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Abstract

Given a n variables mean M de�ned on a real interval I, an M -a¢ ne
function is a solution to the functional equation

f (M (x1; : : : ; xn)) =M (f (x1) ; : : : ; f (xn)) ; x1; : : : ; xn 2 I: (1)

When M is a quasilinear mean, the set of continuous M -a¢ ne functions
is a Sturm-Lioville family on every compact interval [a; b] � I; i.e., for
every �; � 2 [a; b], there exists an M -a¢ ne function f such that f (a) = �
and f (b) = �. The validity of the converse statement is explored in
this paper and several consequences are derived from this study. New
characterizations of quasilinear means and the solution to equation (1)
under suitable conditions are among the more important of them.

1 Introduction and preliminaries

Let I 6= ; be a real interval. A n variables mean M de�ned on I is a function
M : In ! I which is internal ; i.e., it satis�es the property

minfx1; : : : ; xng �M(x1; : : : ; xn) � maxfx1; : : : ; xng; x1; : : : ; xn 2 I: (2)

M is said to be strict when the inequalities (2) turn out to be strict provided
that the variables xi are not all equal. Immediate consequences of the (2) are
both the equality

M (x; :::; x) = x; x 2 I;

(which show that means are re�exive functions) and the fact that a mean M
is continuous at every point of the diagonal f(x; :::; x) : x 2 Ig of In. A mean
invariant under rearrangements of their arguments is said to be a symmetric
mean, so that a n variables mean M is symmetric when M (x�1 ; : : : ; x�n) =
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M(x1; : : : ; xn) for every � = (�1; ; : : : ; �n) 2 Sn, the symmetric group of order
n. The restriction to a subinterval J � I of a n variables mean M de�ned on I
is a n mean on J which will be denoted by M jJ .
The set of all [continuous] n variables means de�ned on an interval I will

be denoted by Mn (I) [CMn (I)]. When a change of variable f : I ! J is
performed, a given mean M 2 CMn (I) becomes another mean N 2 CMn (J)
and, by identifying the so related means M and N , an equivalence relationship
is introduced on CMn. Namely, given M 2 CMn (I) and N 2 CMn (J), it is
said that M and N are conjugated means when there exists a homeomorphism
f : I ! J such that the equality

f (M (x1; x2; :::; xn)) = N (f (x1) ; f (x2) ; :::; f (xn)) ; (3)

holds for every x1; x2; :::; xn 2 I. This relationship decomposes CMn (I) in
classes named conjugacy classes. For instance, the conjugacy class of the linear
mean

L (x1; :::; xn;w) =

nX
j=1

wjxj ;

(where the coe¢ cients wi, the weights of the mean, satisfy wi > 0; i = 1; : : : ; n;
nP
j=1

wj =

1) is given by the class of quasilinear means; i.e., the means of the form

Lf (x1; ; :::; xn;w) = f�1

0@ nX
j=1

wjf (xj)

1A ; x1; :::; xn 2 I; (4)

where f : I ! R varies on the set of strictly monotonic and continuous functions.
The function f is called the generator of the quasilinear mean Lf . In the
literature (v.g. [8], pg. 266; [9], pg. 215; [14], pg. 208), nonnegative weights are
often admitted in de�nition (4) but, throughout this paper, quasilinear means
are ever strict means. (Note that the annulation of some weights in (4) simply
produces a quasilinear mean in fewer variables). Particularly relevant is the
equal weights (or symmetric) case: the conjugacy class of the arithmetic mean

A (x1; x2; :::; xn) =
�Pn

j=1 xj

�
=n; x1; x2; :::; xn 2 R, is given by the means of

the form

Af (x1; :::; xn) = f�1

0@ 1
n

nX
j=1

f (xj)

1A ; x1; :::; xn 2 I; (5)

where, as before, f : I ! R denotes a generic continuous and strictly monotonic
function. These means are named quasiarithmetic means. It must be added
that, in reference to the means de�ned by (4), a non uniform terminology was
employed. In the recent literature, they are frequently named weighted qua-
siarithmetic means, but in Chap. III of [12], the explicit denomination mean
values with an arbitrary function was preferred.
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A well known result (cf. [12], Sect. 3.2; [1], Theor. 2, pg. 67; [2], Cor. 5, pg.
246; [14], pg. 382 and ¤.) establishes that the generator f of a quasilinear mean
M de�ned on I is determined only up to an a¢ ne homeomorphism by M : the
equality Lf = Lg holds if and only if g = mf + h for certain real constants m
and h, m 6= 0. On the other hand, the di¤erentiability of the quasilinear mean
Lf is strictly related to the di¤erentiability of its generator, as established by
the following:

Proposition 1 A quasilinear mean Lf de�ned on I is di¤erentiable if and only
if its generator f is di¤erentiable in I.

Proof. The �if�part easily follows from the chain rule. To prove the converse
it is enough to consider two variables means M (x; y), for which (4) can be
rewritten in the form

f (x) =
1

w1
(f (M (x; y))� w2f (y)) ; x; y 2 I. (6)

Since f is di¤erentiable almost everywhere in I by the Lebesgue´s Theorem,
for a given x 2 I, there exists y 2 I such that f is di¤erentiable at the point
M (x; y). This fact and the chain rule applied to the right hand side of (6) show
that f is di¤erentiable at x. The proposition follows from the arbitrariness of
x 2 I.
Given two means M 2 CMn (I) and N 2 CMn (J), one can look for func-

tions f satisfying the equality (3). This type of functional equations (or even
a more general one in which M and N are continuous functions) have been
studied since the �rst decades of the past century (for n = 2 see [1], pgs. 62,
79, 145, and the corresponding references; [7], pg. 239 and ¤.; [10]; [4], [11]),
but the problem of �nding conditions on the means M and N in order that
functional equation (3) admits nontrivial (non constant) solutions has not been
fully solved. When M = N , (3) takes the form

f (M (x1; :::; xn)) =M (f (x1) ; :::; f (xn)) ; x1; :::; xn 2 I; (7)

a functional equation which can be seen as a generalization of the Jensen equa-
tion

f

�
x1 + � � �+ xn

n

�
=
f (x1) + � � �+ f (xn)

n
; x1; :::; xn 2 I; (8)

and whose solutions are, by this reason, named M -a¢ ne functions ([10], [17]).
Indeed, for every n � 2 and every real interval I, the A-a¢ ne functions have
the form f (x) = �(x) + h, where � : R! R is an additive function and b is a
real constant, but the continuous A-a¢ ne functions reduce to the set of a¢ ne
functions f (x) = mx + h; m; h 2 R. Along this paper, the general solution to
(7); i.e., the set of M -a¢ ne functions, will be denoted by A (M ; I), while the
notation AC (M ; I) is reserved for the continuous M -a¢ ne functions. Clearly,
A (M ; I) and AC (M ; I) are semigroups under ���, the usual composition of
functions.
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The set constituted by the a¢ ne functions on an interval I � R (i.e., the set
AC (A; I),) will be denoted by A� (I); i.e.,

A� (I) = ff (t) = mt+ h : m; h 2 R; mI + h � Ig :

For instance, A� (R+) =
�
f (t) = mt+ h : m 2 R+0 ; h 2 R+

	
and A� ([0; 1]) =

ff (t) = mt+ h : m 2 [�1; 1] ; h; m+ h 2 [0; 1]g. The set of parameters (m;h) 2
R2 such that the a¢ ne function t 7! mt+h is a member of A� (I) will be denoted
by AFF (I); i.e.,

AFF (I) =
�
(m;h) 2 R2 : mI + h � I

	
:

In this way, AFF (R+) = R+0 �R+ andAFF ([0; 1]) = f(0; 0) ; (1; 0) ; (0; 1) ; (�1; 1)g
^,

where E^ denotes the convex hull of the set E. Clearly, A� (I) and AFF (I)
are convex sets whichever be the interval I. Further properties of these sets
are to be considered in Section 5, where it will be appretiated that the visual
representation AFF (I) of A� (I) can clarify some developments.
This paper deals with a sort of inverse problem: to deduce properties of the

means M from the knowledge of some properties of A (M ; I) or AC (M ; I). For
example, if for a strict mean M de�ned on R, the functions f(x) = mx + h;
m; h 2 R, were solutions to the equation

f (M (x; y)) =M (f (x) ; f (y)) ; x; y 2 R; (9)

or, in other terms, if the inclusion Aff (R) � A (M ; I) holds, then necessarily
M(x; y) = M (0 (y � x) + x; 1 (y � x) + x) = M (0; 1) (y � x) + x is a linear
mean (cf. [1], Theor. 1, pg. 234). Note that no hypothesis was made on the
regularity of M ; furthermore, note that the same result is true whenever M
is strict mean de�ned on an interval I provided that the inclusion Aff (I) �
A (M ; I) holds, a fact that quickly follows from the equality

M(x; y) =
M (x0; y0)� x0

y0 � x0
(y � x) + x; x; y 2 I;

where x0; y0 2 I; x0 < y0. Unfortunately, this is no longer true when the
number of variables is greater than 2 (cf. [1], pg. 237): given the three variables
linear means L1; L2 and L3, with Li 6= Lj at least for a pair i; j, i 6= j, the
(continuous) strict mean M (x; y; z) de�ned on R by M (x; x; x) = x; x 2 R, by

M (x; x; y) = L3 (x; x; y) ; M (x; y; x) = L2 (x; y; x) ; M (y; x; x) = L1 (y; x; x) ;
(10)

when x; y 2 R, x 6= y, and by

M (x; y; z)

=
(x� y)2 e�(

x�y
x�z )

2

L1 (x; y; z) + (y � z)2 e�(
y�z
y�x )

2

L2 (x; y; z) + (z � x)2 e�(
z�x
z�y )

2

L3 (x; y; z)

(x� y)2 e�(
x�y
x�z )

2

+ (y � z)2 e�(
y�z
y�x )

2

+ (z � x)2 e�(
z�x
z�y )

2 (11)

when x; y; z 2 R, x 6= y; y 6= z; z 6= x, serves as a counterexample. However, it
can be proved the following:
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Proposition 2 Let I be a real interval with int (I) 6= ; and M 2 CMn (I) be a
strict mean such that Aff (I) � A (M ; I). If M is di¤erentiable at a point of
the diagonal of (int (I))n, then M is a linear mean.

Note that a mean ful�lling the hypotheses of the proposition is not only
continuous but also di¤erentiable at every point of the diagonal of In.
Proof. First of all observe that, whichever be the interval I, f0g�I � AFF (I)
and (m;h0) 2 AFF (I) provided that h0 2 int (I) and m > 0 is small enough.
Thus, if (t0; :::; t0) 2 (int (I))

n is the point at which M is di¤erentiable and
x1; :::; xn 2 I are �xed, the map

u 7!M (ux1 + t0; :::; uxn + t0) ;

(which is, by the former observation, de�ned and continuous on an interval of
the form [0; �) (� > 0),) has a right-hand derivative D+M at u = 0 given by

D+M (ux1 + t0; :::; uxn + t0)
��
u=0

=
nX
i=1

@M

@xi
(t0; :::; t0)xi:

Now, by the assumptions it can be written

M (ux1 + t0; :::; uxn + t0) = uM (x1; :::; xn) + t0; u 2 [0; �);

and taking (right-hand) derivatives at u = 0 in this equality,

nX
i=1

@M

@xi
(t0; :::; t0)xi =M (x1; :::; xn) : (12)

Di¤erentiating the identity M (x; :::; x) � x at x = t0 yields

nX
i=1

@M

@xi
(t0; :::; t0) = 1; (13)

and, from (12) and the assumed strictness of M , it is derived

0 < M (0; :::; 1; :::; 0) =
@M

@xi
(t0; :::; t0)i < 1: (14)

The equality (12) together (13) and (14) show that M is a linear mean.
In a noteworthy result by J. Matkowski (cf. Theorem 3 in [17]), the two

variables quasilinear means are characterized as those strict meansM such that
their corresponding semigroup A (M ; I) are, in a certain sense, extense. Let us
quote this theorem as follows:

Theorem 3 (J. Matkowski, 2003) Let I � R be an open interval and M be
a two variables strict mean de�ned on I. Suppose that A (M ; I) contains a con-
tinuous (multiplicative) iteration group ff t : t > 0g with generator 
. Further-
more, suppose that the function h : R+ ! R+ de�ned by h (u) = 


�
M
�

�1 (u) ; 
�1 (1)

��
;
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u > 0 is twice di¤erentiable, and that 0 6= h0 (1) 6= 1. If there exists an M -a¢ ne
function, continuous at a point, that is neither constant nor an element of the
iteration group ff t : t > 0g, then

M (x; y) = ��1 (w� (x) + (1� w)� (y)) ; x; y 2 I;

for some continuous and strictly monotonic function � : I ! R+ and w = h0 (1).

In this paper, a class of functions F will be considered an extense one when-
ever there exists a function f 2 F passing through every pair of points. More
precisely, if I = [a; b], (a; b 2 R; a < b) and J 6= ; are two real intervals and F
� JI = ff j f : I ! Jg, F 6= ;, is a family of functions, then let us say that F
is a Sturm-Liouville family when, for every �; � 2 J , there exists f 2 F such
that

f (a) = � and f (b) = �.

The terminology comes from the denomination of the boundary conditions in the
theory of boundary value problems for second order linear di¤erential equations.
When I = [a; b] and J = R, the family constituted by all monotonic functions f :
[a; b]! R is a Sturm-Liouville family. If J reduces to the single point fcg, then
the unitary set F = ff � cg is also a Sturm-Liouville family (whichever be the
interval I). It should be observed that the property of being a Sturm-Liouville
family is invariant under congugacy: given a homeomorphism � : [a; b] ! R, a
family F is a Sturm-Liouville family of functions de�ned on [a; b] if and only
� � F � ��1 =

�
� � f � ��1 : f 2 F

	
is a Sturm-Liouville family of functions

de�ned on � ([a; b]).
A remarkable example of a Sturm-Liouville family is furnished by the semi-

group AC (L�; J) corresponding to the n variables quasilinear mean L� with
generator � : J ! R and weights wi; i = 1; : : : ; n. In fact, observe that equa-
tion (7) takes, in this case, the form

f

 
��1

 
nX
i=1

wi� (xi)

!!
= ��1

 
nX
i=1

wi� (f (xi))

!
; xi 2 J; i = 1; : : : ; n; (15)

for a unknown function f : J ! J . Replacing g = � � f � ��1 : � (J)! � (J) in
(??), reduce it to the equation

g

 
nX
i=1

witi

!
=

nX
i=1

wig (ti) ; ti 2 � (J) ; i = 1; : : : ; n;

whose general continuous solution is given by

g(t) = mt+ h; t 2 � (J) ; (16)

where m; h are real constants such that g(t) 2 � (J) ; t 2 � (J), (this is a simple
consequence of [1], Theor. 2, pg. 67 or also [14], pg. 382 and ¤.) and hence, a
solution f to equation (15) must have the form

f (x) = ��1 (m� (x) + h) ; x 2 J; (17)
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where (m;h) 2 AFF (� (J)). A replacement of (17) in (??) shows that (17)
really solves this equation, so that (cf. [2], Chap. 15, Prop. 6, for the case
n = 2 and M symmetric)

AC (L�; J) =
�
f : f (x) = ��1 (m� (x) + h) ; x 2 J; (m;h) 2 AFF (� (J))

	
:

A straightforward consequence of this characterization of AC (L�; J) is the fol-
lowing:

Proposition 4 Let J be a real interval and L� be a quasilinear mean with
generator � : J ! R; then, for every compact interval [a; b] � J , the family of

restrictions
n
f j[a;b] : f 2 AC (L�; J)

o
(= AC (L�; [a; b])) is a Sturm-Liouville

family.

Proof. It is su¢ cient to observe that, for any pair of numbers �; � 2 J , the
system of equations �

��1 (m� (a) + h) = �

��1 (m� (b) + h) = �
;

has the solution

m =
� (�)� � (�)
� (b)� � (a) ; h = � (�)� � (�)� � (�)

� (b)� � (a) � (a) ; (18)

and that the pair (m;h) given by (18) really is a member of AFF (� ([a; b])).

Remark 5 De�ning the increasing homeomorphism  : [a; b]! [0; 1] by

 (x) =
� (x)� � (a)
� (b)� � (a) ; x 2 [a; b] ; (19)

it turns out to be

��1
�
� (�)� � (�)
� (b)� � (a) (� (x)� � (a)) + � (�)

�

=  �1

0@ �(�)��(�)
�(b)��(a) (� (x)� � (a)) + � (�)� � (a)

� (b)� � (a)

1A
=  �1

�
� (�)� � (�)
� (b)� � (a)

� (x)� � (a)
� (b)� � (a) +

� (�)� � (a)
� (b)� � (a)

�
=  �1 (( (�)�  (�)) (x) +  (�)) ;

so that, from the proof of Prop. 4 it is seen that

AC (L�; [a; b]) =
�
 �1 (( (�)�  (�)) (�) +  (�)) : �; � 2 [a; b]

	
;

where  : [a; b]! [0; 1] is given by (19).
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Now, assume thatM is a strict and continuous mean de�ned on J such that,

for every compact interval [a; b] � J , the family AC
�
M j[a;b] ; [a; b]

�
is a Sturm-

Liouville family. ¿Must be M a quasilinear mean? This paper is addressed
to answer to this question. Concretely, along Sections 2 and 3, a proof of the
following result will be developed.

Theorem 6 LetM 2 CMn ([a; b]) be a strict and continuous mean de�ned on a
compact interval [a; b]. If AC (M ; [a; b]) is a Sturm-Liouville family, then there
exist a unique increasing homeomorphism  : [a; b]! [0; 1] from [a; b] onto [0; 1]
such that, for the conjugated mean M de�ned on [0; 1] by

M (x1; : : : ; xn) =  
�
M
�
 �1 (x1) ; : : : ;  

�1 (xn)
��
; (20)

the semigroup AC (M ; [0; 1]) coincides with A� ([0; 1]).

In other words, when for a certain strict continuous meanM , AC (M ; [a; b]) is
a Sturm-Liouville family, then, there exists a unique increasing homeomorphism
 : [a; b]! [0; 1] from [a; b] onto [0; 1] such that every f 2 AC (M ; [a; b]) can be
represented in the form

f (t) =  �1 (m (t) + h) ; t 2 [a; b] ;

where (m;h) 2 AFF ([0; 1]). Remarkably, when n = 2, Theor. 6 implies that
M is a linear mean, so that M turns out to be a quasilinear mean, so that the
converse of Prop. 4 turns out to be true in this case. Now, ¿what if the interval
I is not compact? In Section 4, the following result will be shown.

Theorem 7 Let M 2 CM2 (I) be a two variables mean de�ned on a real inter-
val I. If f[ak; bk] : k 2 Ng is a sequence of nested ([ak; bk] � [ak+1; bk+1] ; k 2 N)
and exhaustive (

S
k [ak; bk] = I) compact subintervals of I such that AC

�
M j[ak;bk] ; [ak; bk]

�
is a Sturm-Liouville family for every k 2 N, then M is a quasilinear mean.

Other consequences of Theor. 6 for two variables means are explained in
Section 4. Among them, a special mention deserves the characterization of two
variables quasilinear means through the theory of bases, which is now presented
by setting aside the technical di¤erentiability hypotheses made in [3]. Section 5
is devoted to study the case of n variables means. The following result, which
can be considered as an ample generalization of Prop. 2, will be shown there.

Theorem 8 Let M 2 CMn (I) be a n variables, strict and continuous mean
de�ned on a real interval I. If f[ak; bk] : k 2 Ng is a sequence of nested and ex-
haustive compact subintervals of I such that AC (M ; [ak; bk]) is a Sturm-Liouville
family for every k 2 N, then there exists a strictly increasing and continuous
function � : I ! R such that AC (M�;� (I)) = Aff (� (I)). Furthermore, M is
a quasilinear mean in I provided that M is di¤erentiable.

The �nal Section 6 serves to gather together some examples and remarks.
Particularly, the use of the above results in solving the functional equation (7)
will be illustrated there.
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2 Continuous M-a¢ ne functions constituting a
Sturm-Liouville family

A useful tool in the study of continuous M -a¢ ne functions are the Aczel dyadic
iterations of a two variables mean M . Concretely, denoting the set of dyadic
numbers of the interval [0; 1] byD ([0; 1]), a family of means

�
M (d) : d 2 D ([0; 1])

	
is de�ned on I2 as follows: �x x; y 2 I and set

M (0) (x; y) = x; M (1) (x; y) = y;

then, assuming thatM
j
2n (x; y) is known for n � 0 and every 0 � j � 2n, de�ne

M(
k

2n+1
) (x; y) =

(
M(

h
2n )(x; y); k = 2h; 0 � h � 2n

M
�
M(

h
2n )(x; y);M(

h+1
2n )(x; y)

�
; k = 2h+ 1; 0 � h � 2n � 1

:

In the following result, whose proof can be found in [3] (see also [4] and [5]), the
main properties of the Aczel dyadic iterations are established.

Theorem 9 a) Let I and J two real intervals and M 2 M2 (I) and N
2M2 (J). If the equality

f (M (x; y)) = N (f (x) ; f (y)) ; x; y 2 I;

holds for any x; y 2 I, then, for every d 2 D ([0; 1]),

f
�
M (d) (x; y)

�
= N (d) (f (x) ; f (y)) :

b) If M is a strict continuous mean, the map D ([0; 1]) 3 d 7! M (d) (x; y)
can be continuously extended to the interval [0; 1] : Moreover, the extension
�(x;y) (�) =M (�) (x; y) is a homeomorphism from [0; 1] onto [min (x; y) ;max (x; y)]
which turns out to be increasing when x < y and decreasing when x > y.

c) For each � 2 (0; 1), M (�) is a continuous strict mean de�ned on I (while
M (0)(x; y) � x and M (1) (x; y) � y).

For example, ifM (x; y) = Af (x; y) is a quasiarithmetic mean with generator
f , then it is inductively shown that

A
(d)
f (x; y) = f�1 ((1� d) f (x) + df (y)) ; x; y 2 I;

for every d 2 D ([0; 1]), whence it is easily deduced that

A
(�)
f (x; y) = f�1 ((1� �) f (x) + �f (y)) ; x; y 2 I; (21)

for every � 2 [0; 1].
As a �rst application of the Aczel dyadic iterations, let us prove the following:
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Proposition 10 Let M 2 CMn (J) be a continuous and strict mean de�ned
on a real interval J and consider a compact subinterval [a; b] � J . Further-
more, for given �; � 2 [a; b], let f be a continuous M -a¢ ne function such that
f (a) = � and f (b) = �. Then f j[a;b] is a homeomorphism from [a; b] onto
[min (�; �) ;max (�; �)].

Proof. In the �rst place, let us consider the case n = 2: From part a) of Theor.
9 and the continuity of f , it can be written in this case

f
�
M (�) (x; y)

�
=M (�) (f (x) ; f (y)) ; x; y 2 [a; b] ; � 2 [0; 1] ;

whence, setting x = a, y = b, and using the notation introduced in Theor. 9-
b), it is derived

f
�
�(a;b) (�)

�
= �(�;�) (�) ; � 2 [0; 1] ;

or, by substituting u = �(a;b) (�),

f (u) =
�
�(�;�) � ��1(a;b)

�
(u) ; u 2 [a; b] : (22)

This expression and Theor. 9- b) shows that f j[a;b] is a homeomorphism from
[a; b] onto [min (�; �) ;max (�; �)], as stated. Now, if M 2 CMn (J), let de�ne
a two variables mean N by

N (x; y) =M (x; y; :::; y) ; x; y 2 J: (23)

Clearly N is a strict and continuous mean, and if f is M -a¢ ne, then it is also
N -a¢ ne. Hence, the general case follows from the case n = 2. This completes
the proof.
Like in the previous proposition, consider a continuous and strict mean

M 2 CMn (J) and suppose, for a given compact subinterval [a; b] � J , that

AC
�
M j[a;b] ; [a; b]

�
is a Sturm-Liouville family. By de�nition, for every �; � 2

[a; b] there exists f 2 AC
�
M j[a;b] ; [a; b]

�
such that f (a) = � and f (b) = �.

It is asserted that this f is unique. In fact, if g 2 AC (M ; [a; b]) was another
M -a¢ ne function satisfying g (a) = � and g (b) = �, then there would exist t0 2
(a; b) such that f (t0) 6= g (t0) and, by continuity, f (t) 6= f�;� (t) for every t in
a maximal open neighborhood (c; d) of t0. Since the equalities f (c) = g (c) and
f (d) = g (d) hold by the maximality of (c; d), it can be written

f (M (c; c; :::; c; d)) = M (f (c) ; f (c) ; :::; f (c) ; f (d))

= M (g (c) ; g (c) ; :::; g (c) ; g (d))

= g (M (c; c; :::; c; d)) ;

which, taking into account that M (c; c; :::; c; d) 2 (c; d) by the strict internality
of M , is a contradiction. This proves the above assertion and justi�es the use
of the notation f�;� for the unique f 2 AC (M ; [a; b]) satisfying f (a) = � and
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f (b) = �. Now, let us see that � 7! f�;� (t) is a continuous and monotonic
function on [a; b]. Indeed, in view of (22) in the proof of Prop. 10, it can be
written

f�;� (t) = �(�;�)

�
��1(a;b) (t)

�
=M

��1
(a;b)

(t)
(�; �) ;

so that the continuity of � 7! f�;� (t) follows from Theor. 9, c). In order to
prove the monotonicity, let us consider �; �0 2 [a; b] ; � < �0, and suppose that
there exists t0 2 (a; b) such that f�;� (t0) > f�0;� (t0). In view of f�;� (a) =
� < �0 = f�0;� (a) and of f�;� and f�0;� are both continuous functions, there
exists c 2 (a; t0) such that f�;� (c) = f�0;� (c) and therefore, an argument like
that used above to prove the uniqueness of f�;� shows that f�;� (t) = f�0;� (t) ;
t 2 [c; b]. Since t0 > c, this is in contradiction with the former assumption and
thus f�;� (t) � f�0;� (t) ; t 2 [a; b). Since f�;� (b) = � = f�0;� (b), � 7! f�;� (t)
is monotonic for every t 2 [a; b].
Summarizing the above discussion, the following result can be established.

Proposition 11 Let M 2 CMn (J) be a continuous and strict mean and sup-

pose, for a given compact subinterval [a; b] � J , that AC
�
M j[a;b] ; [a; b]

�
is a

Sturm-Liouville family. Then, there exists a unique function f�;� 2 AC
�
M j[a;b] ; [a; b]

�
such that f�;� (a) = � and f�;� (b) = �. Furthermore, the functions � 7! f�;� (t)
and � 7! f�;� (t) turn out to be monotonic and continuous on [a; b].

Proof. After the previous discussion, it remains prove only that � 7! f�;� (t)
is monotonic and continuous on [a; b]. This is a immediate consequence of the
representation

f�;� (t) = f�;� (fb;a (t))

and the corresponding properties of � 7! f�;� (t).

Under the hypotheses of Prop. 11 and remembering that AC
�
M j[a;b] ; [a; b]

�
is a semigroup, it turns out to be that, for every �i; �i 2 [a; b] ; i = 1; 2, there
exist a unique pair �; � 2 [a; b] such that

f�1;�1 � f�2;�2 = f�;� :

Since

� = f�;� (a) =
�
f�1;�1 � f�2;�2

�
(a) = f�1;�1

�
f�2;�2 (a)

�
= f�1;�1 (�2)

and, similarly,
� = f�;� (b) = f�1;�1 (�2) ;

for every �i; �i 2 [a; b] ; i = 1; 2, it can be written

f�1;�1 � f�2;�2 = ff�1;�1 (�2);f�1;�1 (�2): (24)

Now, consider the function F : [a; b]3 ! [a; b] de�ned by

F (t; �; �) = f�;� (t) : (25)

11



Proposition 12 Let M 2 CMn (J) be a strict and continuous mean and sup-

pose, for a given compact subinterval [a; b] � J , that AC
�
M j[a;b] ; [a; b]

�
is a

Sturm-Liouville family. If f�;� 2 AC
�
M j[a;b] ; [a; b]

�
is the unique M -a¢ ne

function satisfying f�;� (a) = � and f�;� (b) = �, then the function F de�ned
by (25) is a solution to the composite functional equation

F (F (t; �1; �1) ; �2; �2)=F (t; F (�1; �2; �2) ; F (�1; �2; �2)) ; t; �i; �i 2 [a; b] ; (i = 1; 2) ;
(26)

in the class constituted by the functions with the following properties:

i) F is continuous;

ii) F (t; �; �) is monotonic with respect to each variable, and strictly monotonic
with respect to the variable t provided that � 6= � (t 7! F (t; �; �) is strictly
increasing when � < � and strictly decreasing when � > �);

iii) F (a; �; �) = � and F (b; �; �) = �.

Proof. The functional equation (26) is a rewriting of (24) using (25). ii) and
iii) are an immediate consequence of (25) and Props. 10 and 11 (the strict
monotonicity of t 7! F (t; �; �) follows from the representation (22) and Theor.
9). In regards to i), observe that the function F : [a; b]

3 ! [a; b] is separately
continuous and monotonic in each variable and therefore, F is continuous. In
fact, the argument employed by R. L. Kruse and J. J. Deely in [13], Prop. 2, to
prove the joint continuity on an given open set can be easily extended to prove
joint continuity on the cube [a; b]3.
After this result, Prop. 4 and Remark 5 imply that

F (t; �; �) =  �1 (( (�)�  (�)) (t) +  (�)) ;

where  : [a; b]! [0; 1] is an increasing homeomorphism, must be a solution to
the functional equation (26) in the class of functions satisfying the properties
i), ii) and iii). A direct checking of this fact is an easy task. As it will be seen
in the next section, this expression really provides the general solution to (26).

3 The functional equation (26)

The purpose of this section is to prove the following:

Theorem 13 The general solution to the functional equation (26) in the class
of functions ful�lling the conditions i), ii) and iii) is given by

F (t; �; �) =  �1 (( (�)�  (�)) (t) +  (�)) ; (27)

where  : [a; b] ! [0; 1] is an increasing homeomorphism.  is the unique
increasing homeomorphism satisfying (27).

12



A proof of Theor. 6 will easily follow from this result.
As a �rst observation note that, in view of fa;b must be an increasing homeo-

morphism onto [a; b] and f2a;b = fa;b�fa;b = fa;b (idempotency), it turns out to be
fa;b = id, the identity on [a; b]. On the other hand, f2b;a = fb;a � fb;a = fa;b = id,
so that fb;a is a decreasing involutory homeomorphism onto [a; b]. Further-
more, after (24), a generic f�;� 2 AC (M ; [a; b]) can be written as a product
f�;� = f�;b � fa;� of the "boundary elements" f�;b ; fa;� , and thus, the whole
semigroup AC (M ; [a; b]) can be reconstructed when f�;b and fa;� are known
for every �; � 2 [a; b]. This fact is the basis of the following:

Proposition 14 If F : [a; b]
3 ! [a; b] is a solution to the functional equation

(26) satisfying the conditions i), ii) and iii), then F can be written in the form

F (t; �; �) =

�
H (H (t;  (�; �)) ; �) ; � � �
H (G (t;  (�; �)) ; �) ; � > �

; t; �; � 2 [a; b] ; (28)

where H;G : [a; b]2 ! [a; b] are solutions to the system of functional equations�
G (G (t; �) ; �) = G (t; G (�; �))
G (H (t; �) ; �) = H (t; G (�; �))

; t; �; � 2 [a; b] ; (29a)

which are continuous, monotonic in both variables and strictly monotonic in the
�rst variable when � 6= b, while 	 is a continuous function implicitly de�ned by

H (	 (t; �) ; �) = t; � � t � b; a � � � b: (30)

Proof. If F : [a; b]3 ! [a; b] is a solution to (26) satisfying the conditions i), ii)
and iii), and the functions G and H are respectively de�ned by

G (t; �) = F (t; �; b) ; t; � 2 [a; b] ;

and
H (t; �) = F (t; b; �) ; t; � 2 [a; b] ;

then both G and H turn out to be continuous on [a; b]2 by condition i), while
condition ii) shows thatG andH must be monotonic functions in both variables.
Moreover, t 7! G (t; �) is strictly monotonic for every � 6= b and the same is true
for t 7! H (t; �) (but G (t; b) � b � H (t; b)). By this reason, the (continuous)
function 	 de�ned by

	(t; �) =

�
f�1b;� (t) ; a � � < b

b; � = b
; � � t � b;

is the unique solution to equation (30). Now, let us prove that system (29a) is
solved by the above de�ned functions G and H. In fact, from (26) and condition
iii) it is deduced

G (G (t; �) ; �) = F (F (t; �; b) ; �; b)

= F (t; F (�; �; b) ; F (b; �; b))

= F (t; F (�; �; b) ; b)

= G (t; G (�; �)) ; t; �; � 2 [a; b] :

13



Analogously, it can be written

G (H (t; �) ; �) = F (F (t; b; �) ; �; b)

= F (t; F (b; �; b) ; F (�; �; b))

= F (t; b; F (�; �; b))

= H (t; G (�; �)) ; t; �; � 2 [a; b] :

It remains to prove that, in terms of G and H, F is expressed by (28). To
this end, �rst consider the case � � �; thus, from (26) and condition iii), it is
derived

H (H (t; �1) ; �) = F (F (t; b; �1) ; b; �)

= F (t; F (b; b; �) ; F (�1; b; �))

= F (t; �; F (�1; b; �))

= F (t; �;H (�1; �)) ; t; �; �1 2 [a; b] ;

whence, introducing �1 = 	(�; �) and taking into account (30), it is obtained

H (H (t;  (�; �)) ; �) = F (t; �;H ( (�; �) ; �)) = F (t; �; �) :

Similarly, when � > �, it can be written

H (G (t; �1) ; �) = F (F (t; �1; b) ; b; �)

= F (t; F (�1; b; �) ; F (b; b; �))

= F (t; F (�1; b; �) ; �)

= F (t;H (�1; �) ; �) ; t; �1; � 2 [a; b] ;

and the substitution �1 =  (�; �) gives

H (G (t;  (�; �)) ; �) = F (t;H ( (�; �) ; �) ; �)

= F (t; �; �) :

This completes the proof.

Remark 15 Note that the function G is really increasing in both variables and
strictly increasing in the �rst variable when � 6= b. In its turn, H is strictly
decreasing in the �rst variable when � 6= b, while it is increasing in the second
variable.

In the next paragraph, the system of composite equations (29a) is to be
solved. The �rst equation in this system is no other than the associativity
equation. Fortunately, its solution in our setting is furnished by a result due to
C. H. Ling (see [15], Main Theorem, or also [16]Theor. 3.2 in ). In the next
paragraphs, R and [0;+1] will stand respectively for the extended real numbers
and the nonnegative extended real numbers.
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Theorem 16 (C. H. Ling, 1965) Let I = [a; b] � R be a closed interval.
A function � : I � I ! I is an associative function satisfying the following
conditions: � is continuous, increasing in both variables, the endpoint a is a left
unit (i.e., � (a; �) = � for all � in I) and, for every � 2 (a; b), � (�; �) > �,
if and only if there exists a continuous and strictly increasing function f : I !
[0;+1] with f (a) = 0, such that

� (t; �) = f�1 (min (f (t) + f (�) ; f (b))) ; t; � 2 I:

The function G in Prop. 14 is easily cheeked to satisfy the hypotheses of
Ling�s theorem. Moreover, from the strict monotonicity of G in the �rst variable
it follows that f (b) = +1. Indeed, in view of a < f�1 (f (b)� f (�)) < b for
every � 2 (a; b), the assumption f (b) < +1 would imply � (t; �) = b for every
f�1 (f (b)� f (�)) < t � b, a contradiction. Then, for a continuous and strictly
increasing function f : I ! [0;+1] with f (a) = 0, it can be written

G (t; �) = f�1 (f (t) + f (�)) ; t; � 2 [a; b] : (31)

In order to solve the second equation in (29a), let us substitute the expression
(31) for G in it to obtain

f�1 (f (H (t; �)) + f (�)) = H
�
t; f�1 (f (�) + f (�))

�
; t; �; � [a; b] :

Setting � = f (t) ; � = f (�) ; � = f (�) and introducing the function K :
R+0 � R+0 ! R+0 de�ned by K (�; �) = f

�
H
�
f�1 (�) ; f�1 (�)

��
, this equation

can be written as

K (�; �) + � = K (�; � + �) ; �; �; � 2 R+0 ;

and then

K (�; �) + � = K (�; � + �) = K (�; � + �) = K (�; �) + �;

or, equivalently,

K (�; �)� � = K (�; �)� �; �; �; � 2 R+0 :

In other words, the function (�; �)! K (�; �)� � depends only on �; i.e., there
exists p : R+0 ! R+0 such that

K (�; �) = p (�) + �;

and therefore
H (t; �) = f�1 (p (f (t)) + f (�)) : (32)

The replacement � = a in the last expression produces

fb;a (t) = H (t; a) = f�1 (p (f (t)) + f (a)) = f�1 (p (f (t))) ;
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whence it is deduced that p is a strictly decreasing involutory function satisfying
p (0+) = +1 and p (+1) = 0. An expression for the function 	 of Prop. 14 is
promptly derived from (32) in the form

	(t; �) = f�1 (p (f (t)� f (�))) ; � � t � b; a � � � b:

From the above discussion and Prop. 14, it follows that any solution to
equation (26) satisfying conditions i), ii) and iii) can be written as

F (t; �; �) =

�
f�1 (p (p (f (t)) + p (f (�)� f (�))) + f (�)) ; � � �
f�1 (p (f (t) + p (f (�)� f (�))) + f (�)) ; � > �

; (33)

where f : I ! [0;+1] is a continuous and strictly increasing function with
f (a) = 0 and p is a strictly decreasing involutory function satisfying p (0+) =
+1 and p (+1) = 0. Now, assume that the function F represented by (33) is
a solution to equation (26); then, taking �1; �1; �2 2 [a; b] with �1 � �1, it can
be written

F (t; �1; �1) = f�1 (p (p (f (t)) + p (f (�1)� f (�1))) + f (�1)) ;
and, in view of f (a) = 0, it follows that

F (F (t; �1; �1) ; �2; �2) = f�1 (p (p (p (p (s) + p (b1 � a1)) + a1) + p (b2))) ;
(34)

where s = f (t) ; a1 = f (�1) and bi = f (�i) ; i = 1; 2. On the other hand,

F (�1; �2; �2) = f�1 (p (p (f (�1)) + p (f (�2)� f (�2))) + f (�2)) ;

and

F (�1; �2; �2) = f�1 (p (p (f (�1)) + p (f (�2)� f (�2))) + f (�2)) ;

whence, since F (�1; �2; �2) � F (�1; �2; �2), the following equality is deduced

F (t; F (�1; �2; �2) ; F (�1; �2; �2))

= f�1 (p (p (s) + p (p (p (b1) + p (b2))� p (p (a1) + p (b2))))
+p (p (a1) + p (b2))) ; (35)

where again s = f (t) ; a1 = f (�1) and bi = f (�i) ; i = 1; 2. Since the left hand
sides of (34) and (35) are equal, their corresponding right hand sides must be
equal as well and therefore, the equality

p (p (p (p (s) + p (b1 � a1)) + a1) + p (b2))
= p (p (s) + p (p (p (b1) + p (b2))� p (p (a1) + p (b2)))) + p (p (a1) + p (b2)) ;

must hold for every s; a1; b1; b2 2 [a; b] or, after the substitutions x = b1 � a1;
y = a1; z = p (b2) and s = p (s),

p (p (p (s+ p (x)) + y) + z) = p (s+ p (p (p (x+ y) + z)� p (p (y) + z)))+p (p (y) + z)
(36)

where x; y; z; s 2 R+0 .
Summarizing the above developments, the following result can be estab-

lished.
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Proposition 17 Let F : [a; b]
3 ! [a; b] be a solution to functional equation

(26) satisfying the conditions i), ii) and iii). Then, F can be represented in
the form (33), where f : I ! [0;+1] is a continuous and strictly increasing
function with f (a) = 0 (and f (+1) = +1) and p : [0;+1] ! [0;+1] is a
strictly decreasing involutory function with p (0+) = +1 and p (+1) = 0 which
solves the functional equation (36).

Proof. The proof follows from Prop. 14 and the preceding discussion.
Now, let us pay attention to the functional equation (36). In the �rst place,

observe that in view of the continuity of p and the the fact that p (+1) = 0,
taking limits when x " +1 in (36) produces

p (p (p (s) + y) + z) = p (s+ p (p (z)� p (p (y) + z))) + p (p (y) + z) ; (37)

where x; y; z; s 2 R+0 . In order to simplify the expressions, let us de�ne a
commutative operation (quasisum) � : [0;+1]2 ! [0;+1] by

x�y = p (p (x) + p (y)) : (38)

In this way, the substitutions s = p (s) and z = p (z) in (37) enables to write it
in the form

(s+ y)�z = s�(z � y�z) + y�z: (39)

Note that 0 � z� y�z � z, being the inequalities strict provided that y; z > 0.
As it is shown by the following result, the function s 7! s�z has nice prop-

erties.

Lemma 18 Let p : [0;+1] ! [0;+1] be a continuous and strictly decreasing
involutory function solving the functional equation (37) and � : [0;+1]2 !
[0;+1] be the quasisum de�ned by (38). Then, for every z 2 R+, the func-
tion s 7! s�z is strictly subadditive., strictly increasing, strictly concave and
continuously di¤erentiable in R+.

By commutativity, the function z 7! s�z has the same properties as s 7!
s�z.
Proof. Fix z 2 R+ and consider the function s 7! s�z. Since p is a strictly
decreasing function, s 7! s�z turns out to be strictly increasing. As a conse-
quence, (39) and the inequality z � t�z < z yields

(s+ t)�z = s�(z � t�z) + t�z < s�z + t�z; s; t 2 R+;
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i.e., s 7! s�z is subadditive. To prove the strict concavity of s 7! s�z, choose
a pair s; t 2 R+ with s 6= t, say s < t; then, a repeated use of (39) produces

t�z =

�
t� s
2

+

�
t� s
2

+ s

��
�z

=
t� s
2
�

�
z �

�
t� s
2

+ s

�
�z

�
+

�
t� s
2

+ s

�
�z

=
t� s
2
�

�
z � t� s

2
� (z � s�z)� s�z

�
+
t� s
2
� (z � s�z) + s�z

<
t� s
2
� (z � s�z) + t� s

2
� (z � s�z) + s�z; (40)

where the last inequality holds by the strict monotonicity of z 7! s�z. On the
other hand, �

s+ t

2

�
�z =

�
s� t
2

+ t

�
�z

=
s� t
2
� (z � t�z) + t�z; (41)

so that, combining (40) and (41) it is deduced

t�z < 2

��
s+ t

2

�
�z

�
� s�z;

or, equivalently, �
s+ t

2

�
�z >

s�z + t�z

2
: (42)

By symmetry, inequality (42) holds also when s > t and, due to the continuity
of s 7! s�z, it implies the strict concavity of this function.
Now, for every s 2 R+, the existence of the lateral derivatives D+

s (s�z) and
D�
s (s�z) is ensured by the concavity of s 7! s�z. In particular, in view of

(39), for the right derivative D+
s (s�z) it can be written

D+
s (s�z) = lim

t#0

(s+ t)4z � s4z
t

= lim
t#0

t4 (z � s4z)
t

= lim
t#0

p (p (t) + p (z � s4z))
t

= lim
u"+1

p (u+ p (z � s4z))
p (u)

; s � 0:

The last of these equalities was obtained by replacing t = p (u). Since 0 �
z � s4z � z and z 2 R+ was arbitrarily chosen, it is concluded that the
function

� (�) = lim
u"+1

p (u+ �)

p (u)
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is de�ned for every � � 0. Clearly, � is decreasing and the equalities

� (�+ �) = lim
u"+1

p (u+ �+ �)

p (u)

= lim
u"+1

p (u+ �+ �)

p (u+ �)

p (u+ �)

p (u)

= lim
u"+1

p (u+ �+ �)

p (u+ �)
lim
u"+1

p (u+ �)

p (u)

= � (�) � (�) ;

hold for every �; � � 0. In other words, � is a decreasing solution to the
exponential Cauchy equation and, in consequence, � (�) � 0 or � (�) � e�k�

for any k � 0. Indeed, the instances � = 0 or � = 1 must be excluded since,
in these cases, it would be D+

s (s�z) � 0 or D+
s (s�z) � 1 and therefore,

Ds (s�z) � 0 or Ds (s�z) � 1, two identities contradicting the strict concavity
of s 7! s�z. In this way, there exists k > 0 such that

D+
s (s�z) = lim

u"+1

p (u+ p (z � s4z))
p (u)

= e�kp(z�s4z):

This equality shows that s 7! D+
s (s�z) is continuous on R+ and hence, there

exists the standard derivative Ds (s�z) and

Ds (s�z) = e�kp(z�s4z); s; z 2 R+: (43)

This completes the proof.
A result on regularity of the solutions to the functional equation (36) is now

proved.

Proposition 19 Let p : [0;+1] ! [0;+1] be a strictly decreasing involutory
function with p (0+) = +1 and p (+1) = 0 which solves the functional equation
(36); then p is continuously di¤erentiable in R+. Moreover, p0 (0+) = �1 and
p0 (+1) = 0.

Proof. Let us denote by Di� (p) the set of points where the derivative p0

exists. By the Lebesgues´s Theorem, Di� (p) contains almost every point of
R+ so that, for a given s 2 R+, one can chose t; z0 > 0 such that p (s) + t
and p (p (s) + t) + p (z0) are both in Di� (p). Thus, the chain rule applied to
s 7! s�z0 = p (p (s) + p (z0)) at p (s) + t yields

Ds (s�z0)js=p(s)+t = p0 (p (p (s) + t) + p (z0)) p
0 (p (s) + t) :

Now, in view of (43),

Ds (s�z0)js=p(s)+t = e�kp(z0�(p(s)+t)4z0) > 0;
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so that it must be p0 (p (s) + t) 6= 0, and therefore

lim
h!0

p (s+ h)� p (s)
h

= lim
h!0

p(p(s+h)+t)�p(p(s)+t)
h

p(p(s+h)+t)�p(p(s)+t)
p(s+h)�p(s)

=
Ds (s�p (t))js
p0 (p (s) + t)

:

This shows that s 2 Di� (p), and thus Di� (p) = R+.
Now, from (38) and (43) it is obtained

p0 (p (s) + p (z)) p0 (s) = e�kp(z�p(p(s)+p(z))); s; z 2 R+;

or, replacing s = p (s) and z = p (z),

p0 (s+ z) =
e�kp(p(z)�p(s+z))

p0 (p (s))
; (44)

whence the continuity of p0 on (s;+1) is easily derived. Since s can be arbi-
trarily chosen in R+, p0 turns out to be continuous on R+. Moreover, making
z " +1 in (44) yields

p0 (+1) = lim
z"+1

e�kp(p(z)�p(s+z))

p0 (p (s))
= 0: (45)

Finally, being p an involutory function, it turns out to be

p0 (p (s)) p0 (s) = 1; s 2 R+; (46)

whence, in view of (45) and the fact that p is strictly decreasing, it is deduced

p0
�
0+
�
= lim

s#0
p0 (s) = lim

s#0

1

p0 (p (s))
= lim
z"+1

1

p0 (z)
= �1:

This completes the proof.
It should be noted that an inductive reasoning based on (44) shows that p

is really a C1 function in R+. At this point, the solutions to equation (36) can
be determined.

Proposition 20 Let p : [0;+1] ! [0;+1] be a strictly decreasing involutory
function with p (0+) = +1 and p (+1) = 0 which solves the functional equation
(36), then there exists k > 0 such that

p (t) = �1
k
ln
�
1� e�kt

�
; t > 0: (47)

Proof. By Prop. 19, p is continuously di¤erentiable in R+. Thus, deriving
both members of (36) with respect to z and then taking limits when z # 0, it is
obtained

p0 (p (p (s+ p (x)) + y)) = p0 (s+ p (x)) p0 (x) (p0 (p (x+ y))� p0 (p (y)))+p0 (p (y)) :
(48)
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Observe that p0 (p (x+ y)) � p0 (p (y)) 6= 0 for every x; y 2 R+. In fact, if
p0 (p (x+ y)) = p0 (p (y)) for any pair x; y 2 R+; then, p0 (x+ y) = p0 (y) by
(46), an equality which, together (44) with s = y and z = x, would imply

1 = p0 (y) p0 (p (y)) = p0 (x+ y) p0 (p (y)) = e�kp(p(x)�p(x+y));

whence
p (p (x)� p (x+ y)) = 0:

Since p (x)� p (x+ y) 2 R+, the last equality is an absurdity. In this way, (48)
can be rewritten in the form

p0 (x) =
p0 (p (p (s+ p (x)) + y))� p0 (p (y))

p0 (s+ p (x)) (p0 (p (x+ y))� p0 (p (y))) :

and then, using (46), it is deduced

1 = lim
x"+1

p0 (x) p0 (p (x))

= lim
x"+1

�
p0 (p (p (s+ p (x)) + y))� p0 (p (y))

p0 (s+ p (x)) (p0 (p (x+ y))� p0 (p (y)))p
0 (p (x))

�
= lim

x"+1

p0 (p (p (s+ p (x)) + y))� p0 (p (y))
p0 (s+ p (x))

lim
x"+1

p0 (p (x))

p0 (p (x+ y))� p0 (p (y))

=
p0 (p (p (s) + y))� p0 (p (y))

p0 (s)
lim
x"+1

p0 (p (x))

p0 (p (x+ y))� p0 (p (y)) ;

whence, for every s; y 2 R+,

lim
x"+1

p0 (p (x))

p0 (p (x+ y))� p0 (p (y)) =
p0 (s)

p0 (p (p (s) + y))� p0 (p (y)) : (49)

Now, a new application of (46) produces

lim
x"+1

p0 (p (x))

p0 (p (x+ y))� p0 (p (y)) = lim
x"+1

1
p0(p(x+y))
p0(p(x)) � p0(p(y))

p0(p(x))

= lim
x"+1

1
p0(x)
p0(x+y) �

p0(x)
p0(y)

= lim
x"+1

p0 (x+ y)

p0 (x)
; (50)

where the last equality follows from the fact that p0 (+1) = 0. Moreover, from
(46) and (44) with s = x and z = y, it is obtained

p0 (x+ y)

p0 (x)
= p0 (x+ y) p0 (p (x)) = e�kp(p(y)�p(x+y)): (51)

Now, from (49), (50) and (51) it is deduced

e�ky = lim
x"+1

e�kp(p(y)�p(x+y)) = lim
x"+1

p0 (x+ y)

p0 (x)
=

p0 (s)

p0 (p (p (s) + y))� p0 (p (y)) ;
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where s; y 2 R+ and k > 0 is a constant. Substituting s = p (s) in the last
member of these equalities, gives

e�ky =
p0 (p (s))

p0 (p (s+ y))� p0 (p (y)) ;

whence, for every s; y 2 R+,
1

p0 (s+ y)
= p0 (p (s+ y)) = p0 (p (y)) + p0 (p (s)) eky =

1

p0 (y)
+

1

p0 (s)
eky:

The �rst member of these equalities is symmetric in its arguments, which shows
that

1

p0 (y)
+

1

p0 (s)
eky =

1

p0 (s)
+

1

p0 (y)
eks

or, equivalently,

p0 (s)
�
1� eks

�
= p0 (y)

�
1� eky

�
; s; y 2 R+:

In other terms, there exist a positive constant A such that

p0 (s) =
A

1� eks ; s 2 R
+: (52)

An integration of the equality (52) yields

p (s) = �A
k
ln
�
1� e�ks

�
; s 2 R+. (53)

Let us see that a function p expressed by (53) is involutory if and only if A = 1.
In fact, this occurs if and only if, for every s 2 R+;

1 = p0 (p (s)) p0 (s) =
A�

1� (1� e�ks)�A
� A

1� eks ;

or, setting x =
�
1� e�ks

��1
,

1� xA = A2 (1� x) ; x > 1;

an equality which holds if and only if A = 1. This proves that a solution to
equation (36) which satis�es the hypotheses of the proposition must be of the
form (47). A simple substitution shows that (47) is really a solution to equation
(36). This completes the proof.

Remark 21 Note that, for p given by (47), the quasisum � is expressed by

x�y = �1
k
ln
�
1� e�k(� 1

k ln(1�e
�kx)� 1

k ln(1�e
�ky))

�
= �1

k
ln
�
1�

�
1� e�kx

� �
1� e�ky

��
; x; y 2 R+;

while x�0 = 0 and x�(+1) = x for every x 2 [0;+1].
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Theors. 13 and 6 are now proved.
Proof of Theor. 13. Suppose that F : [a; b]

3 ! [a; b] is a solution to the
functional equation (26) in the class of functions ful�lling the conditions i), ii)
and iii). Then, from propositions 17 and 20, it turns out to be that F can be
written in the form

F (t; �; �) =

�
f�1

�
� 1
k ln

�
1�
�
1�e�kf(t)

� �
1�e�k(f(�)�f(�))

��
+f (�)

�
; ���

f�1
�
� 1
k ln

�
1�e�kf(t)

�
1�e�k(f(�)�f(�))

��
+f (�)

�
; �>�

; t 2 [a; b]

(54)
where f : [a; b] ! [0;+1] is a continuous and strictly increasing function with
f (a) = 0 (f (+1) = +1) and k > 0. In this way, the function  (t) =
1�e�kf(t); t 2 [a; b], is an increasing homeomorphism from [a; b] onto [0; 1] and,
in view of f (t) = �k�1 ln (1�  (t)) and f�1 (t) =  �1

�
1� e�kt

�
, (54) is, in

terms of  , expressed by

F (t; �; �) =

�
 �1 (( (�)�  (�)) (t) +  (�)) ; ���
 �1 (( (�)�  (�))� (t) +  (�)) ; �>�

; t 2 [a; b] ;

which is no other than (27).
Now, if  � was another increasing homeomorphism satisfying (27), then, the

equality

 �1� (( � (�)�  � (a))� (t) +  � (�)) =  �1 (( (�)�  (a))� (t) +  (�))

would hold for every t; �; � 2 [a; b]. Setting � =  �  �1� : [0; 1] ! [0; 1],
� =  �1� (p) and � =  �1� (q) in this equality, it turns out to be that � is a
continuous solution to the functional equation

� ((1� t) p+ tq) = (1� � (t))� (p) + � (t)� (q) ; t; p; q 2 [0; 1] ;

whence ([1], Theor. 2, pg. 67, or [14], pg. 382 and ¤.) � (t) = t; t 2 [0; 1]. In
this way,  =  � and the proof is complete.
Proof of Theor. 6. LetM be a mean ful�lling the hypotheses of the theorem
and, for �; � 2 [a; b], consider f�;� 2 AC (M ; [a; b]) such that f�;� (a) = � and
f�;� (b) = �. After Theor. 13, it can be written

f (t) =  �1 (( (�)�  (�) (t) +  (�))) ; t 2 [a; b] ; (55)

where  is a uniquely determined increasing homeomorphism from [a; b] onto
[0; 1]. In this way, the equality

 �1 (( (�)�  (�) (M (x1; : : : ; xn)) +  (�)))

= M
�
 �1 (( (�)�  (�) (x1) +  (�))) ; : : : ;  �1 (( (�)�  (�) (xn) +  (�)))

�
;

which holds for every x1; : : : ; xn; �; � 2 [a; b] M , turns out to be equivalent to

mM (t1; : : : ; tn) + k =M (mt1 + h; : : : ;mtn + h) ;

where t1; : : : ; tn 2 [0; 1] ; m 2 [�1; 1] ; h; m+h 2 [0; 1] andM is the mean con-
jugated ofM by  (de�ned by (20)). This shows thatA� ([0; 1]) � AC (M ; [0; 1]).
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To prove the opposite inclusion observe that, if g 2 AC (M ; [0; 1]), then  
�1 �

g� 2 AC (M ; [a; b]), and therefore, there exists (m;h) 2 AFF ([0; 1]) such that�
 �1 � g �  

�
(t) =  �1 ((m (t) + h)) ; t 2 [a; b] ;

whence g (t) = mt+ h; t 2 [0; 1]; i.e., g 2 A� ([0; 1]).

4 Two variables means

The following result, which is not devoid of intrinsic interest, will be the key to
derive Theor. 7 from Theor. 6.

Proposition 22 Let M be a two variables mean de�ned on an interval I and
f[ak; bk] : k 2 Ng be a nested and exhaustive sequence of subintervals of I. If
, for every k 2 N, M j[ak;bk] is a quasilinear mean on [ak; bk], then M is a
quasilinear mean on I.

Proof. The hypotheses ensure the existence, for every k 2 N, of a strictly
monotonic and continuous function  k : [ak; bk] ! R and a real number wk 2
(0; 1) such that

M j[ak;bk] (x; y) =  �1k ((1� wk) k (x) + wk k (y)) ; x; y 2 [ak; bk] : (56)

Since the second member of (56) is not altered by taking � k instead of  k, it
can be assumed that  k is strictly increasing. Now, in view ofM j[ak;bk] (x; y) =
M j[aj ;bj ] (x; y) for every x; y 2 [al; bl] ; l = min fk; jg, (56) yields

 �1k ((1� wk) k (x) + wk k (y)) =  �1j
�
(1� wj) j (x) + wj j (y)

�
; x; y 2 [al; bl] :

and thus, the function  k;j =  k � �1j is a continuous solution to the equation

 k;j ((1� wj) s+ wjt) = (1� wk) k;j (s) + wk k;j (t) ; s; t 2 [0; 1] :

In this way ([1], Theor. 2, pg. 67 or also [14], pg. 382 and ¤.), wk = wj ; k; j 2 N,
and, for certain pk;j ; qk;j 2 R, pk;j 6= 0,  k;j (t) = pk;jt+ qk;j ; t 2 [al; bl] ; hence

 k (t) = pk;j j (t) + qk;j ; t 2 [al; bl] : (57)

Note on one hand that, in view of  k and  j are both strictly increasing func-
tions, it must really occur that pk;j > 0 for every k; j 2 N, and, on the other,
that the equality (56) can be written in the form

M (x; y) =  �1k ((1� w1) k (x) + w1 k (y)) ; x; y 2 [ak; bk] : (58)

In what follows, a particular instance of (57) will be used; namely, setting pk =
pk+1;k and qk = qk+1;k for every k � 1, (57) takes the form

 k+1 (t) = pk k (t) + qk; t 2 [ak; bk] : (59)

24



Now, de�ne a sequence of strictly increasing and continuous functions �k :
[ak; bk]! R; k 2 N, by �1 (t) =  1 (t) ; t 2 [a1; b1], and for k � 1,

�k+1 (t) =

0@ kY
j=1

p�1j

1A k+1 (t)�
kX
i=1

0@qi iY
j=1

p�1j

1A ; t 2 [ak+1; bk+1] :

From (59) it is deduced that, for every t 2 [ak; bk],

�k+1 (t) =

0@ kY
j=1

p�1j

1A (pk k (t) + qk)� kX
i=1

0@qi iY
j=1

p�1j

1A
=

0@k�1Y
j=1

p�1j

1A�1

 k (t)�
k�1X
i=1

0@qi iY
j=1

p�1j

1A
= �k (t) ;

so that the expression

� (t) = �k (t) ; t 2 [ak; bk] ;

de�nes a function � : I ! R which turns out to be strictly increasing and
continuous on I. Since a quasilinear mean Lf does not change when its generator
f is replaced bymf+h withm;h 2 R; m 6= 0, the equality (58) can be rewritten
in the form

M (x; y) = ��1k ((1� w1)�k (x) + w1�k (y)) ; x; y 2 [ak; bk] ;

whence
M (x; y) = ��1 ((1� w1)� (x) + w1� (y)) ; x; y 2 I;

which shows that M is quasilinear on I, as a¢ rmed.
Proof of Theor. 7. Since M j[a1;b1] satis�es the hypotheses of Theor. 6,
it follows that there exist a homeomorphism  1 : [a1; b1] ! [0; 1] such that
AC
�
M 1 ; [0; 1]

�
= A� ([0; 1]). After what was said in Section 1, M 1 is a linear

mean, and therefore, there exist w1 2 (0; 1) such that

M (x; y) =  �11 ((1� w1) 1 (x) + w1 1 (y)) ; x; y 2 [a1; b1] :

The same reasoning applied to the interval [ak; bk] yields, for every k 2 N,

M (x; y) =  �1k ((1� wk) k (x) + wk k (y)) ; x; y 2 [ak; bk] ; (60)

where  k : [ak; bk] ! [0; 1] is an increasing homeomorphism and wk 2 (0; 1).
This proves that, for every k 2 N, the restriction M j[ak;bk] to the subinterval
[ak; bk] is a quasilinear mean. By Prop. 22, this implies that M is quasilinear
on I.
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Remark 23 Under the hypotheses of Theor. 7, consider the mean M� conju-
gated of M by �, being � the function de�ned in the proof of Prop. 22. For the
M�-a¢ ne functions, the equality

AC (M�;� (I)) = A� (� (I))

holds.

A simple consequence of Theor. 7 is the following:

Proposition 24 Let I; J be non void real intervals and M 2 CM2 (I), N 2
CM2 (J) be a pair of strict continuous means. Suppose that for every a; b 2 I,
a 6= b, and for every c; d 2 J , c 6= d, there exists a strictly monotonic and
continuous solution f : I ! J to the equation

f (M (x; y)) = N (f (x) ; f (y)) ; x; y 2 I;

with f (a) = c and f (b) = d; then M and N are both quasilinear means.

Proof. Fix a; b 2 I, a < b, and choose �; � 2 [a; b] ; � 6= �. By the as-
sumptions, given c; d 2 J , c 6= d, there exist continuous and strictly monotonic
functions f; g : I ! J respectively solving the equations

f (M (x; y)) = N (f (x) ; f (y)) ; x; y 2 I;

and
g (M (x; y)) = N (g (x) ; g (y)) ; x; y 2 I;

while f (a) = c = g (�) and f (b) = d = g (�). Then, the function f�;� : I ! I
de�ned by f�;� = g�1 � f turns out to be a homeomorphism which solves the
equation

h (M (x; y)) =M (h (x) ; h (y)) ; x; y 2 I;

and satis�es f�;� (a) = � and f�;� (b) = �. In this way, after de�ning f�;� � �,

it is seen that AC
�
M j[a;b] ; [a; b]

�
is a Sturm-Liouville family on every compact

subinterval [a; b] of I and therefore, Theor. 7 implies that M is a quasilinear
mean. The quasilinearity of N follows from a similar argument.
The remaining of this section is engaged with bases of two variables means,

a concept introduced in [3]. Before stating a result on characterization of qua-
silinear means in terms of bases, an abridged recall will be presented of the
involved ideas.
If M 2 CM2 (I) is a strict and continuous mean de�ned on an interval I

and, for a pair u; v 2 [0; 1], M (u);M (v) are Aczel dyadic iterations of M , then,
in view of the monotonicity and continuity of � 7!M (�)(x; y) ensured by Theor.
9, there exists a unique real number � 2 [0; 1] such that

M(Mu(x; y);Mv(x; y)) =M�(x; y):

26



Denoting by P to the point (x; y) 2 I2, this equality can be written in the form

M(Mu(x; y);Mv(x; y)) =M�P (u;v)(x; y); (61)

in which the dependence of the number � on the pair u; v as well as on P = (x; y)
has been emphasized. As shown in [3], B(M)=

�
�P : P 2 I2

	
is a family of

strict and continuous means de�ned on the unit interval [0; 1]. Every member
�P belonging to the family B(M) is named a base mean of the mean M , while
the entire family B(M) is said to be the base of M .
The base of a quasiarithmetic mean Af can be easily computed. Indeed,

using the expression of A(�)f given by (21) it is obtained

Af

�
A
(u)
f (x; y) ; A

(v)
f (x; y)

�
= f�1

 
f
�
f�1 ((1� u) f (x) + vf (y))

�
+ f

�
f�1 ((1� v) f (x) + vf (y))

�
2

!

= f�1
��
1� u+ v

2

�
f (x) +

u+ v

2
f (y)

�
; x; y 2 I; u; v 2 [0; 1] ;

while

A
�P (u;v)
f (x; y) = f�1 ((1� �P (u; v))x+ �P (u; v) y) ; x; y 2 I; u; v 2 [0; 1] ;

and therefore, the base mean

�P (u; v) =
u+ v

2
= A (u; v) ; u; v 2 [0; 1] ;

does not depend on P 2 I2. A slightly more involved computation shows that a
quasilinear mean Lf possesses a unitary base as well. Now, ¿what can be said
on a two variables, strict an continuous mean M when its base is a unitary set?
In [3] the following result was established.

Theorem 25 Let M 2 CM2 (I) be a di¤erentiable strict mean. Then, the base
mean of M is a unitary family if and only M is a quasilinear mean.

Let us see that, with the help of Theor. 7, the di¤erentiability hypothesis in
the above statement can be omitted.

Theorem 26 Let M 2 CM2 (I) be a continuous and strict mean on a real
interval I. Then, the base mean of M is a unitary family if and only M is a
quasilinear mean.

Proof. The �if�part of the proof proceeds along the same lines of the particular
case in whichM is quasiarithmetic. The details can be seen in [3]. To prove the
converse, suppose that B(M) = f�g is a base of M ; then, given a; b 2 I, with
a < b, (61) yields

M(Mu(a; b);Mv(a; b)) =M�(u;v)(a; b); u; v 2 [0; 1] ; (62)
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or, using the notation introduced in the statement of Theor. 9,

M
�
�(a;b) (u) ; �(a;b) (v)

�
= �(a;b) (� (u; v)) ; u; v 2 [0; 1] :

Similarly, choosing a pair of numbers �; � 2 [a; b], it can be written

M
�
�(�;�) (u) ; �(�;�) (v)

�
= �(�;�) (� (u; v)) ; u; v 2 [0; 1] : (63a)

Now well, from (62) and (63a) it is deduced

��1(a;b)

�
M
�
�(a;b) (u) ; �(a;b) (v)

��
= ��1(�;�)

�
M
�
�(�;�) (u) ; �(�;�) (v)

��
; u; v 2 [0; 1] ;

or, equivalently�
�(�;�) � ��1(a;b)

�
(M (x; y)) =M

��
�(�;�) � ��1(a;b)

�
(x) ;

�
�(�;�) � ��1(a;b)

�
(y)
�
; x; y 2 [a; b] :

This equality expresses the fact that the function f�;� : [a; b] ! [a; b] given
by f�;� = �(�;�) � ��1(a;b) is a continuous M -a¢ ne function. Moreover, since
f�;� (a) = � and f�;� (b) = �, the arbitrariness of a; b; � and � shows that

AC
�
M j[ak;bk] ; [ak; bk]

�
is a Sturm-Liouville family and therefore, Theor. 7

implies that M is quasilinear.

5 n variables means

Due to its usefulness in proving Theor. 8, the following paragraphs deep into
the connections existing among Aff (I) and AFF (I). First of all, note that
the algebraic and topological structures of Aff (I) and AFF (I) �nd a natural
correspondence through the bijective map i : Aff (I) ! AFF (I) given by
i (m (�) + h) = (m;h). In this way, if Aff (I) is equipped with the topology
of the uniform convergence on compact subsets of I while AFF (I) is given
the topology induced by the usual topology on R2, then the map i becomes a
homeomorphism. On the other hand, the law de�ned on AFF (I) by

(m1; h1) � (m2; h2) = (m1m2;m1h2 + h1)

turns out to be an associative operation, and the map i : hAff (I) ; �i !
hAFF (I) ; �i becomes an isomorphism of semigroups.
Now, if � 2 Aff (R), it is clear that f 2 Aff (I) if and only if � � f � ��1 2

Aff (� (I)), which is compactly expressed by the equality

Aff (� (I)) = � �Aff (I) � ��1: (64)

Correspondingly,

AFF (� (I)) = i (�) �AFF (I) � i
�
��1

�
:
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In particular, taking I = [0; 1] and �(t) = (b� a) t+ a, it is obtained

AFF ([a; b]) = (b� a; a) �AFF ([0; 1]) �
�

1

b� a;�
a

b� a

�
=

�
(b� a; a) � (m;h) �

�
1

b� a;�
a

b� a

�
: (m;h) 2 AFF ([0; 1])

�
= f(m;�am+ (b� a)h+ a) : (m;h) 2 AFF ([0; 1])g
= Ta;b (AFF ([0; 1])) ;

where T : R2 ! R2 is the transformation given by

Ta;b (x; y) =

�
1 0
�a b� a

��
x
y

�
+

�
0
a

�
:

Since Ta;b is a¢ ne and, as noted in Section 1, AFF ([0; 1]) = f(0; 0) ; (1; 0) ; (0; 1) ; (�1; 1)g^,
it turns out to be

AFF ([a; b]) = fTa;b (0; 0) ; Ta;b (1; 0) ; Ta;b (0; 1) ; Ta;b (�1; 0)g^

= f(0; a) ; (1; 0) ; (0; b) ; (�1; a+ b)g^ : (65)

The following result will play a relevant role in the proof of Theor. 8.

Proposition 27 Let I 6= ; a real interval and S 6= ; be a closed subset of
Aff (I) such that, for a given nested and exhaustive sequence f[ak; bk] : k 2 Ng
of compact subintervals of I, the inclusion

Aff ([ak; bk]) \Aff (I) � S;

holds for every k 2 N. Then, the equality

S = Aff (I)

holds provided that

i) I is bounded or,

ii) I is unbounded and S is a subsemigroup of Aff (I) with the property that,
if f 2 S and f�1 2 Aff (I), then f�1 2 S.

Proof. After the equality (64), it will be su¢ cient to prove the proposition for
the instances I = [0; 1] ; [0; 1); (0; 1) ; [0;+1); (0;+1); R. Now, when I = [0; 1]
there is nothing to prove, so that it must be considered only the �ve remaining
cases. From these, the treatment of the instances I = [0; 1); (0; 1) reveals to be
very similar, and the same occurs when I = [0;+1); (0;+1), so that a detailed
argument is to be given below only for the three cases I = [0; 1); [0;+1); R.
On the other hand, the isomorphism i : hAff (I) ; �i ! hAFF (I) ; �i can be
applied to derive an equivalent formulation of the proposition in terms of sub-
sets of R2. After all these simpli�cations, the statement to be proved is the
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following: let I be one of the real intervals [0; 1); [0;+1); R, and let S 6= ;
be a closed subset of AFF (I) such that, for a certain nested and exhaustive
sequence f[ak; bk] : k 2 Ng of compact subintervals of I, the inclusion

AFF ([ak; bk]) \AFF (I) � S; (66)

holds for every k 2 N. Then, the equality

S = AFF (I)

holds provided that I = [0; 1) or I = [0;+1); R and S is a subsemigroup of
AFF (I) with the property that, if f 2 S and f�1 2 AFF (I), then f�1 2 S.
A separate analysis of the three cases follows.

I = [0; 1) : In this case, a nested and exhaustive sequence of compact subinter-
vals of I has the form f[0; bk] : k 2 Ng, where (bk) is a sequence of numbers
satisfying 0 < bk < 1; k 2 N; and bk " 1. Thus, (65) yields

AFF ([0; bk]) = f(0; 0) ; (1; 0) ; (0; bk) ; (�1; bk)g^ ; (67)

and taking into account thatAFF ([0; 1)) = AFF ([0; 1])\
�
(m;h) 2 R2 : h < 1

	
,

the inclusion (66) gives

S �
+1[
k=1

(AFF ([0; bk]) \AFF ([0; 1)))

= AFF ([0; 1)) \
�
(m;h) 2 R2 : m+ h < 1

	
;

or, since S is closed in AFF ([0; 1)),

S �
+1[
k=1

(AFF ([0; bk]) \AFF ([0; 1))) = AFF ([0; 1)) :

The closure operator in the above equalities is taken with respect to rela-
tive topology induced on AFF ([0; 1)) by the usual topology of R2.

I = [0;+1) : Here, a generic nested and exhaustive sequence of compact subin-
tervals of I is given by f[0; bk] : k 2 Ng, where (bk) is a sequence satisfying
0 < bk; k 2 N, and bk " +1. Accordingly, AFF ([0; bk]) is also given by
(67), and taking into account that AFF ([0;+1)) = [0;+1)2, from (66)
it is deduced

S �
+1[
k=1

(AFF ([0; bk]) \AFF ([0;+1)))

= [0; 1]� [0;+1):

As a consequence, (m; 0) 2 S for every 0 < m < 1 and, in view of
(m; 0)

�1
=
�
m�1; 0

�
2 AFF ([0;+1)), it must be

�
m�1; 0

�
2 S, so that
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(m; 0) 2 S for every m � 0. Finally, if (m;h) 2 AFF ([0;+1)), it can be
written

(m;h) = (m; 0) � (1; h=m)

where (m; 0) ; (1; h=m) 2 S, and thus (m;h) 2 S.

I = R : f[ak; bk] : k 2 Ng, where (ak) and (bk) are sequences of real numbers
satisfying ak < bk; k 2 N; and ak # �1; bk " +1, is a generic nested
and exhaustive sequence of compacts subintervals of I. For this sequence,
(65) yields

AFF ([ak; bk]) = f(0; ak) ; (1; 0) ; (0; bk) ; (�1; ak + bk)g^ :

It can be seen that

+1[
k=1

(AFF ([ak; bk]) \AFF (R)) � f(�1; a1 + b1)g [ ([0; 1]� R) ;

(where the closure operator is the closure on R2,) so that

S � f(�1; a1 + b1)g [ ([0; 1]� R) .

It is shown like in the case I = [0;+1) that (m;h) 2 S for everym � 0 and
h 2 R. Now, ifm < 0 and h 2 R, then (�m; 0) ; (�1; a1 + b1) ; (1; h=m+ a1 + b1) 2
S, and the equality

(m;h) = (�m; 0) � (�1; a1 + b1) � (1; h=m+ a1 + b1) ;

shows that (m;h) 2 S. It has been thus proved that S = R2 = AFF (R).

Proof of Theor. 8. Let M 2 CMn (I) be a continuous and strict mean
de�ned on I. Suppose that f[ak; bk] : k 2 Ng is a nested and exhaustive sequence
of compact subintervals of I, and that AC (M j ; [ak; bk]) is a Sturm-Liouville
family for every k 2 N. Clearly, the two variables mean N de�ned on I by (23)
satis�es the hypotheses of Teor. 7, so that there exist both a strictly monotonic
and continuous function � : I ! R and a number w 2 (0; 1) such that

N (x; y) = ��1 ((1� w)� (x) + w� (y)) ; x; y 2 I. (68)

Now, consider the mean M� conjugated of M by �; i.e.,

M� (x1; : : : ; xn) = �
�
M
�
��1 (x1) ; : : : ; �

�1 (xn)
��
; x1; : : : ; xn 2 � (I) : (69)

The inclusion

S = AC (M�;� (I)) � AC (N�;� (I)) = A� (� (I))
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follows from a simple specialization of the variables in the equation (7). Let us
see that the above inclusion is really an equality. With this purpose, let us note
that

Aff ([� (ak) ; � (bk)]) \Aff (� (I)) � S:

recall from Section 1 that,
In view of the equality

AC
�
M�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
= � � AC

�
M j[ak;bk] ; [ak; bk]

�
� ��1;

AC
�
M�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
� AC

�
N�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
=

Aff ([� (ak) ; � (bk)]) is a Sturm-Liouville family, thusAC
�
M�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
=

Aff ([� (ak) ; � (bk)])

AC
�
M�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
� AC

�
N�j[�(ak);�(bk)] ; [� (ak) ; � (bk)]

�
= Aff ([� (ak) ; � (bk)]) ;

the set S satis�es the inclusion

Aff ([� (ak) ; � (bk)]) \Aff (� (I)) � S

for the sequence f[� (ak) ; � (bk)] : k 2 Ng. Since � is strictly monotonic and con-
tinuous, f[� (ak) ; � (bk)] : k 2 Ng is a nested and exhaustive sequence of compact
subintervals of � (I). On the other hand, S is clearly closed subsemigroup of
A� (� (I)) and, moreover, if (m;h) 2 S for a certain (m;h) 2 AFF (� (I)) such
that (m;h)�1 = (1=m;�h=m) 2 AFF (� (I)), then the equality

M� (mx1 + h; : : : ;mxn + h) = mM� (x1; : : : ; xn) + h; x1; : : : ; xn 2 � (I) ; (70)

holds for every x1; : : : ; xn 2 � (I), so that the substitutions xi = (yi � h) =m; i =
1; : : : ; n, yield

1

m
M� (y1; : : : ; yn)�

h

m
=M� ((yi � h) =m; : : : ; (yn � h) =m) ; y1; : : : ; yn 2 � (I) ;

which shows that (m;h) 2 S. Since the constants are contained S, all the
hypotheses of Prop. 27 are ful�lled by S, and therefore S = Aff (� (I)), as
a¢ rmed.
Finally, assuming that the mean M is di¤erentiable, the mean N given

by (68) turns out to be di¤erentiable as well, and then, the generator � is
di¤erentiable in I by Prop. 1. In consequence, the conjugated mean M� is
di¤erentiable and AC (M�;� (I)) = Aff (� (I)). By Prop. 2, M� turns out to
be a linear mean on � (I), and therefore, M is quasilinear on I. This completes
the proof.
Before �nishing this section, a result is proved which will show its usefulness

in the next one.
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Proposition 28 Let I be a real interval with int (I) 6= ;. The inclusion

� �Aff (I) � Aff (� (I)) � � (71)

holds for a continuous function � : I ! R if and only if � is a¢ ne.

Proof. First assume that � is a¢ ne; i.e., for a certain pair p; q 2 R, � (t) =
pt + q; t 2 I. A generic f 2 � � Aff (I) has the form f (t) = p (mt+ h) + q;
with (m;h) 2 AFF (I) and thus, setting � = m and � = ph�mq + q, it turns
out to be

f (t) = p (mt+ h) + q = � (pt+ q) + �:

Let us see that (�; �) 2 AFF (� (I)). In fact, since (m;h) 2 AFF (I), it can be
written

�� (I) + � = m (pI + q) + ph�mq + q
= p (mI + h) + q

� pI + q

= � (I) :

In consequence, f 2 Aff (� (I))�� and the inclusion (71) follows. Conversely, if
(71) holds for a continuous function � : I ! R, then for every (m;h) 2 AFF (I)
there exists (� (m;h) ; � (m;h)) 2 AFF (� (I)) such that

� (mt+ h) = � (m;h)� (t) + � (m;h) ; t 2 I: (72)

Since int (I) 6= ;, (72) can be evaluated at two di¤erent points t0; t1 2 I, t0 < t1,
to obtain �

� (mt0 + h) = � (m;h)� (t0) + � (m;h)
� (mt1 + h) = � (m;h)� (t1) + � (m;h)

;

whence

� (m;h) =
� (mt1 + h)� � (mt0 + h)

� (t1)� � (t0)
; � (m;h) = � (mt0 + h)�

� (mt1 + h)� � (mt0 + h)
� (t1)� � (t0)

� (t0) :

Introducing these expressions for � and � in (72), it is obtained

� (mt+ h) =
� (mt1 + h)� � (mt0 + h)

� (t1)� � (t0)
(� (t)� � (t0)) + � (mt0 + h) ; t 2 I;

an equality which, when expressed in terms of the function  : I ! R de�ned
by

 (t) =
� (t)� � (t0)
� (t1)� � (t0)

; (73)

becomes

 (mt+ h) = (1�  (t)) (mt0 + h)+ (t) (mt1 + h) ; t 2 I; (m;h) 2 AFF (I) :
(74)
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Now, in view of the identity,

mt+ h =

�
1� t� t0

t1 � t0

�
(mt0 + h) +

t� t0
t1 � t0

(mt1 + h) ;

and the fact that [t0;t1] � I, the equality

 

��
1� t� t0

t1 � t0

�
x0 +

t� t0
t1 � t0

x1

�
= (1�  (t)) (x0)+ (t) (x1) ; t 2

�
_t0; t1

�
; x0; x1 2 I;

can be easily derived from (74), and then ([1], Theor. 2, pg. 67, or [14], pg. 382
and ¤.)

 (t) =
t� t0
t1 � t0

; t 2
�
_t0; t1

�
:

This equality and (73) yields

� (t)� � (t0)
� (t1)� � (t0)

=
t� t0
t1 � t0

; t 2
�
_t0; t1

�
;

so that � is a¢ ne in every subinterval
�
_t0; t1

�
� I, which implies that � is a¢ ne.

6 Final remarks

The nice properties of Aczél�s iterations ensured by Theor. 9 can not extended
to non strict means (even though the continuity can be somewhat relaxed).
Further studies on Aczél´s iterations in absence of strictness or continuity are
contained in [6]. In view of the basic role played by Theor. 9, there is no
hope that the main results stated in Section 1 continue to be true for non
strict means. For instance, if M is a two variables continuous mean de�ned
on the compact interval [a; b] such that M (a; b) = a and AC (M ; [a; b]) is a
Sturm-Liouville family, then, for every �; � 2 I, there exists f 2 AC (M ; [a; b])
satisfying f (a) = � and f (b) = �, and therefore

M (�; �) =M (f (a) ; f (b)) = f (M (a; b)) = f (a) = �; �; � 2 I;

which shows that M is not quasilinear.
The generalization of other results in this paper is possible. Particularly,

Prop. 22 can be extended without di¢ culty to n variables means. However,
Prop. 24 is no longer valid for n variables means when n > 2, whereas a
generalization of the concept of base to n variables means is a dubbious question.
The main theorems can be restated for symmetric means by simply introducing
the word �quasiarithmetic�instead of the word �quasilinear�wherever this last
appears in a statement.
Results like Matkowski´s theorem 3 or Theors. 6, 7 and 8 in this paper can

be used to determine the whole families of a¢ ne or continuous a¢ ne functions
of a given mean. This fact is illustrated by the following examples.
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Example 29 The counterharmonic mean is de�ned by

CH (x; y) =
x2 + y2

x+ y
; x; y > 0:

Note that the CH-a¢ ne functions f t (u) = tu; t > 0, make up a continuous
iteration group (with generator 
 (u) = u; u > 0), and that h (u) = CH (u; 1) ;
u > 0, turns out to be a rational in�nite di¤erentiable function with 0 6=
h0 (1) 6= 1. Then, the hypotheses of Matkowski´ s Theor. 3 are satis�ed by
CH and, taking into account that CH is not a quasiarithmetic mean, it follows
that AC (CH;R+) = ff t : t > 0g [ ff = c : c > 0g.

Example 30 Consider a strict and continuous mean M de�ned on R for which
the inclusion

Aff (R) � AC (M ;R) (75)

is satis�ed. The meanM de�ned by (10) and (10) in Section 1 serves as example
of this kind of means. Let us see that (75) must be really an equality. Since
Aff ([a; b]) � Aff (R) for every compact interval [a; b], the hypotheses of Theor.
8 are ful�lled by M and then, there exists a strictly increasing and continuous
function � : R! R such that

AC (M�;� (R)) = Aff (� (R)) ;

or, equivalently,
AC (M ;R) = ��1 �Aff (� (R)) � �: (76)

From (75) and (76) it is deduced

� �Aff (R) � Aff (� (R)) � �;

an inclusion which, after Prop. 28, implies that � is a¢ ne. Clearly, � does not
reduce to a constant, so that ��1 �Aff (� (R)) � � = Aff (R) and then,

AC (M ;R) = Aff (R) ;

as a¢ rmed.
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