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Abstract We prove a mean value formula for weak solutions of div(|y|agradu) = 0
in R

n+1 = {(x, y) : x ∈ R
n, y ∈ R}, −1 < a < 1, and balls centered at points of

the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for
solutions of (−�)s f = 0 on a domain D of R

n . When D is Lipschitz, we prove a
Besov type regularity improvement for the solutions of (−�)s f = 0.

Keywords Degenerate elliptic equations · Fractional Laplacian · Mean value
formula · Besov spaces · Gradient estimates

Mathematics Subject Classification 26A33 · 35J70 · 35B65 · 46E35

1 Introduction

For many years, fractional powers of−�have been the object of study. In the Euclidean
space R

n , the most elementary way to introduce the nonlocal operator (−�)s for
0 < s < 1, is provided by the Fourier transform. In fact, for a test function g of the
Schwartz class, (−�)s g is given by
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̂(−�)s g = |ξ |s ĝ

in terms of Fourier transforms. The homogeneity properties of the Fourier transform
allow us to show that (−�)s is a convolution operator with the distribution

p.v.
∫

Rn

g(x)− g(0)

|x |n+2s
dx = lim

ε→0

∫

|x |≥ε
g(x)− g(0)

|x |n+2s
dx .

Hence for g a Schwartz function,

(−�)s g(x) = C p.v.
∫

Rn

g(y)− g(x)

|x − y|n+2s
dy,

where C is a constant that depends on n and s. By duality (−�)s can be defined for
functions in L1

(

R
n, dx

(1+|x |)n+2s

)

. See [11].
For our purposes, the best approach is to regard (−�)s as an operator apply-

ing Dirichlet data into Neumann data. For s = 1
2 the idea is now classical. In

[2] L. Caffarelli and L. Silvestre show how every fractional power of −� in R
n

can be obtained as Dirichlet to Neumann type operators in the extended domain
R

n+1+ = {(x, y) : x ∈ R
n, y > 0}. This result allowed a better approach to the analy-

sis of PDE’s that involves (−�)s . The operator in the extended domain is given by
div (yagrad u), where a ∈ (−1, 1), u = u(x, y), x ∈ R

n , y ∈ R
+, and div and grad

are the standard divergence and gradient operators in R
n+1+ . The exponent a is related

to the fractional power of the Laplacian (−�)s through 2s = 1 − a. We shall write
La to denote the operator Lav = div (|y|agrad v) acting on functions v defined on
R

n+1. Notice that when a = 0, the operator La is the Laplacian in R
n+1 and s = 1

2 .
The theory of Hölder regularity of solutions through Harnack’s inequalities is one of
the several results in [2]. This theory has been extended in [13] to other second-order
partial differential operators including the harmonic oscillator. In Sect. 3 of [5], some
of the equivalent different approaches to (−�)s are proved in detail.

Since for a ∈ (−1, 1) the weight w(x, y) = |y|a belongs to the Muckenhoupt
class A2(R

n+1), the regularity theory developed by Fabes, Kenig, and Serapioni in
[7] can be applied. The fact that w is in A2(R

n+1) follows easily from the fact that it
is a product of the weight which is constant and equal to one in R

n times the A2(R)

weight |y|a for a ∈ (−1, 1). In particular, Harnack’s inequality and Hölder regularity
of solutions are available.

It seems to be clear that when a �= 0, the weight w(x, y) = |y|a introduces a bias
which prevents us from expecting mean values on spherical objects in R

n+1. Except at
y = 0, where the symmetry ofw with respect to the hyperplane y = 0 may bring back
to spheres their classical role. In [6], some generalizations of classical mean value
formulas are also considered.

By choosing adequate test functions, we shall prove the mean value formula, for
balls centered at the hyperplane y = 0, for weak solutions v of Lav = 0.

The considerations above would only allow mean values for solutions with balls
centered at such small sets as the hyperplane y = 0 of R

n+1. But it turns out that this
suffices to get mean value formulas for solutions of (−�)s f = 0.
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In [11] a mean value formula is proved as Proposition 2.2.13, see also [9]. In order
to obtain improved results for the Besov regularity of solutions of (−�)s f = 0 in the
spirit of [3] and [1], our formula seems to be more suitable because we can get explicit
estimates for the gradients of the mean value kernel. Regarding Besov regularity of
harmonic functions, see also [8].

The paper is organized in three sections. In the first one, we prove mean value
formulas for solutions of Lau = 0 at the points on the hyperplane y = 0 of R

n+1.
The second section is devoted to applying the result in Sect. 2 in order to obtain a
nonlocal mean value formula for solutions of (−�)s f = 0 on domains of R

n . Finally,
in Sect. 4, we use the results above to obtain a Besov regularity improvement for
solutions of (−�)s f = 0 in Lipschitz domains of R

n .

2 Mean Value Formula for Solutions of Lau = 0

Let D be a domain in R
n . Let � be the open set in R

n+1 given by � = D × (−d, d)
with d the diameter of D. Notice that for x ∈ D and r > 0 such that B(x, r) ⊂ D,
then S((x, 0), r) ⊂ �, where B denotes balls in R

n and S denotes the balls in R
n+1.

By H1(|y|a) we denote the Sobolev space of those functions in L2(|y|a dxdy) for
which ∇ f belongs to L2(|y|a dxdy).

The main result of this section is contained in the next statement. As in [2] we shall
use X to denote the points (x, y) in R

n+1 with x ∈ R
n and y ∈ R.

Theorem 1 Let v be a weak solution of Lav = 0 in �. In other words, v belongs to
H1(|y|a) and

∫∫

�

∇v · ∇ψ |y|a dxdy = 0

for each test function ψ supported in�. Let ϕ(X) = η(|X |), η ∈ C∞
0 (R

+) supported
in the interval

[ 1
4 ,

3
4

]

and
∫∫

Rn+1 ϕ(X)|y|a d X = 1 be given. If x ∈ D and 0 < r <
δ(x) = inf{|x − z| : z ∈ ∂D}, then

v(x, 0) =
∫∫

�

ϕr (x − z,−y)v(z, y)|y|adzdy,

with

ϕr (X) = 1

rn+1+a
ϕ

(

X

r

)

.

Proof Set A = ∫ ∞
0 ρη(ρ)dρ and ζ(t) = ∫ t

0 ρη(ρ)dρ−A. Notice that ζ(t) ≡ 0 for t ≥
3
4 and ζ(t) ≡ −A for 0 ≤ t ≤ 1

4 . The function ψ(X) = ζ(|X |) is, then, in C∞(Rn+1)

and has compact support in the ball S((0, 0), 1). It is easy to check that ∇ψ(X) =
ϕ(X)X . Now take x ∈ D and 0 < r < δ(x). Set ϕr (Z) = r−n−1−aϕ(r−1 Z),
Z ∈ R

n+1, and define
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�x (r) =
∫∫

�

ϕr (X − Z)v(Z)|y|ad Z ,

where X = (x, 0), Z = (z, y), d Z = dzdy, and v is a weak solution of Lav = 0
in �. As usual, we aim to prove that �x (r) is a constant function of r and that
limr→0�x (r) = v(X). From Theorem 2.3.12 in [7] withw(Z) = |y|a , which belongs
to the Muckenhoupt class A2(R

n+1) when −1 < a < 1, we know that v is Hölder
continuous on each compact subset of �. Then the convergence �x (r) → v(X) =
v(x, 0) as r → 0 follows from the fact that

∫∫

ϕr (Z)|y|ad Z = 1

ra+1+n

∫∫

ϕ
( z

r
,

y

r

)

|y|adzdy = 1.

In order to prove that�x (r) is constant as a function of r , we shall take its derivative
with respect to r for fixed x . Notice first that

�x (r) =
∫∫

S((0,0),1)
ϕ(Z)v(X − r Z)|y|adzdy.

Since ∇v ∈ L2(|y|ad X), we have

d

dr
�x (r) = −

∫∫

S((0,0),1)
ϕ(Z)∇v(X − r Z) · Z |y|ad Z

= −
∫∫

S((0,0),1)
∇v(X − r Z) · ∇ψ(Z)|y|ad Z

= − 1

ra+1+n

∫∫

�

∇v(Z) · ∇ψ
(

X − Z

r

)

|y|ad Z

=
∫∫

�

∇v(Z) · ∇
[

1

rn+a
ψ

(

X − Z

r

)]

|y|ad Z ,

which vanishes since 1
rn+aψ

( X−Z
r

)

as a function of Z is a test function for the fact
that v solves Lav = 0 in �. �


3 Mean Value Formula for Solutions of (−�)s f = 0

In this section we shall use the results and we shall closely follow the notation in [2].
Take f ∈ L1

(

R
n, dx

(1+|x |)n+2s

)

with (−�)s f = 0 on the domain D ⊂ R
n . Then, with

u(x, y) =
(

Pa
y ∗ f

)

(x) and Pa
y (x) = Cy1−a

(|x |2 + y2
)− n+1−a

2 , the function

v(x, y) =
{

u(x, y) in D × R
+,

u(x,−y) in D × R
−,

is a weak solution of Lav = 0 in D×R. This follows from Lemma 4.1 and formula (3.1)
in [2], since the reflection is possible because (−�)s f vanishes on D and this condition
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is equivalent to limy→0 yauy = 0 in D. In particular, from Theorem 2.3.12 in [7], v
is Hölder continuous in D × R. Theorem 1 guarantees that, for 0 < r < δ(x) and
x ∈ D,

f (x) = u(x, 0) = v(x, 0) =
∫∫

ϕr (X − Z)v(Z)|y|ad Z , (3.1)

where, as before, X = (x, 0) and Z = (z, y). On the other hand, the definitions of v
and u provide the formula

v(Z) = v(z, y) =
(

Pa|y| ∗ f
)

(z). (3.2)

Replacing (3.2) in (3.1), provided that the interchange of the order of integration holds,
we obtain the main result of this section.

Theorem 2 Let 0 < s < 1 be given. Assume that D is an open set in R
n on which

(−�)s f = 0. Then for every x ∈ D and every 0 < r < δ(x), we have that f (x) =
(�r ∗ f ) (x), where �r (x) = r−n�

( x
r

)

, �(x) = ∫

y∈R

∫

z∈Rn ϕ(z,−y)Pa|y|(x −
z)|y|a dzdy, ϕr (x, y) = r−(n+1+a)ϕ

( x
r ,

y
r

)

, ϕ is a C∞(Rn+1) radial function sup-
ported in the unit ball of R

n+1 with
∫∫

Rn+1 ϕ(x, y)|y|a dxdy = 1 and Pa
y is a constant

times y1−a
(|x |2 + y2

)− n+1−a
2 .

Proof Inserting (3.2) into (3.1), we have

f (x) = v(x, 0) =
∫∫

ϕr (x − z,−y)v(z, y) |y|adzdy

=
∫∫

ϕr (x − z, y)(Pa|y| ∗ f )(z)|y|adzdy

=
∫

y∈R

∫

z∈Rn
ϕr (x − z,−y)

(∫

z̄∈Rn
Pa|y|(z − z̄) f (z̄) dz̄

)

|y|adzdy

=
∫

z̄∈Rn

(∫

y∈R

∫

z∈Rn
ϕr (x − z,−y)Pa|y|(z − z̄)|y|adzdy

)

f (z̄)dz̄

=
∫

z̄∈Rn
�r (x, z̄) f (z̄)dz̄,

with �r (x, z̄) = ∫

y∈R

∫

z∈Rn ϕr (x − z,−y)Pa|y|(z − z̄) |y|a dzdy. The last equality in

the above formula follows from the fact that f (z̄)

(1+|z̄|2)
n+1−a

2

is integrable in R
n , since

∫

y∈R

∫

z∈Rn
|ϕ(x − z,−y)|Pa|y|(z − z̄)|y|adzdy ≤ C

(1 + |z̄|2) n+1−a
2
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for some positive constant C . In fact, on one hand,

∫

y∈R

∫

z∈Rn
|ϕ(x − z,−y)|Pa|y|(z − z̄)|y|adzdy

≤
∫ 1

−1
‖ϕ(x − ·, y)‖L∞

∥

∥

∥Pa|y|(· − z̄)
∥

∥

∥

L1
|y|a dy ≤ C; (3.3)

on the other, for |z̄ − x | > 2, we have

∫

y∈R

∫

z∈Rn
|ϕ(x − z,−y)|Pa|y|(z − z̄)|y|adzdy

≤ C
∫∫

S((x,0),1)

|y|
(y2 + |z − z̄|2) n+1−a

2

dzdy

≤ C

|x − z̄|n+1−a . (3.4)

So �r (x, z̄) ≤ C(r)
(1+|x−z̄|)n+1−a ≤ C(x,r)

(1+|x |)n+1−a , hence
∫

�r (x, z̄) f (z̄)dz̄ is absolutely

convergent. It remains to prove that �r (x, z̄) = 1
rn�(

x−z̄
r ) with �(x) =

∫

y∈R

∫

z∈Rn ϕ(z,−y)Pa|y|(x −z)|y|adzdy. Let us compute�( x−z̄
r ) changing variables.

First in R
n with ν = x − r z, then in R with t = r y,

�

(

x − z̄

r

)

=
∫

y∈R

∫

z∈Rn
ϕ(z,−y)Pa|y|

( x − z̄ − r z

r

)

|y|adzdy

=
∫

y∈R

∫

ν∈Rn

1

rn
ϕ
( x − ν

r
,−y

)

Pa|y|
(ν − z̄

r

)

|y|adνdy

=
∫

t∈R

∫

ν∈Rn

1

rn+1+a
ϕ
( x − ν

r
,− t

r

)

Pa
∣

∣

∣

t
r

∣

∣

∣

(ν − z̄

r

)

|t |adνdt

= rn
∫

t∈R

∫

ν∈Rn
ϕr (x − ν,−t)Pa|t |(ν − z̄)|t |adνdt

= rn�r (x, z̄),

as desired. �

We collect in the next result some basic properties of the mean value kernel �.

Proposition 3 The function � defined in the statement of Theorem 2 satisfies the
following properties:

(a) �(x) is radial;
(b) (1 + |x |)n+1−a |�(x)| is bounded;
(c)

∫

Rn �(x)dx = 1;
(d) supr>0 |(�r ∗ f )(x)| ≤ cM f (x), where M is the Hardy-Littlewood maximal

operator in R
n;

(e) if � i (x) = ∂�
∂xi
(x), then � i (0) = 0 and

∫

� i (x) dx = 0;
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(f) for some constant C > 0,
∣

∣� i (x)
∣

∣ ≤ C
|x |n+2−a for |x | > 2;

(g)
∣

∣∇� i
∣

∣ is bounded on R
n for every i = 1, . . . , n.

Proof Let ρ be a rotation of R
n ; then

�(ρx) =
∫

y∈R

∫

z∈Rn
ϕ(z,−y)Pa|y|(ρx − z)|y|adzdy

=
∫

y∈R

∫

z∈Rn
ϕ(ρ−1z,−y)Pa|y|(ρ−1(ρx − z))|y|adzdy

=
∫

y∈R

∫

z∈Rn
ϕ(ρ−1z,−y)Pa|y|(x − ρ−1z)|y|adzdy

=
∫

y∈R

∫

z̄∈Rn
ϕ(z̄,−y)Pa|y|(x − z̄)|y|adz̄dy

= �(x),

which proves (a). Part (b) has already been proved in (3.3) and (3.4). By taking f ≡ 1
in Theorem 2, we get (c). From (a) and (c), the estimate of the maximal operator is a
classical result (see [12]). Item (e) follows from the fact that � is radial and smooth
and from (c).

Let us now show that |� i (x)| ≤ C
|x |n+2−a for |x | > 2. In fact,

|� i (x)| =2

∣

∣

∣

∣

∫ ∞

0

∫

z∈Rn

∂ϕ

∂xi
(z, y)Pa

y (x − z)yadzdy

∣

∣

∣

∣

=2

∣

∣

∣

∣

∫ 1

0

∫

z∈B(0,1)
ϕ (z, y)

∂

∂xi

(

Pa
y (x − z)ya

)

dzdy

∣

∣

∣

∣

≤C
∫ 1

0

∫

z∈B(0,1)
|ϕ(z, y)| 1

|x − z|n+2−a
dzdy

≤ C

(|x | − 1)n+2−a

∫ 1

0

∫

z∈B(0,1)
|ϕ(z, y)|dzdy

≤ C

|x |n+2−a
.

By taking the derivatives of the function ϕ, the proof of (g) proceeds as in (3.3). �


4 Maximal Estimates for Gradients of Solutions of (−�)s f = 0 in Open
Domains and the Improvement of Besov Regularity

The mean value formula proved in Sect. 3 for solutions of (−�)s f = 0 in an open
domain D of R

n can be used to obtain improvement of Besov regularity of f . Here we
illustrate how Theorem 2 can be used to get a result in the lines introduced by Dahlke
and DeVore for harmonic functions. We shall prove the following result.
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Theorem 4 Let D be a bounded Lipschitz domain in R
n. Let 0 < s < 1. Let 1 < p <

∞ and 0 < λ < n−1
n be given. Assume that f ∈ Bλp(R

n) and that (−�)s f = 0 on

D. Then f ∈ Bατ (D) with 1
τ

= 1
p + α

n and 0 < α < λ n
n−1 .

Here Bλp(R
n) and Bατ (D) denote the standard Besov spaces on R

n and on D with
p = q for the usual notation Bλp,q of this scale. Among the several descriptions of
these spaces, the best suited for our purposes is the characterization through wavelet
coefficients [10].

It is worth noticing that in contrast to the local cases associated with the harmonic
functions in [3] and the temperatures in [1], now the Bλp regularity is required on the
whole space R

n and that the improvement is only in D.
The basic scheme is that in [3], and the central tool is then the estimate contained

in the next statement.

Lemma 5 Let D be a domain of R
n. Let 0 < λ < 1 and 1 < p < ∞. For f ∈ Bλp(R

n)

with (−�)s f = 0 on D, we have

(∫

D

∣

∣

∣δ(x)1−λ∇ f (x)
∣

∣

∣

p
dx

) 1
p ≤ C ‖ f ‖Bλp(R

n) ,

where δ(x) is the distance from x to the boundary of D, ∇ f is the gradient of f , and
C is a constant depending only on n, λ, and ϕ.

The main difference between the local case in [3] and our nonlocal setting is pre-
cisely provided by the fact that since our mean value kernel is not localized in D, the
Calderón maximal operator needs to be taken on the whole R

n , not only on D.
The result is itself a consequence of a pointwise estimate of the gradient of f in

terms of the sharp Calderón maximal operator and [4]. The result is contained in the
next statement and follows from the mean value formula in Theorem 2, and the basic
properties of the mean value kernel�r and its first-order partial derivatives contained
in Proposition 3.

Lemma 6 Let D and λ be as in Lemma 5, and let x ∈ D and 0 < r < δ(x). Then

|∇ f (x)| ≤ Crλ−1 M�,λ f (x),

with

M�,λ f (x) = sup
1

|B|1+ λ
n

∫

B
| f (y)− f (x)| dy,

where the supremum is taken on the family of all balls of R
n containing x.

Proof From the definition of � it is clear that ∂
∂xi
�r (x) = 1

r�
i
r (x) with � i (x) =

2
∫ ∞

0

∫

z∈Rn
∂ϕ
∂zi
(z, y)Pa

y (x − z)yadzdy, i = 1, . . . , n. Since from (e) in Proposition 3
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we have that � i (0) = 0, then

|� i
r (x)| =

∣

∣

∣�
i
r (x)−� i

r (0)
∣

∣

∣ ≤ |x | sup
ξ∈Rn

|∇� i
r (ξ)| ≤ C

rn+1 |x |, (4.1)

from (g) in Proposition 3. This is a good estimate in a neighborhood of 0. Applying
the mean value formula for f , we get the result after the following estimates:

∣

∣

∣

∣

∂ f (x)

∂xi

∣

∣

∣

∣

=
∣

∣

∣

∣

∂

∂xi
(�r ∗ f ) (x)

∣

∣

∣

∣

=
∣

∣

∣

∣

1

r

∫

Rn
f (x − z)� i

r (z)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

1

r

∫

Rn
( f (x − z)− f (x))� i

r (z)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

1

r

∫

Rn
( f (z)− f (x))� i

r (x − z)dz

∣

∣

∣

∣

≤ 1

r

∫

B(x,2r)

| f (z)− f (x)||� i
r (x − z)|dz

+1

r

∫

Bc(x,2r)

| f (z)− f (x)||� i
r (x − z)|dz = I + I I.

We shall bound I using (4.1):

I = 1

r

∫

B(x,2r)
| f (z)− f (x)||� i

r (x − z)|dz

≤ C

rn+2

∫

B(x,2r)
| f (z)− f (x)||x − z|dz

= C

rn+2

∞
∑

j=0

∫

{

z: 2− j−1≤ |x−z|
2r <2− j

} | f (z)− f (x)||x − z|dz

≤ C

rn+2

∞
∑

j=0

∫

B(x,2− j+1r)
| f (z)− f (x)|2− j+1rdz

= C

rn+1

∞
∑

j=0

2− j+1
(

2− j+1r
)n+λ 1

(

2− j+1r
)n+λ

∫

B(x,2− j+1r)
| f (z)− f (x)|dz

≤ Crλ−1
∞
∑

j=0

(

2− j+1
)n+λ+1

M�,λ f (x)

= Crλ−1 M�,λ f (x).
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Now from (f) in Proposition 3,

I I = 1

r

∫

Bc(x,2r)
| f (z)− f (x)||� i

r (x − z)|dz

≤ C

r

∞
∑

j=0

∫

{

z: 2 j ≤ |x−z|
2r <2 j+1

} | f (z)− f (x)| r2−a

|x − z|n+2−a
dz

≤ Cr1−a
∞
∑

j=0

∫

{

z: 2 j ≤ |x−z|
2r <2 j+1

} | f (z)− f (x)| 1

(2 j+1r)n+2−a
dz

≤ C

rn+1

∞
∑

j=0

(

2 j+1
)−n−2+a (r2 j+2)n+λ

(r2 j+2)n+λ

∫

B(x,2 j+2r)
| f (z)− f (x)|dz

≤ Crλ−1

⎛

⎝

∞
∑

j=0

(

2 j+2
)λ−2+a

⎞

⎠ M�,λ f (x)

= Crλ−1 M�,λ f (x),

and the lemma is proved. �

Proof of Theorem 4 The proof follows closely the lines of the proof of Theorem 3 in
[3]. The only point in which the nonlocal character of our situation becomes relevant
is contained in the first estimates on page 11 in [3]. On the other hand, our upper
restriction on λ is only a consequence of the fact that we are using only estimates for
the first-order derivatives (after a fine tuning of the function ϕ, larger values of λ can
be achieved). Our restriction guarantees the convergence of the series involved in the
estimates in [3] mentioned above. �
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