, λB means the ball with the same center and radius λ-times that of B,
for any positive λ. Let us remark that inequality (1.1) also holds if we replace 1/2 by
any other λ, 0 < λ < 1, but with perhaps a different constant, depending on λ. Also
notice that the doubling condition on Fβ implies, except the trivial case μ ≡ ∞, the
finitness of μ(B) for B ∈ Fβ , but that is not necessarily true for all the balls in F .

Given 0 < β < 1 and μ as above, we may define the following maximal functions
on �

Mμ,β f (x) = sup
x∈B∈Fβ

1

μ(B)

∫

B

| f | dμ (1.2)

for any f ∈ L1
loc(�, dμ) and x ∈ �. Let us point out that here, local integrability

means that the function is integrable over any ball such that its closure is contained in �.
We note that Mμ,β f is point wisely bounded by the Hardy-Littlewood maximal

function Mμ f . Hence, in particular, Mμ,β shares all the boundedness properties of
Mμ. Notice that, however, under our assumptions on μ we can not say much about
the latter operator.

It is our purpose in this work to provide necessary and sufficient conditions on
weights w, such that the operator Mμ,β turns to be bounded on L p(�,wdμ), for
1 < p < ∞, and of weak type (1, 1) with respect to wdμ, whenever μ is doubling
on Fβ . The conditions that will be imposed on the weights are in the spirit of the
Ap-Muchenhoupt classes for the Hardy-Littlewood Maximal function (see [8]) but
restricted to balls in the family Fβ . To be more precise, we introduce the classes of

weights Aβ
p(dμ) as those weights w defined on � satisfying

sup
B∈Fβ

1

μ(B)

⎛

⎝
∫

B

wdμ

⎞

⎠

1/p ⎛

⎝
∫

B

w−p′/pdμ

⎞

⎠

1/p′

= Cp,β < ∞, (1.3)
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Local maximal function and weights in a general setting 611

where p′ denotes the conjugate exponent of p. In the case p = 1, the second factor
should be understood as the μ-essential supremum of w−1 taken over the ball B.

Let us remark that when X = R and � = (0,∞), the local maximal operator and
the corresponding classes of weights have been considered by Nowak and Stempak
in [9] and are the inspiration of our work. Also we cover the situation solved in [6]
which, in our setting, corresponds to X = R

n with the d∞ metric and � = R
n \ {0}

with μ the restriction of the Lebesgue measure. There, the authors based their proof
on a geometrical lemma built for the specific case under consideration. That lemma
allows them to solve the problem by extending a restriction of a local Ap-weight to a
global Ap-weight in order to apply the well known boundedness results for the Hardy-
Littlewood maximal function. Such technique seems difficult to adapt to our general
setting.

Our precise result is the following

Theorem 1.1 Let X be a metric space with the weak homogeneity property and � a
proper open subset of X such that the balls contained in � are connected sets. Let
0 < β < 1 and μ a Borel measure on � satisfying the doubling property on Fβ . Then,
for the associated maximal operator Mμ,β , we have

(i) Mμ,β is of weak type (1,1) with respect to wdμ, that is, there exists a constant C
such that the inequality

∫

{Mμ,β f (x)>0}
w dμ ≤ C

λ

∫

| f | w dμ

holds for any λ > 0, if and only if w ∈ Aβ
1 (dμ).

(ii) For 1 < p < ∞, Mμ,β is bounded on L p(�,wdμ) if and only if w ∈ Aβ
p(dμ).

In order to prove that the condition on the weight is sufficient for the weak type
(1, 1) we will proceed as in the classical case, starting from Vitali’s covering lemma.

Since a dilation of a ball in Fβ may not longer belong to that family, we can not
apply the doubling property (1.1) in such case. So we change a little bit Vitali’s Lemma
to adapt it to our situation, namely, replacing the dilation of a ball, when it does not
belong to Fβ , by an appropriate open set.

To overcome the problem of measuring such sets with a measure that is doubling
only on Fβ , we decompose our space � into small enough balls, in the spirit of
Whitney’s Lemma.

Notice that both mentioned lemmas are of a geometric nature so we do not need
to have a measure defined on �. Nevertheless, to obtain our version of Whitney’s
Lemma, we shall need the weak homogeneity property in our ambient space X , but
the assumption of the connectedness of the balls lying in � will not be needed at this
stage.

The local Whitney’s Lemma will be the clue step to obtain not only the weak type
(1, 1) but also an interesting property of measures doubling on Fβ , namely that they
also are doubling on any other family Fγ , 0 < γ < 1, but with a constant depending

on the parameter γ . This property, in turn, will imply that the classes Aβ
p(dμ) are also
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612 E. Harboure et al.

independent of β, as it was shown by Nowak and Stempak in the case � = (0,∞)

and by Lin and Stempak for � = R
n \0. In view of this fact, later on, we shall refer

to these weights as Ap,loc(dμ).
In order to obtain the strong type results, we will adapt Lerner’s argument given in

[5] to our situation, strongly using the weak type result for p = 1.
Finally, we shall use Ap,loc(dμ) weights to obtain some interior a priori weighted

Sobolev estimates for solutions of the elliptic differential equation

�mu = f, (1.4)

where m is a positive integer and the equation is satisfied inside an open subset �

immersed in R
n . More precisely, if δ(x) denotes the distance from the point x to �c,

for 1 < p < ∞, we introduce the following weighted Sobolev spaces of order 2m by

W 2m,p
δ,w (�) =

⎧
⎨

⎩
f ∈ L1

loc(�) : ‖ f ‖
W 2m,p

δ,w

=
∑

|β|≤2m

‖δ|β| Dβ f ‖L p
w(�) < ∞

⎫
⎬

⎭
,

where the derivatives should be understood in the weak sense and L p
w(�) is the

weighted Lebesgue space L p(�,wdx).
With this notation, under the assumption that w belongs to Ap,loc(dμ), we shall

prove that a solution of (1.4) satisfies the interior Sobolev estimate

‖u‖
W 2m,p

δ,w (�)
≤ C

(
‖u‖L p

w(�) + ‖δ2m f ‖L p
w(�)

)
. (1.5)

Let us observe that, as it is easy to check, w(x) = δα(x) belongs to Ap,loc(dμ) for
any exponent α ∈ R. Therefore the data function f appearing on the right hand side
of (1.4) could increase polynomially when approaching the boundary of � and still
we might have some control for the derivatives of the solution up to the order 2m.

Let us mention that weighted Sobolev estimates up to the boundary have been
obtained recently for Muckenhoupt weights and bounded domains � with smooth
boundary (see [3]).

At this point we would like to mention that during the review process of this article,
one of the referees called our attention to recent work by Lin, Stempak and Wang (see
[7]), published after our paper was sent for revision. There, they also deal with local
maximal functions on measure metric spaces in a quite general setting. In particular,
in [7, Sect. 5] a situation resembling ours is considered. Nevertheless, there is not
overlapping between their results and ours.

The paper is organized as follows. In the next section we present appropriate
versions of the geometric results that will be needed later. Section 3 is devoted to
prove the main results regarding the local maximal functions and weights. Finally, in
Sect. 4, we use local weights to obtain interior estimates for solutions of the differential
Eq. (1.4).
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Local maximal function and weights in a general setting 613

2 Geometric lemmas

Let us remind that for any metric space X , the following Vitali’s covering Lemma
holds. See for example Theorem 1.2 in [4] for a proof.

Lemma 2.1 (Vitali) Let X be a metric space and 	 a family of balls with bounded
radii, i.e., satisfying supB∈	 r(B) < ∞. Then there exists a disjoint subfamily 
 with
the property

∀B ∈ 	 ∃B ′ ∈ 
 such that B ∩ B ′ �= ∅ and B ⊂ 5B ′ (2.1)

Let us observe that if we assume the space X to be separable, then the subfamily

 must be at most countable.

With this in mind we can easily obtain the following “local” Vitali covering lemma,
useful to our purposes. Before stating our version let us introduce some notation.

For 0 < β < 1, given a ball B ∈ Fβ , we shall denote by B̃ the set

B̃ = 5B, if 5B ∈ Fβ or B̃ =
⋃

R∩B �=∅
R∈Fβ

R, otherwise. (2.2)

In the latter case we shall refer to B̃ as the “cloud” of B and it will be denoted by
Nβ(B).

Lemma 2.2 (local Vitali) Let X be a separable metric space and � an open proper
subset of X. Let 0 < β < 1 and 	 a family of balls belonging to Fβ with uniformly
bounded radii. Then, there exists a disjoint and at most countable subfamily 
 such
that the collection of open sets {B̃}B∈
, with B̃ defined by (2.2), still covers

⋃
B∈	 B.

The proof of the lemma is quite obvious since, applying the original Vitali’s Lemma,
in view of (2.1), we only need to take care of those balls B ∈ 	 such that 5B is not a
ball in Fβ . In such case, using (2.1) again, we know that there is a ball B ′ ∈ 
 with
B ∩ B ′ �= ∅ and since now B̃ ′ = Nβ(B ′), it is clear that B is contained in B̃ ′.

Now we state and prove a special version of Whitney’s Lemma which will be the
clue to prove, later on, that the cloud of a “large” ball belonging to Fβ has a measure
equivalent to that of the initial ball, assuming that the measure is doubling on Fβ .
Even though we only ask X to be a metric space for the previous Lemma, we shall
need now the full strength of the assumption made on X at the beginning of the article,
that is, we ask X to have the weak homogeneity property.

Lemma 2.3 (Whitney for Fβ ) Let X be a metric space with the weak homogeneity
property and � a fixed open and proper subset. Then, given 0 < β < 1, for each
a, 0 < a < β/80, there exists a covering Wa of � by balls of Fβ with the following
properties

(i) If P = B(xP , r(P)) ∈ Wa, then 10P ∈ Fβ and moreover

1

2
a d(xP ,�c) ≤ r(P) ≤ a d(xP ,�c). (2.3)
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614 E. Harboure et al.

(ii) If P and P ′ belong to Wa and P ∩ P ′ �= ∅ then P ′ ⊂ 5P and P ⊂ 5P ′.
(iii) There is a number M, only depending on β and a, such that for any ball B0 =

B(x0, r0) ∈ Fβ with 5B0 /∈ Fβ , the cardinality of the set

Wa(B0) = {P ∈ Wa : P ∩ N (B0) �= ∅}

is at most M. Moreover if P0 is such that x0 ∈ P0 with P0 ∈ Wa(B0) then
P0 ⊂ 1

2 B0.

Proof Given k ∈ ZZ, we define

�k = {x ∈ � : 2k−1 ≤ d(x,�c) < 2k}.

If �k is non empty, we choose a maximal net of points in �k whose distances from
each other is at least a2k−1. Since X is separable, each net is at most countable. Let
us call {xk

i }i∈Jk with Jk ⊂ N, to the net corresponding to �k . Define

Wa = {Pk
i = B(xk

i , a2k−1), i ∈ Jk, k ∈ Z}.

Clearly for each fixed k, in view of the maximality of the chosen net, the balls
{B(xk

i , a2k−1)}i∈Jk cover �k . Also, since xk
i ∈ �k and a < β/10 we have

a

2
d(xk

i ,�c) ≤ a

2
2k = r(Pk

i ) ≤ a d(xk
i ,�c) ≤ β

10
d(xk

i ,�c),

and hence (2.3) holds and 10Pk
i belongs to Fβ , finishing the proof of (i).

Next let us take P and P ′ two members of Wa with P ∩ P ′ �= ∅. Assume that their
centers xP and xP ′ belong to �k and to �k′ respectively. Choosing z ∈ P ∩ P ′, we
have

2k−1 ≤ d(xP ,�c) ≤ d(xP ′ ,�c) + d(xP ′ , z) + d(z, xP )

≤ 2k′ + r(P ′) + r(P) =
(

1 + a

2

)
2k′ + a2k−1

and hence

(1 − a)2k−1 ≤
(

1 + a

2

)
2k′

.

Consequently,

2k−k′ ≤ 2
1 + a/2

1 − a
< 4,

since a <
β
80 < 2

5 . Thus, by symmetry, it follows that |k − k′| < 2, which implies that
either k′ = k − 1 or k′ = k or k′ = k + 1.
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Local maximal function and weights in a general setting 615

To prove that P ′ ⊂ 5P we assume that the worst of the three cases occurs, that
is, k′ = k + 1. In this situation we have r(P) = a2k−1 and r(P ′) = a2k = 2r(P).
Therefore for y ∈ P ′ and z ∈ P ∩ P ′

d(y, xP ) ≤ d(y, xP ′) + d(xP ′ , z) + d(z, xP )

< r(P ′) + r(P ′) + r(P) ≤ 5r(P)

Hence we have proved P ′ ⊂ 5P . By the symmetry of the situation it is also true that
P ⊂ 5P ′.

Now we turn to the proof of (i i i). To do that we shall first prove three claims.

Claim 1 If two balls of the family Fβ intersect each other, then their centers lie in
nearby bands � j . More precisely, let B and B ′ in Fβ be such that B ∩ B ′ �= ∅ and
assume that xB ∈ �k , then xB′ ∈ ⋃i=k+m

i=k−m �i for some m, only depending on β.

In fact, taking z in the intersection of the two balls, we have

d(xB,�c) ≤ d(xB′ ,�c) + d(xB′ , z) + d(z, xB)

≤ d(xB′ ,�c) + r(B ′) + r(B),

and so

(1 − β)d(xB ,�c) ≤ (1 + β)d(xB′ ,�c)

Therefore, by symmetry, we arrive to

1 − β

1 + β
d(xB,�c) ≤ d(xB′ ,�c) ≤ 1 + β

1 − β
d(xB,�c) (2.4)

Since we assume that xB ∈ �k , denoting by m the unique positive integer such that
2m−1 ≤ 1+β

1−β
< 2m , we have

2−m+k−1 ≤ d(xB′ ,�c) ≤ 2m+k,

and hence xB′ ∈ ⋃i=k+m
i=k−m �i . Noticing that m only depends on β we finish the proof

of the claim.

Claim 2 If B ∈ Fβ with xB ∈ �k then there exists a fixed integer n, only depending

on β, such that B ⊂ ⋃ j=k+1
j=k−n � j .

In fact for y ∈ B

d(xB,�c) − r(B) < d(y,�c) < d(xB,�c) + r(B),

and since r(B) ≤ βd(xB ,�c) we have

(1 − β)d(xB ,�c) < d(y,�c) < (1 + β)d(xB ,�c).
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616 E. Harboure et al.

Hence, denoting by n the integer such that 2−n ≤ 1−β < 2−n+1, using that xB ∈ �k

and that 1 + β < 2 we arrive to

2k−n−1 < d(y,�c) < 2k+1,

proving the claim.

Claim 3 If P ∈ Wa and P ∩ � j �= ∅, then xP ∈ � j−1 ∪ � j ∪ � j+1.

As above, for y ∈ P ∩ � j , we have

d(y,�c) − r(P) < d(xP ,�c) < d(y,�c) + r(P).

Then, using (i) and that y ∈ � j we obtain

2 j−1

1 + a
< d(xP ,�c) <

2 j

1 − a

Since, in particular, a < 1/2, the claim follows.
Now we turn to the proof of (iii).
Let B0 be a ball B0 = B(x0, r0) ∈ Fβ with 5B0 /∈ Fβ , that is

β

5
d(x0,�

c) < r0 ≤ βd(x0,�
c),

and assume x0 ∈ �k0 . For any B = B(xB, r(B)) ∈ Fβ such that B ∩ B0 �= ∅, in view
of Claims 1 and 2, we have that

B ⊂
k0+m+1⋃

j=k0−m−n

� j ,

and, consequently, taking the union over such balls B we get

Nβ(B0) ⊂
k0+m+1⋃

j=k0−m−n

� j .

Now, if P ∈ Wa with P ∩ N (B0) �= ∅, using Claim 3, we may conclude that its
center, xP , belongs to � j for some k0 − m − n − 1 ≤ j ≤ k0 + m + 2. From here, for
such P , that is P ∈ Wa(B0), there is a ball B ∈ Fβ intersecting P . Taking z ∈ P ∩ B
and u ∈ B ∩ B0, we have

d(xP , x0) ≤ d(xP , z) + d(z, u) + d(u, x0)

< r(P) + 2 r(B) + r0. (2.5)

To estimate r(B) we use (2.4) and that 5B0 /∈ Fβ obtaining
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Local maximal function and weights in a general setting 617

r(B) ≤ β d(xB,�c) ≤ β
1 + β

1 − β
d(x0,�

c) ≤ 5
1 + β

1 − β
r0.

For r(P) we use xP ∈ ⋃k0+m+2
j=k0−m−n−1 � j to get

r(P) = a 2 j−1 ≤ a 2k0+m+1 ≤ 4a 2md(x0,�
c)

≤ 40a

β

1 + β

1 − β
r0 ≤ 1

2

1 + β

1 − β
r0,

where we used again that 5B0 /∈ Fβ , the definition of m and a < β/80. Coming back
to (2.5) we obtain

d(xP , x0) ≤ 12
1 + β

1 − β
r0 = cβr0.

In this way we can conclude that for each fixed j , with k0−m−n−1 ≤ j ≤ k0+m+2,

� j (B0) = {xP , P ∈ Wa(B0)} ∩ � j ⊂ cβ B0

and also, for two elements in � j (B0), by the way they were chosen, we have

d(xP , xP ′) ≥ a 2 j−1 ≥ a2k0−m−n−2 ≥ 5a

β
2−m−n−2r0.

Applying the weak homogeneity property of the space X , the cardinality of � j (B0)

is at most a number N that depends only on a and β, but not on B0. Let us note that
the constant cβ is in fact large enough to make such dilation of B0 intersect �c, so we
are really using that the homogeneity property holds in the whole ambient space X .

Keeping in mind that the range of j contains at most 2m +n +4 elements, we have
proved that

�Wa(B0) ≤ (2m + n + 4) N = M(a, β),

as required.
To prove the last assertion of (iii), suppose that P0 ∈ Wa is such that x0 ∈ P0 and

notice that we only need to show that 2r(P0) < 1
2r0.

Since x0 ∈ �k0 ∩ P0, by Claim 3, its center xP0 belongs to �k0−1 ∪ �k0 ∪ �k0+1
and hence

2r(P0) ≤ a 2k0+1.

On the other hand

r0 ≥ β

5
d(x0,�

c) ≥ β

5
2k0−1.

Since we are assuming a < β/80, the desired inequality holds. ��
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618 E. Harboure et al.

Remark 2.4 As a consequence of (iii), it is easy to see that Wa possesses the finite
overlapping property, that is, no point in � belongs to more than a fixed number of
members of the covering. Further, that is also true for the covering {2P}P∈Wa

. In fact,
as in the proof of (ii), we can check that 2P ∩ 2P ′ �= ∅ and xP ∈ �k imply that
xP ′ is in the same or in a neighbour band � j . Hence, as in there, 2P ′ ⊂ 10P . From
the weak homogeneity property, the sets

{
xP ′ ∈ � j : P ′ ∈ Wa, 2P ′ ∩ 2P �= ∅}

, for
k − 1 ≤ j ≤ k + 1, have at most a fixed cardinal, independent of P . With this we may
conclude that for some number N , depending only on a and β, we have

∑

P∈Wa

χ2P ≤ N . (2.6)

3 Local maximals and local weights

In this section we shall prove the main results concerning the continuity of the local
maximal functions Mμ,β on weighted L p spaces as well as the independence from the
parameter β of the classes of local weights defined in �. To do so, we are going to
need all the assumptions on X and � stated at the beginning of the introduction. Also,
we assume that we have a Borel measure μ defined on �, and satisfying the doubling
property on Fβ for some fixed value of β.

We begin with a kind of technical lemma that tells us how to carefully measure
the clouds of “large” balls in Fβ . Its proof will strongly rely on the construction and
properties of the covering of � presented in the previous section.

Lemma 3.1 Let X be a metric space with the weak homogeneity property, � a proper
open subset such that all the balls contained in � are connected sets and μ a measure
with the doubling property on Fβ/2. Then, for any ball B0 ∈ Fβ with 5B0 /∈ Fβ we
have

(i) For the family Wa(B0) with a < β/80 given in Whitney’s Lemma

μ(P) ≤ C M μ(P ′), (3.1)

for any P and P ′ belonging to Wa(B0), where C denotes the doubling constant
of μ and M is the geometric constant appearing there.

(ii)

μ
(Nβ(B0)

) ≤ K μ

(
1

2
B0

)

, (3.2)

for some constant K that only depends on β and the constant of the doubling
property of μ.

Proof First observe that since any B ∈ Fβ is connected, the set Nβ(B0) is also
connected. Further the larger set

⋃
P∈Wa(B0)

P is connected too.
Let us fix P ′ ∈ Wa(B0). We assert that
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Local maximal function and weights in a general setting 619

Claim: For any P ∈ Wa(B0) there is a finite chain joining P with P ′, that is, a finite
subset of Wa(B0), say P1, . . ., Pn , which are all different, with P1 = P ′, Pn = P and
Pi ∩ Pi+1 �= ∅, i = 1, 2, . . ., n − 1.

To prove the claim let us define

C = {
P ∈ Wa(B0) : ∃ a finite chain from P to P ′}

Clearly P ′ ∈ C. Let E = ⋃
P∈C P and F = ⋃

P∈Wa(B0)�C P . Observe that both, E
and F, are open sets and their union is a connected set. Also E ∩ F = ∅. In fact, let us
suppose that there is some x ∈ E ∩ F.

From x ∈ E, we have that x ∈ P with P ∈ C, that is, there are P1, P2, . . .Pn ,
each one belonging to Wa(B0) and different from the others, with P1 = P ′, Pn = P
and Pi ∩ Pi+1 �= ∅. Clearly each of the balls Pi also belongs to C, since the chain
P1, . . ., Pi does the work.

On the other hand, from x ∈ F, we know that x ∈ P̃ with P̃ /∈ C. However,
the chain P1, P2, . . ., Pn, P̃ has all its elements different from each other since, as
we noticed, Pi belongs to C and P̃ does not. Also Pn ∩ P̃ �= ∅ since Pn = P and
x ∈ P ∩ P̃ . Therefore P̃ ∈ C, arriving to a contradiction.

Since E is not empty, the set F must be empty and the claim is proved.
Coming back to the proof of the Lemma, given P ∈ Wa(B0), let P1, . . ., Pn be a

chain as in the Claim. Since Pi ∩ Pi+1 �= ∅ and both belong to Wa , by (ii) of Whitney’s
Lemma, Pi+1 ⊂ 5Pi and since by (i), 10Pi ∈ Fβ we have that 5Pi ∈ Fβ/2.

Therefore, by the doubling condition for the measure μ on Fβ/2, we have that for
some constant C

μ(Pi+1) ≤ C μ(Pi ).

Iterating the above inequality and using that the length of the chain is at most M we
get

μ(P) ≤ C M μ(P ′),

which proves (i).
To show (ii), observe that if x0 denotes the center of B0, there is some P0 ∈ Wa(B0)

such that x0 ∈ P0, and by (iii) of Whitney’s Lemma we know that P0 ⊂ 1
2 B0.

Since

Nβ(B0) ⊂
⋃

P∈Wa(B0)

P, (3.3)

using (i) with P ′ = P0, we can conclude that

μ(Nβ(B0)) ≤
∑

P∈Wa(B0)

μ(P) ≤ M C M μ(P0) ≤ M C M μ

(
1

2
B0

)

.

��
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620 E. Harboure et al.

Remark 3.2 As an immediate consequence of the above Lemma, we get that if a
measure μ is doubling on Fβ , then for some constant K , the inequality

μ(B̃) ≤ K μ(B), (3.4)

holds for any ball B ∈ Fβ , with B̃ defined as in (2.2).

Now we are ready to prove the main result concerning the boundedness properties
of the local maximal functions Mμ,β .

Proof of Theorem 1.1 We first prove the weak type inequality for p = 1. Let us assume
that μ is a doubling measure on Fβ and that w belongs to Aβ

1 (dμ), that is,

∫

B

w dμ ≤ C1,β μ(B) inf
B

w

holds for any ball in Fβ , where by “inf” we mean the essential infimum taken with
respect to μ. We want to apply Vitali’s Lemma, but in order to do that, we have to
consider maximal functions over balls in Fβ having bounded radii. Namely, for any
fixed R > 0 we set

M R
μ,β f (x) = sup

x∈B∈Fβ

r(B)≤R

1

μ(B)

∫

B

| f | dμ

and for any λ > 0, we consider the set

E R
λ =

{
x ∈ � : M R

μ,β f (x) > λ
}

.

Notice that the set we want to measure, Eλ = {
x ∈ � : Mμ,β f (x) > λ

}
, is the

increasing union of the sets E R
λ .

Now, for each x in the set E R
λ there must be a ball Bx , with x ∈ Bx ∈ Fβ and

radius rx ≤ R, such that

1

μ(Bx )

∫

Bx

| f | dμ > λ (3.5)

Then we apply Vitali’s covering Lemma to the family {Bx }x∈E R
λ

which clearly cov-

ers E R
λ . Moreover, as we pointed out in the introduction, since X satisfies the weak

homogeneity property, X is separable. In this way, we obtain a disjoint and at most
countable subfamily of balls, {Bi }i∈J with J ⊂ N, in a way that

E R
λ ⊂

⋃

i∈J

B̃i ⊂ �,
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Local maximal function and weights in a general setting 621

where B̃i is defined as in (2.2).
Since μ is doubling on Fβ , so it is the measure associated to wdμ. So we may

apply Remark 3.2 to the latter measure to get

∫

E R
λ

w dμ ≤
∑

i∈J

∫

B̃i

w dμ

≤ K

λ

∑

i∈J

∫

Bi

w dμ
1

μ(Bi )

∫

Bi

| f | dμ

≤ KC1,β

λ

∑

i∈J

inf
Bi

w

∫

Bi

| f | dμ

≤ KC1,β

λ

∑

i∈J

∫

Bi

| f | w dμ

≤ KC1,β

λ

∫

�

| f | w dμ,

where we have used (3.4), (3.5) and that w ∈ Aβ
1 (dμ).

Since the sets E R
λ increase to Eλ when R increases to infinity, we get the desired

estimate.
As for the proof of the necessity of the condition Aβ

1 (dμ) for the weak type (1, 1)

inequality, it follows the same steps of the classical case, so we omit it.
Now we turn into the proof of continuity for 1 < p < ∞. We shall follow closely

the argument given in Theorem B of [5] for Muckenhoupt basis B of R
n . Let then w

be a weight in Aβ
p(dμ), with μ doubling on Fβ . We set σ = w

− 1
p−1 and we denote

by νw and by νσ the measures associated to wdμ and σdμ respectively. As in [5],
replacing B by Fβ and R

n(dx) by (�, dμ), we arrive to the following inequality

(
Mμ,β f

)p−1
(x) ≤ Cp,β Mνw,β

(
Mνσ ,β(( f σ−1)p−1 w−1

)
(x) (3.6)

Observe that νw as well νσ are doubling measures on Fβ . Therefore we may use
what we proved in (i) for Mνw,β and Mνσ ,β , and hence these operators are of weak
type (1, 1) with respect to the measures νw and νσ respectively (that is, we use (i)
with weight identically one). Since both maximal operators are clearly bounded on
L∞(�, dμ) = L∞(�,wdμ) = L∞(�, σdμ), by interpolation, they are bounded on
Lr (�,wdμ) and on Lr (�, σdμ) respectively, for 1 < r < ∞. Coming back to (3.6),
using the above conclusions for r = p′ and r = p respectively, we easily arrive to

‖Mμ,β f ‖L p(wdμ) ≤ C p,β‖ f ‖L p(wdμ).

As in (i), the proof of the necessity of the Aβ
p(dμ) condition follows the usual pattern,

taking f = χBw
− 1

p−1 , with B ∈ Fβ . ��
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622 E. Harboure et al.

With the aid of Lemma 3.1, we will also be able to show that certain properties
holding for a measure on Fβ can be proved to hold on any other class Fα . That is the
case of the doubling property. However, let us remark that the corresponding constants
may increase to infinity as β approaches 1. This fact will be the main step in order to
obtain the independence from β of the classes Aβ

p(dμ).

Proposition 3.3 Let X and � be as above. Let μ be a measure defined on the Borel
sets of � and 0 < α, β < 1. Then we have

(i) μ is finite and positive on Fβ if and only if is finite and positive on Fα .
(ii) μ is doubling on Fβ if and only if is doubling on Fα .

Proof Let us assume α < β. In this case, since Fα ⊂ Fβ , it is obvious that if any of
the conditions in (i) or (ii) holds for Fβ , it also holds for Fα .

To prove the reciprocals, observe that it is enough to consider the case α = β/2.
Indeed, let k be a positive integer such that β/2k ≤ α, by iteration and using the trivial
part of either (i) or (ii), the assertion follows.

Let us assume that μ is finite and positive on Fβ/2. Since for any ball in Fβ , the ball
1
2 B belongs to Fβ/2, it follows that μ(B) > 0. On the other hand, (iii) of Whitney’s
Lemma tells us that B, moreover Nβ(B), can be covered by a finite number of balls
P . In addition, by (i) of the same Lemma, 10P ∈ Fβ , which in particular implies that
P ∈ Fβ/2. Therefore μ(B) must be finite.

To show the remaining part of (ii), let B = B(xB, r(B)) ∈ Fβ . We want to prove
that

μ(B) ≤ Cβ μ

(
1

2
B

)

,

assuming the same holds for balls in Fβ/2.
Clearly, we only need to consider the case when β

2 d(xB,�c) < r(B) ≤
β d(xB,�c). Since, by assumption, μ is doubling on Fβ/2, we may apply Lemma
3.1 to obtain

μ(B) ≤ μ
(Nβ(B)

) ≤ K μ

(
1

2
B

)

,

completing the proof of the Proposition. ��
Given a Borel measure on �, positive, finite and doubling on some class Fβ , in

view of the above proposition, we can get rid of the parameter β and we shall refer to
it as a local doubling measure.

In the next Theorem we establish that the classes Aβ
p(dμ) are also independent of

the parameter β.

Theorem 3.4 Let α, β be two constants such that 0 < α,β < 1. Let μ be a measure
that is locally finite, positive and doubling. Then

Aβ
p(dμ) ≡ Aα

p(dμ)
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for 1 ≤ p < ∞.

Proof Let 0 < α < β < 1. Since Fα ⊂ Fβ , we only need to prove that Aα
p(dμ) ⊂

Aβ
p(dμ).
First assume that w ∈ Aα

p(dμ) with 1 < p < ∞. In particular the measure νw

associated to wdμ is doubling on Fα and hence, by the above Proposition, is also

doubling on Fβ . The same can be said about νσ with σ = w
− 1

p−1 , since σ belongs to
Aα

p′(dμ). Let B be a ball in Fβ \ Fα . Then for the ball γ B with γ = α
β

< 1 we have

νw(B) ≤ C νw(γ B)

and

νσ (B) ≤ C νσ (γ B).

Therefore, since γ B ∈ Fα , we obtain

νw(B) (νσ (B))p−1 ≤ C pνw(γ B) (νσ (γ B))p−1

≤ C̃ (μ(γ B))p ≤ C̃ (μ(B))p ,

finishing the proof of the case 1 < p < ∞.
For the case p = 1, as in the proof of Proposition 3.3, it is enough to consider

α = β/2. As above, let B be a ball in Fβ \Fβ/2. Now we can apply (i) of Lemma 3.1 to
the measure νw and the ball B. Choosing P ′ ∈ Wa(B) such that inf P ′∩B w = inf B w,
we get

νw(B) ≤
∑

P∈Wa(B)

νw(P) ≤ M C M νw(P ′) ≤ C1,β/2 M C M inf
P ′ w μ(P ′),

where in the last inequality we used that w ∈ Aβ/2
1 (dμ) with constant C1,β/2 and that

P ′ ∈ Fβ/2. Finally, applying (ii) of Lemma 3.1 to the measure μ and the fact that
inf P ′ w ≤ inf B w, we get the desired conclusion. ��

In view of the above result we may drop the parameter β from the notation of the
classes of weights and simply refer to them as Ap,loc(dμ), 1 ≤ p < ∞.

4 An application

Along this section the space X will be R
n with the Euclidean metric and � any proper

and connected set with the restriction of the Lebesgue measure. It is clear that all the
requirements made in the previous section are fulfilled.

We shall denote by δ(x) the Euclidean distance from a point x in � to �c, and
also we shall use the shorter notation L p

w(�) to mean L p(�,wdx). Similarly, the
classes of weights will be denoted by Ap,loc(�), emphasizing that weights only need
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624 E. Harboure et al.

to be defined in � and understanding that the averages are taken with respect to the
Lebesgue measure.

In the main result of this section we prove a priori interior estimates for nice
solutions of the differential Eq. (1.4) in terms of some weighted Sobolev spaces which
take into account the distance to the boundary and that have been defined in the
introduction, namely

W k,p
δ,w (�) =

⎧
⎨

⎩
f ∈ L1

loc(�) : ‖ f ‖
W k,p

δ,w

=
∑

|β|≤k

‖δ|β| Dβ f ‖L p
w(�) < ∞

⎫
⎬

⎭
.

The Sobolev’s norm in W k,p
δ,w (�) involves derivatives of any order up to k. The

first step will be to show appropriate interpolation inequalities, which express that the
leading terms in the norm are those derivatives of the lowest and highest order, that is
of order zero and k. By abuse of notation, for a positive integer k, we will use Dk to
indicate the sum of the absolute values of all derivatives of order k.

Proposition 4.1 Let 1 < p < ∞ and w ∈ Ap,loc(�). For any u ∈ W k,p
δ,w (�) and any

j, 1 ≤ j ≤ k − 1 and γ such that |γ | = j , we have

‖δ j Dγ u‖L p
w(�) ≤ C

(
ε− j‖u‖L p

w(�) + εk− j‖δk Dku‖L p
w(�)

)
, (4.1)

for any real number 0 < ε < 1 and C independent of u and ε.

Proof By Sobolev’s integral representation (see for example [2]) we know that for
any v ∈ W k,1

loc (Rn) we have

|Dγ v(x)| ≤ C

⎛

⎜
⎝σ−n− j

∫

B(x,σ )

|v| +
∫

B(x,σ )

|Dkv|
|x − y|n−k+ j

⎞

⎟
⎠,

for any σ > 0.
Let us choose Whitney’s covering W of � with β = 1/2 and a = 1/200. For P =

P(xP , rP ) ∈ W , take a C∞
0 function ηP such that supp ηP ⊂ 4P ⊂ �, 0 ≤ ηP ≤ 1,

and ηP ≡ 1 on 2P .
We apply now the above inequality to uηP which, by our assumptions, belongs

to W k,1
loc (Rn). Observe that for x ∈ P and σ ≤ rP we have B(x, σ ) ⊂ 2P and

consequently uηP as well as its derivatives coincide with u and its derivatives when
integrated over such balls.

Therefore for x ∈ P and σ ≤ rP , we obtain the above inequality with v replaced
by u, namely

|Dγ u(x)|=|Dγ (uηP )(x)| ≤ C

⎛

⎜
⎝σ−n− j

∫

B(x,σ )

|u| +
∫

B(x,σ )

|Dku|
|x − y|n−k+ j

⎞

⎟
⎠.

(4.2)
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Moreover, as it is easy to check from the properties of the covering W , the balls
B(x, σ ), for x ∈ P and σ ≤ rP , belong to the family Fβ for β = 1/2. In fact, for
x ∈ P , using (i) of Whitney’s Lemma and the triangle inequality we get

d(x,�c) ≥ d(xP ,�c) − rP ≥
(

1

a
− 1

)

rP > 2rP ,

proving the assertion. That tells us that if we take x ∈ P and σ ≤ rP , the first term
in (4.2) is bounded by σ− j Mlocu(x), where by Mloc we denote the local maximal
function Mβ,μ of Sect. 3, with β = 1/2 and μ the Lebesgue measure.

As for the second term, splitting the integral dyadically, we obtain that is bounded
by a constant times

σ k− j
∞∑

i=0

2i( j−k) 1

|2−i B|
∫

2−i B(x,σ )

|Dku|.

Since for x ∈ P and σ ≤ rP all averages involved correspond to balls in F1/2 and
j < k, the second term in (4.2) is bounded by a constant times σ k− j Mloc Dku(x).

Putting together both estimates and taking σ = εrP , using that rP � δ(x) for
x ∈ P , we arrive to

|Dγ (u)(x)| ≤ C
(
(εδ(x))− j Mloc(u)(x) + (εδ(x))k− j Mloc(Dku(x)

)
. (4.3)

Since W is a covering of � and the right hand side of (4.3) no longer depends of P ,
we obtain that (4.3) holds for any x ∈ �.

Multiplying both sides by δ j (x) and taking the L p
w(�) norm, we arrive to

‖δ j Dγ u‖L p
w(�) ≤ C

(

ε− j‖Mlocu‖L p
w(�) + εk− j‖Mloc(Dku)‖L p

wδk/p (�)

)

.

Next, we observe that if the weight w belongs to Ap,loc(�) so it does wδs , for any real
number s. In fact, for any ball B in F1/2 we have that δ(x) � δ(xB), for any x ∈ B so
that (1.3) holds provided it is satisfied by w.

Therefore, an application of the continuity results for Mloc = Mμ,1/2, with μ the
Lebesgue measure, given in Theorem 1.1, leads to the interpolation inequality (4.1).

��

Theorem 4.2 Let 1 < p < ∞ and w be a weight belonging to Ap,loc(�). Then, for

a fixed positive integer m, and any W 2m,p
δ,w solution of the elliptic differential equation

�mu = f in �, we have

‖u‖
W 2m,p

δ,w (�)
≤ C

(
‖u‖L p

w(�) + ‖δ2m f ‖L p
w(�)

)
(4.4)
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Proof First we notice that in view of the above Proposition we need to estimate only
the highest order derivatives of u.

We shall use the well known localization process with respect to a covering as given
by Whitney’s Lemma of Sect. 2 for, say, β = 1/2.

Let W be such a covering of �. For each P ∈ W we take a C∞
0 -function, ηP ,

supported on 2P , with ηP ≡ 1 on P and such that ‖ηP‖∞ ≤ 1 and ‖DαηP‖∞ ≤
cr−|α|

P , for any multi-index α.
Next we notice that the function uηP satisfies the equation

�m(uηP ) = gP ,

with

gP = ηP f + u�ηP +
2m−1∑

j=1
|α|= j

|β|=2m− j

cαβ Dαu DβηP .

If 	(x, y) denotes the fundamental solution for �m then for x ∈ 2P

uηP (x) =
∫

(	(x − y) + v(x, y))gP (y) dy = h P (x) + vP (x), (4.5)

where v(x, y) verifies for each fixed y ∈ 2P

{
�mv(x, y) = 0 , x ∈ 2P

( ∂
∂ν

) jv(x, y) = −( ∂
∂ν

) j	(x − y) x ∈ ∂(2P), 0 ≤ j ≤ m − 1.

Using the point wise estimates |Dγ v(x, y)| ≤ Cr−n
P for |γ | = 2m obtained in [3]

(see Proposition 3.3, p. 6), Hölder inequality and the fact that w ∈ Ap,loc, we easily
obtain, for |γ | = 2m, that

‖XP Dγ vP‖L p
w

≤ C‖gP‖L p
w
. (4.6)

On the other hand, it is well known that for |γ | = 2m, Dγ h with h the convolution of
the fundamental solution with a function g ∈ L p

w is given by Tγ g, with Tγ a Calderón
Zygmund singular integral operator on R

n (see [1]). Now, since gP , is supported
on 2P , we can look at the operator Tγ acting on functions defined over the space
of homogeneous type 2P equipped with the Euclidean metric and the restriction of
Lebesgue measure. Also, it is easy to check that the weight wχ2P is in Ap(2P),
provided w belongs to Ap,loc(�), since P has been chosen such that 10P ∈ F1/2. By
the theory of singular integrals on spaces of homogeneous type (see for instance [10]),
applied to our operator Tγ , we obtain, for |γ | = 2m, that

‖XP Dγ h P‖L p
w

≤ C‖gP‖L p
w
. (4.7)
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Hence, from (4.5), (4.6) and (4.7), for |γ | = 2m, we get that

‖XP Dγ ηP u‖L p
w

≤ C‖gP‖L P
w

≤ C

⎛

⎜
⎜
⎜
⎝

‖X2P f ‖L p
w
+‖X2P u‖L P

w

1

r2m
P

+
2m−1∑

j=1
|α|= j

1

r2m− j
P

‖X2P Dαu‖L p
w

⎞

⎟
⎟
⎟
⎠

,

in view of the assumptions on ηP . Now we observe that for x ∈ P , the function ηP u
coincides with u and also for x ∈ 2P we have rP � δ(x). Then, the above inequality,
after multiplication by r2m

P , can be rewritten as

‖XPδ2m D2mu‖L p
w

≤ C

⎛

⎜
⎜
⎜
⎝

‖X2Pδ2m f ‖L p
w

+ ‖X2P u‖L p
w

+
2m−1∑

j=1
|α|= j

‖X2Pδ− j Dαu‖L p
w

⎞

⎟
⎟
⎟
⎠

, (4.8)

with perhaps a different constant C .
We now use the finite overlapping property of the covering {2P}P∈W quoted in

Remark 2.4, which for any measurable function h implies that

‖h‖p
L p

w
≤

∑

P∈W
‖X2P h‖p

L p
w

=
∥
∥
∥

∑

P∈W
X2P h

∥
∥
∥

p

L p
w

≤ K‖h‖p
L p

w
.

Raising both sides of (4.8) to p, adding over P ∈ W and taking the 1/p-th power we
arrive to

‖δ2m D2mu‖L p
w

≤ C

⎛

⎜
⎜
⎜
⎝

‖δ2m f ‖L p
w

+ ‖u‖L p
w

+
2m−1∑

j=1
|α|= j

‖δ− j Dαu‖L p
w

⎞

⎟
⎟
⎟
⎠

,

Now, for the last term on the right hand side of the above inequality, we use Proposition
4.1 to get

‖δ2m D2mu‖L p
w

≤ C̃
(
‖δ2m f ‖L p

w
+ ε−1‖u‖L p

w
+ ε‖δ2m D2mu‖L p

w

)
.

Finally, choosing ε such that C̃ε ≤ 1/2, subtracting the last term, which is finite from
our assumptions on u, we get the desired estimate. ��
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