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a b s t r a c t 

In this work, we are going to develop an efficient electroanalytical methodology based on generation 

of second-order differential pulse voltammetric (DPV) data at different pulse heights to exploit second- 

order advantage for simultaneous determination of levodopa (LDP), carbidopa (CDP), methyldopa (MDP), 

benserazide (BA), tolcapone (TOL) and entacapone (ENT) in the presence of dopamine (DPA) as uncali- 

brated interference. The recorded data were baseline- and potential shift-corrected by asymmetric least 

square spline regression (AsLSSR) and correlation optimized warping (COW) algorithms, respectively. Af- 

ter data pre-processing, multivariate curve resolution-alternating least squares (MCR-ALS) and parallel 

factor analysis 2 (PARAFAC2) were used to develop three-way calibration models and then, the abilities 

of the developed models to predict analytes’ concentrations in the absence and presence of DPA were ex- 

amined in validation and test sets, respectively. MCR-ALS acted better than PARAFAC2 to predict analytes’ 

concentrations in the absence and presence of DPA as uncalibrated interference. Therefore, MCR-ALS was 

chosen to predict antiparkinson agents’ concentrations in spiked human serum samples as real cases. For- 

tunately, acceptable results were obtained which were comparable to those obtained by high performance 

liquid chromatography with UV detection (HPLC-UV) as reference method. 

© 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 
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Abbreviations: PD, Parkinson’s disease; DPA, dopamine; LDP, levodopa; car- 

idopa, CDP; MDP, methyldopa; BA, benserazide; TOL, tolcapone; ENT, enta- 

apone; COMT, catechol-O-methyltransferase; HPLC-DAD, high performance liquid 

hromatography with diode array detection; LC-ATR-FTIR, liquid chromatography- 

ttenuated total reflectance-Fourier transform infrared spectroscopy; LC-DAD-MS, 

iquid chromatography-diode array detection-mass spectrometry; FIA-DAD, flow in- 

ection analysis-diode array detection; COW, correlation optimised warping; AFOM, 

nalytical figure of merit; NAS, net analyte signal; LOD, limit of detection; DPV, 

ifferential pulse voltammetry; CV, cyclic voltammetry; SCCD, small central com- 

osite design; MCR-ALS, multivariate curve resolution alternating least squares; 

ARAFAC2, parallel factor analysis 2; AsLSSR, asymmetric least squares spline re- 

ression; COW, correlation optimised warping; RMSEP, root mean square error of 

rediction; REP, relative error of prediction; PARAFAC, parallel factor analysis; PBS, 

hosphate buffered solution; DDW, doubly distilled water; AFOM, analytical figure 

f merit; lof, lack of fit; GE, gold electrode. 
∗ Corresponding author. 

E-mail address: ali.jalalvand1984@gmail.com (A.R. Jalalvand). 

1

 

t  

[  

i  

w  

d  

h  

t  

t  

(  

L  

D  

b  

t  

p  

a  

i  

ttps://doi.org/10.1016/j.jtice.2018.04.007 

876-1070/© 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All r
. Introduction 

Parkinson’s disease (PD) which mainly affects the motor sys-

em is a degenerative disorder of the central nervous system

1,2] . The PD can cause rigidity, depression, anxiety, shaking, think-

ng and behavioral problems, slowness of movement and difficulty

ith walking. The PD is caused by a significant decrease at the

opamine (DPA) neurotransmitter level in the brain [1] . The PD

as no cure, but medications can save the patient from the symp-

oms in some extent. The most important drugs which are useful

o treat the PD are divided into three groups including levodopa

LDP), DPA agonists and monoamine oxidase B inhibitors [1] . The

DP has been widely used to treat the PD which is converted to

PA by the dopa decarboxylase in the dopaminergic neurons. Car-

idopa (CDP) is another drug given to patients with PD in order

o inhibit peripheral metabolism of LDP [3] . This property is im-

ortant for central nervous system effect because allows a larger

mount of peripheral LDP to cross the blood-brain barrier. The LDP

n combination with CDP is used to improve motor function in
ights reserved. 
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the patients with the PD [4] , however, treatment with LDP/CDP

causes several untoward effects [5] . Methyldopa (MDP) is a ma-

jor metabolite of LDP and its elevated blood levels are associated

with the occurrence of LDP-induced dyskinesias in patients with

the PD. Some research groups have claimed that the MDP levels

or MDP/LDP ratios in human plasma can be used as predictive in-

dicators of the long-term response to LDP therapy [6,7] . Benser-

azide (BA) is a dopa decarboxylase inhibitor which in combination

with LDP is used to manage the PD [8] . Tolcapone (TOL) with com-

mercial name “Tasmar” is a selective nitrocatechol-type inhibitor

of the enzyme catechol-O-methyltransferase (COMT) which is used

to treat the PD [9] . Entacapone (ENT) with the commercial name

“Comtan” is a drug which commonly in combination with other

medications is used to treat the PD [10] . Application of the medi-

cations to cure the PD affects the DPA levels therefore, DPA must

be also determined when the anti-Parkinson drugs are used. There-

fore, DPA can be regarded as an uncalibrated interference in de-

termination of the drugs mentioned above. Generally, these medi-

cations are determined separately or simultaneously by chromato-

graphic methods which are too expensive and time-consuming.

Therefore, developing novel analytical methods for determination

of these drugs which are fast and low-cost is highly required. 

Multi-way calibration which acts based on several instrumen-

tal signals per sample is organized into a mathematical object

with more modes than a vector, e.g ., as a data matrix [11,12] .

The most important practical aspect of multi-way calibration is

determination of the analyte(s) of interest in the presence of

uncalibrated interference, this property is known as second-order

advantage. Multi-way calibration increases the sensitivity due to

the measurement of redundant data which decreases the relative

impact of the noise in the data and selectivity is also increased

because each new instrumental mode contributes positively to the

overall selectivity [13,14] . Furthermore, multi-way calibration en-

ables the analytical chemist to obtain more qualitative information

about the chemical phenomena than with univariate or first-order

data. Several techniques such as fluorescence excitation-emission

[15] , high performance liquid chromatography with diode array

detection (HPLC-DAD) [16] , liquid chromatography-attenuated total

reflectance-Fourier transform infrared spectroscopy (LC-ATR-FTIR)

[17] , liquid chromatography-DAD-mass spectrometry (LC-DAD-MS)

[18] , flow injection analysis-DAD (FIA-DAD) [19] , DAD-kinetics

[20] and pH–DAD [21] have been used to obtain second-order

data. Although these techniques are accurate and reliable but suf-

fer from several disadvantages such as high-cost and complexity of

their instruments. Therefore, new techniques are highly required

for the inexpensive quantification of analytes in complex matrices.

Among the available analytical methods, electrochemical methods

with low-cost instruments and applicability to miniaturization

are a good choice for accurate, fast and reliable determination

of the analyte(s) of interest in interfering media [22–28] . The

use of chemometrics in analytical electrochemistry was scarce

for many years in comparison to the other techniques especially

spectroscopic techniques and this may be related to the lack of

linearity between the current and concentration. But, development

of non-linear methods and pre-processing methods have increased

applications of chemometrics to analytical electrochemistry during

the last years [29 –35] . 

In this study, we are going to record second-order differential

pulse voltammetric (DPV) data at different pulse heights which

help us to obtain three-way voltammetric data arrays for calibra-

tion model building by multivariate curve resolution-alternating

least squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2).

The developed calibration models will be used to predict concen-

trations of six anti-Parkinson agents in validation samples and after

evaluating their performance, they will be applied to predict con-

centrations of anti-Parkinson agents in the presence of dopamine
DPA) as uncalibrated interference to choose the best algorithm for

he analysis of human serum samples. Finally, the results of the

est algorithm applied to the analysis of serum samples will com-

ared with those of obtained by high performance liquid chro-

atography with UV detection (HPLC-UV) as reference method.

he schematic representation of the methodology developed in his

ork is shown in Scheme 1 . 

. Theoretical and experimental considerations 

.1. Theoretical considerations 

.1.1. Recording second-order DPV data 

In our work, the pulse height as an instrumental parameter in

PV method was changed for obtaining second-order DPV data.

ere, a brief description of the mathematical aspects of the pro-

osed procedure will be given. The signal intensity in DPV can be

escribed by the use of following equations [36] : 

i = 

nF AD 

1 / 2 
O 

C ∗O 
π1 / 2 ( τ − τ ′ ) 1 / 2 

[
P A (1 − σ 2 ) 

( σ+ P A )(1+ P A σ ) 

]
(1)

 A = ξexp 

[
nF 

RT 

(
E + 

�E 

2 

− E 0 
′ 
)]

(2)

= exp 

(
nF 

RT 

�E 

2 

)
(3)

= 

(
D O 

D R 

)1 / 2 

(4)

here, �E is referred to the pulse height, τ is referred to pulse du-

ation and other symbols are well-known and have their conven-

ional meanings. For an electrochemical reaction, a vector can be

roduced by scanning the potential at constant �E and τ . Different

ata vectors can be produced by applying different �E s and scan-

ing the potential at the constant τ . Therefore, by sweeping the

otential and applying different �E s at a constant τ non-bilinear

econd-order DPV data will be obtained. 

.1.2. Second-order algorithms 

MCR-ALS: The theory of MCR-ALS is based on that the over-

ll voltammetric landscape for a sample could be decomposed

nto the concentration profile and voltammograms of the species

37] . This means that MCR-ALS is able to separate the correspond-

ng voltammetric landscape of two analytes with overlapping sig-

als into the concentration profile and voltammograms for the

wo chemical species. Mathematically, if X is an unfolded three-

imensional data array, it can be decomposed into two matrices

ontaining the concentration profile and voltammograms of the

pecies, C and V , respectively, according to: 

 = C V 

T + E (5)

here E is a residual matrix and its iterative least squares mini-

ization is used as a criterion for decomposition of matrix X . Here,

 column-wise augmented matrix is created by unfolding a three-

imensional data array along the pulse height mode. This could be

erformed by placing sample matrix and the unknown matrix on

op of each other [37] . Decomposition is started by supplying the

stimated voltammograms of the various species which is applied

o estimate ˆ C : 

ˆ 
 = X V 

T + (6)

here ‘ + ’ refers to the pseudo-inverse. Then, V will be re-

stimated according to the Eq. (7) : 

 = 

(
ˆ C + X 

)T 
(7)
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Scheme 1. Schematic representation of the methodology developed in this study to determine concentrations of six anti-Parkinson agents in the presence of DPA as uncali- 

brated interference. 
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Finally, E could be calculated from Eq. (5) using X , ˆ C and

 . These steps under suitable constraints during the ALS opti-

ization will be repeated until convergence is achieved. Finally,

oncentration profiles containing information can be used for

uantitative predictions. In this approach the area under curve is

roportional to concentration which could be applied to build a

seudo-univariate calibration curve. 

PARAFAC 2: The parallel factor analysis (PARAFAC) implies that

ll the contribution to the signal including analytes, interferents

nd background could be modeled by an individual component

aving the same concentration and voltammogram profiles along

ll the analysed samples (trilinearity). In mathematical points of

iew, if X is a three-way data array corresponding to the measure-

ent of the voltammetric landscapes on different samples, it could

e decomposed into sample ( A ), pulse height ( B ) and voltammo-

ram ( C ) loadings according to: 

 = A ( C | �| B ) 
T (8) 

here X is the unfolded X and | �| is a column-wise Kronecker

roduct of the two matrices. When the loadings along the A are

inearly proportional to components’ concentrations the trilinearity
ssumption holds and can be applied to calibration. However, for

oltammetric data in the presence of shifts and shape changes the

rilinearity structure is disrupted which makes the PARAFAC model

nappropriate. PARAFAC2 is a more flexible variant of PARAFAC

hich handles shifts and changes in peak shapes by regarding a

ifferent set of loadings for samples [38–40] . In this case, a modi-

ed version of Eq. (8) is: 

 k = A k C k B 

T 
k (9) 

here X k is the voltammetric landscape measured for the k th sam-

le, A k is a diagonal matrix containing elements the k th row of the

atrix A , and B k is the pulse height loading matrix estimated for

he k th sample. As for PARAFAC, the solution used is unique which

s necessary for handling complex overlapping signals. 

.1.3. Data pre-processing 

Baseline correction : Baseline elimination is a critical step which

nhances the signals and reduces the complexity of the analyti-

al data [41,42] . Therefore, we applied the methodology proposed

y Eilers et al. for baseline correction based on asymmetric least

quares splines regression approach (AsLSSR). In their method the
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following function is minimized: 

Q = 

∑ 

i 
νi ( y i − f i ) 

2 + λ
∑ 

i 

(
�2 f i 

)2 
(10)

where y is the recorded signal, f is an approximation of the base-

line trend ( y ), � is the derivative of f , i is successive values of the

signal, λ is the regularization parameter and ν includes weights.

The positive and negative deviations from the estimated baseline

have low and high values of ν , respectively. The method proposed

by Eilers et al. uses spline basis functions to estimate a two di-

mensional background matrix B . To increase the speed of calcula-

tion and accuracy of the results, 10 basis functions with a single λ
with the value equal to one were used in this study. Details of the

mentioned method can be found in the literature [41,42] . 

2.1.3.2. Potential shift correction. Linearity is a property which is

needed for the application of linear multivariate calibration algo-

rithms [34,35] . However, in many situations such as interactions

between individual components deviations from the linearity can

be observed. Generally, nonlinearity causes signal shifts, broaden-

ing of the peak and some non-proportional increase in the peak

intensity. Such problems become more important in the presence

of signal overlapping. These effects hinder the direct application

of linear multivariate calibration algorithms and must be tackled.

Therefore, data alignment is a crucial step which must be per-

formed before application of linear multivariate calibration algo-

rithms. The data alignment techniques act based on digital moving

(and/or stretching or compressing) a voltammogram towards a ref-

erence one and the quality of matching is guaranteed with certain

objective functions such as residual fit, correlation coefficient, sim-

ilarity index, etc. 

In this study, correlation optimised warping (COW) algorithm

was applied to potential shift correction. 

The COW is a piecewise or segmented data preprocessing

method aimed at aligning a sample data vector towards a refer-

ence vector by allowing limited changes in segments lengths on

the sample vector [43–45] . To more understand about details of

the COW, the reader is referred to Refs. [43–45] . 

2.1.4. Model efficiency estimation 

To understand whether a developed model can be applied for

the analysis of real samples or not, model validation is must be

performed. In order to achieve this goal, each model was applied

to validation set and its results were examined by evaluating root

mean square errors of prediction (RMSEP), and relative error of

prediction (REP) according to the following definitions: 

RMSEP = 

√ √ √ √ 

n ∑ 

i =1 

(
y pred − y act 

)2 

n 

(11)

REP (%) = 

100 

y mean 

√ 

1 

n 

n ∑ 

i =1 

( y pred − y act ) 
2 

(12)

where y act and y pred are nominal and predicted concentrations, re-

spectively, and y mean is the mean of the nominal concentrations. m

and n refer to the number of samples used for building calibration

and validation sets, respectively. 

2.1.5. Analytical figures of merit for comparing performance of 

PARAFAC2 and MCR-ALS 

An analytical figure of merit (AFOM) is a quantity which is used

to verify the performance of an analytical method. In analytical cal-

ibration, the AFOMs are used to compare the performances and de-

tection capabilities of different analytical methods [46] . 
In multi-way calibration and particularly in three-way calibra-

ion, there are several protocols for determination of the sensitiv-

ty and some of these protocols are based on extensions of the

et analyte signal (NAS) concept from first-order to second-order

46] . These approaches are faced to some difficulties such as dif-

erent NAS definitions which depend on the way of applying the

AS concept and extrapolation of these expressions to higher-order

ata which hinders a significant underestimation of the sensitivity.

ortunately, there is an alternative approach to estimate sensitivity

hich is based on the relation of output to input noise [46] . More

ensitivity is obtained if large input noise leads to small output

oise according to the following definition: 

ensitivity = σx / σy (13)

here σ x and σ y define the uncertainties of signal and concentra-

ion, respectively [46] . 

According to IUPAC definition, selectivity is a quantity which es-

imates the capability of a method for determination of particular

nalytes in mixtures without interferences from other components

46] . In three-way calibration selectivity can be defined as the ra-

io between the sensitivity and the slope of the pseudo-univariate

alibration graph according to the following definition: 

electivity = Sensitivity / S n (14)

The level of overlapping among the profiles of different compo-

ents determines the value by which SEN departs from S n . 

Sensitivity depends on the type of signal employed to develop

 calibration method therefore, sensitivities derived from different

ypes of measurements cannot be compared on an equal basis. For

his reason, analytical sensitivity is proposed and is defined as the

atio between sensitivity and instrumental noise: 

nalytical Sensitivity = Sensitivity / σx (15)

here σ x is an estimation of noise level in measured signals. The

nit of analytical sensitivity is concentration 

−1 and is independent

n the signal. Therefore, analytical sensitivity can be used to com-

are methodologies based on very different instrumental measure-

ents. 

The inverse of analytical sensitivity reports the minimum con-

entration difference between two samples which the model is

ble to determine it. Finally, according to Eq. (16) the limit of de-

ection (LOD) can be defined as 3.3 times the standard deviation

or the blank sample: 

OD = 3 . 3 S b (16)

.2. Experimental considerations 

.2.1. Chemicals and solutions 

LDP, CDP, MDP, BA, TOL, ENT and DPA were prepared from

igma-Aldrich. The phosphate buffered solution (PBS, 0.05 M) was

repared from NaH 2 PO 4 and Na 2 HPO 4 and its pH was adjusted us-

ng appropriate amounts of NaOH and H 3 PO 4 . All other chemicals

sed in this work were of analytical grade and purchased from

ell-known companies. Stock standard solutions of LDP, CDP, MDP,

A, TOL, ENT and DPA with a concentration level of 0.1 M were

repared by dissolution of exact amounts of their solid powders

n the PBS (0.05 M, pH 2) and stored in a refrigerator. Working so-

utions of the medications were prepared by appropriate dilution

f their stock solutions with PBS (0.05 M, pH 2). All the solutions

sed in this study were prepared by doubly distilled water (DDW).

.2.2. Instruments and softwares 

Electrochemical data acquisition was performed by an Auto-

ab PGSTAT302N 

–High Performance controlled by the NOVA soft-

are (Version 2.1) and equipped by a conventional cell with an

g/AgCl as reference electrode, a Pt wire as auxiliary electrode
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nd a gold electrode (GE, Metrohm, disk material = gold, disk di-

meter = 5 mm, length = 52.5 mm) as working electrode. pH ad-

ustments were performed by a professional waterproof portable

H/ORP meter (Hanna Instruments) equipped by a combined glass

lectrode. HPLC analyses were carried out by a HPLC system con-

isted of a Younglin ACME 90 0 0.0 equipped with a quaternary

ump, online degasser, column heater, autosampler and UV detec-

or. Data collection and analyses were performed using Autochro

0 0 0.0 software (Younglin). Separation was achieved on C-18 col-

mn, Perfectsil Target ODS3 (150.0 mm × 4.6 mm, 5.0 μm) with

 10.0 mm × 4.0 mm, 5.0 μm guard column (MZ-Analysentechnik,

ainz, Germany). The mobile phase consisted of acetate-citrate

uffer containing sodium acetate (0.05 M), citric acid monohydrate

10 mM), octanesulphonic acid (0.5 mM), Na 2 EDTA (0.05 mM) and

ibutylamine (0.5 mM). The flow-rate was set at 1 mL min 

−1 . The

ecorded electrochemical data was transformed into the MATLAB

nvironment (Version 7.14, MathWorks, Inc.) for pre-processing

smoothing, baseline- and potential-shift corrections) and multi-

ay analyses. All the computations were performed on a personal

ELL XPS laptop (L502X). 

.2.3. Preparation of real samples 

A human serum sample was provided by a Medical Diagnos-

ic Laboratory in Kermanshah, Iran. A methodology reported by

he other researchers was applied to prepare the serum samples

or the analysis [47] . According to their method, 10.0 mL of the

erum sample was transferred into a glass tube containing 10.0 mL

f 15.0% (w/v) zinc sulfate-acetonitrile (50/40,v/v) and vortexed for

0.0 min. The glass tube was kept at 4.0 °C for 15.0 min and subse-

uently centrifugated at 50 0 0.0 rpm for 5.0 min. Finally, the super-

atant was discarded and the solution was used for next analyses.

he serum samples was partially diluted with PBS (0.05 M, pH 2)

nd spiked with randomly selected amounts of LDP, CDP, MDP, BA,

OL, ENT and DPA. Then, aliquots of the diluted samples were in-

ected into the electrochemical cell for quantitative purposes. 

.2.4. Electrochemical procedure 

Prior to electrochemical measurements, the GE was well pol-

shed by a silky pad and 0.05 μm alumina slurry. Afterward, the

E was washed by ethanol and DDW and left to be dried at room

emperature. All electrochemical data was recorded at room tem-

erature. The second-order DPV data was recorded according to

he following operating conditions: step potential 0.005 V, pulse

eights 0.2, 0.15, 0.10, 0.05 and 0.025 V, modulation time 0.05 s and

nterval time 0.5 s. 

. Results and discussion 

.1. Selecting the best pH 

For selecting the best pH for the simultaneous determination of

DP, CDP, MDP, BA, TOL and ENT, the effect of pH on their cyclic

oltammograms (CVs) was investigated. Fig. 1 A–F shows the CVs

f LDP, CDP, MDP, BA, TOL and ENT recorded in the PBS (0.05 M)

t different pHs in the range of 2.0–12.0. As can be observed in

ig. 1 .A–F, all CVs of the studied drugs have a maximum current

t pH 2. From analytical point of view both maximal and stable

ignals are preferable therefore, a pH value of 2.0 was selected for

ext experiments. 

.2. Chemometric investigations 

.2.1. Understanding the necessity of multi-way calibration 

Fig. 2 shows the CVs of LDP (curve a), CDP (curve b), MDP

curve c), BA (curve d), TOL (curve e), ENT (curve f) and DPA (curve
) in PBS (0.05 M, pH 2). As can be seen, a strong signal overlap-

ing could be observed for the simultaneous analysis of LDP, CDP,

DP, BA, TOL and ENT in the presence of DPA at the GE. Therefore,

etermination of any of these drugs will be biased if univariate cal-

bration is applied as the analytical method, and for shooting this

rouble it is necessary to use multi-way calibration. Since DPV is

uch higher sensitive than CV, it will be used to simultaneous de-

ermination of the studied drugs. 

.2.2. Calibration procedures 

Univariate calibrations : Prior to multi-way calibration, univari-

te calibration curves were constructed based on DPV method us-

ng several points as peak current versus drug concentration and

valuated by linear regression ( Fig. 3 ). All drugs showed a lin-

ar dependence between peak current and concentration at differ-

nt concentrations intervals LDP (1.0–20.0 μM and 20.0–320.0 μM),

DP (0.5–600.0 μM), MDP (2.0–32.0 μM and 32.0–380.0 μM), BA

1.0–36.0 μM), TOL (0.1–14.0 μM and 14.0–178.0 μM) and ENT (2.0–

5.0 μM), (see insets of Fig. 3 ). 

Calibration set : A calibration set including thirty three mixtures

n which compositions of the mixtures were selected according to

 small central composite design (SCCD, Table 1 ) was prepared in

he PBS (0.05 M, pH 2) spiked with appropriate amounts of drugs

onsidering their linear calibration ranges obtained from univariate

alibrations. The prepared mixtures were transferred into the elec-

rochemical cell in random order and their voltammograms were

ecorded. 

Validation set : To verify the prediction ability of the developed

alibration models after optimizing all calibration parameters, a

alidation set including ten mixtures ( Table 1 ) was prepared in the

BS (0.05 M, pH 2) spiked with randomly selected concentration of

DP, CDP, MDP, BA, TOL and ENT from their corresponding calibra-

ion ranges. All samples were transferred into the electrochemical

ell and their voltammograms were registered. 

Test set : With the aim of evaluating performance of the de-

eloped calibration model to predict concentrations of LDP, CDP,

DP, BA, TOL and ENT in the presence of DPA as uncalibrated in-

erference, a test set involving ten mixtures was prepared in the

BS (0.05 M, pH 2) with random concentrations of the drugs in

he same concentration range used for building the calibration set

 Table 1 ). All samples were transferred into the electrochemical cell

nd their voltammograms were registered in random order. 

.2.3. Data pretreatment 

It has been proven by the previous studies that the performance

f voltammetric methods can be enhanced by data pretreatments

29–35] . In the present study, besides the overlapping challenge,

here are two additional problems including: (1) the baselines of

he signals, and (2) sample-to-sample potential-shifts which are

ommon problems in voltammetric measurements. For tackling the

aseline challenge, it is necessary to eliminate the baselines by

aseline correction. Regarding the second challenge, the potentials

hifts were corrected by COW algorithm as an efficient chemo-

etric technique. For more understanding about the details of the

aseline- and potential shift-correction techniques the reader is re-

erred to Refs. [29–35] . 

Regarding the problems mentioned above, the matrices related

o the raw data ( Fig. 4 ) were placed next to each other to obtain an

xpanded matrix which was submitted to baseline correction and

otential shift correction by AsLSSR and COW, respectively. Then,

he pretreated data (baseline- and potential shift-corrected data)

as mathematically assembled in MATLAB environment using the

xisting commands to restore their original format and used for

ext computations. 
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Fig. 1. Cyclic voltammograms of (A) LDP (1 mM), (B) CDP (1 mM), (C) MDP (1 mM), (D) BA (1 mM), (E) TOL (1 mM) and (F) ENT in PBS 0.05 M at different pHs. 
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3.3. Application of MCR-ALS and PARAFAC2 to the second-order data 

3.3.1. MCR-ALS modeling 

The main premise of MCR techniques is to follow Beer’s law.

Consequently, they are able to analyze the bilinear data. Applica-

tion of MCR-ALS to resolve data needs the uniform presentation

of data, i.e. , all the signals must have the same length and cor-

responding variables must be placed into the proper columns of

the data matrix. The voltammetric signals often do not fulfill this

property and this problem is seen as the potential shift in voltam-

metric data. Potential shift causes a decrease in the linearity which

depends on its magnitude. The lack of linearity can produce large
ack of fit ( lof ) values and hinders achievement of convergence and

btaining reliable results therefore, the results of MCR-ALS analysis

re not satisfactory. As a result, the shift of potential in voltammet-

ic data as a possible source of inefficiency must be corrected. Al-

hough the potential shift correction can tackle the non-bilinearity

roblem, it can produce rank deficient data. Thus, matrix augmen-

ation can overcome the rank deficiency problem. According to re-

ults mentioned above, potential shift correction was performed

or tackling the non-linearity and then, potential shift corrected

ata were augmented for the analysis by MCR-ALS. By the first at-

empt, MCR-ALS was applied to model the dataset and resolving

he overlapping peaks into their components. In order to do this
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Fig. 2. Cyclic voltammograms of (a) LDP, (b) CDP, (c) MDP, (d) BA, (e) TOL, (f) ENT and (g) DPA in PBS (0.05 M, pH 2). Concentration of each drug is 1 mM. 

Table 1 

Concentration data of calibration set ( C 1 –C 33 ), validation set ( V 1 –V 10 ), and test set ( T 1 –T 10 ). 

Sample LDP (μM) CDP (μM) MDP (μM) BA (μM) TOL (μM) ENT (μM) Sample LDP (μM) CDP (μM) MDP (μM) BA (μM) TOL (μM) ENT (μM) DPA (μM) 

C 1 320 0.5 380 1 178 85 V 1 260 15 55 20 5.5 50 –

C 2 1 600 380 36 0.1 85 V 2 300 24 60 12 24 45 –

C 3 160.5 300.25 191 18.5 89.05 85 V 3 180 150 45 10 33 21 –

C 4 320 0.5 2 36 0.1 2 V 4 11 121 33 5 12 11 –

C 5 1 600 2 1 178 2 V 5 20 133 21 8 6 31 –

C 6 160.5 300.25 191 36 89.05 43.5 V 6 6 90 42 15 66 12 –

C 7 1 600 380 1 0.1 2 V 7 244 85 31 22 75 8.6 –

C 8 160.5 300.25 191 18.5 0.1 43.5 V 8 310 54 29 5 9 25 –

C 9 1 600 2 36 178 85 V 9 180 33 23 28 3.5 41 –

C 10 160.5 300.25 191 18.5 89.05 43.5 V 10 100 22 35 11 18 50 –

C 11 320 600 2 36 178 2 

C 12 160.5 300.25 191 18.5 178 43.5 

C 13 160.5 600 191 18.5 89.05 43.5 T 1 98 50 60 35 41 15 180 

C 14 160.5 300.25 191 1 89.05 43.5 T 2 88 80 58 20 29 25 160 

C 15 320 600 2 1 178 85 T 3 77 90 45 18 54 31 220 

C 16 1 0.5 2 36 0.1 85 T 4 200 100 54 22 4.6 28 270 

C 17 1 0.5 380 36 178 85 T 5 300 149 33 34 11 55 280 

C 18 1 300.25 191 18.5 89.05 43.5 T 6 210 54 22 30 38 44 250 

C 19 160.5 300.25 191 18.5 89.05 43.5 T 7 220 33 50 15 80 21 300 

C 20 160.5 300.25 191 18.5 89.05 43.5 T 8 280 22 48 10 20 18 219 

C 21 1 0.5 2 1 0.1 2 T 9 144 79 31 8 10 43 290 

C 22 1 0.5 380 1 178 2 T 10 233 88 30 14 5 53 300 

C 23 320 0.5 380 36 178 2 

C 24 160.5 300.25 191 18.5 89.05 43.5 

C 25 160.5 300.25 380 18.5 89.05 43.5 

C 26 160.5 300.25 2 18.5 89.05 43.5 

C 27 320 300.25 191 18.5 89.05 43.5 

C 28 160.5 300.25 191 18.5 89.05 2 

C 29 320 600 380 1 0.1 85 

C 30 160.5 0.5 191 18.5 89.05 43.5 

C 31 320 0.5 2 1 0.1 85 

C 32 320 600 380 36 0.1 2 

C 33 160.5 300.25 191 18.5 89.05 43.5 

s  

i  

i  

t  

f  

t  

g  

p  

a  

o  

o  

o  

[  

t  

a  

p  
tep, voltammetric landscapes recorded on the samples of the cal-

bration set, each of them with size of (175 × 5), were collected

nto an unfolded two-way dataset in a column-wise augmenta-

ion manner by putting each matrix on top of the other. There-

ore, a new 5775 × 5 matrix was obtained which was submitted

o the MATLAB workspace for the analysis by MCR-ALS. This al-

orithm requires initialization with system parameters as close as

ossible to the final results. Therefore, voltammograms of analytes
nd interference are required owing that the resolution is based

n the selectivity in the latter mode. In this work, the selection

f the purest voltammogram for the interferent was made based

n simple interactive self-modeling mixture analysis (SIMPLISMA)

48] . The number of contributing components in the studied sys-

em was determined based on singular value decomposition (SVD)

nd six components were found when analyzing validation sam-

les. Then, a model including six components, one for each analyte
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Fig. 3. Representative DPVs of (A) LDP, (B) CDP, (C) MDP, (D) BA, (E) TOL and (F) ENT in PBS (0.05 M, pH = 2) at different concentrations. Insets are showing the dependence 

of I p with concentration. 
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be seen in Table 2 . 
of interest to be calibrated, was considered and pure voltammo-

grams of the components were used for initializing the algorithm.

Finally, the algorithm was run under non-negativity of concentra-

tion and voltammetric profiles and unimodality of voltammetric

profiles as applied constraints. After obtaining the single analytes’

profiles, pseudo-univariate graphs were constructed by developing

regression models where the area under the profile is proportional

to component concentration [21] . The results of the application of

the optimized model to predict concentration of the drugs in vali-

dation set are presented in Table 2 . As can be seen, predictive abil-

ity of the developed model is very good for all the drugs. 
After checking the predictive ability of the developed in the ab-

ence of DPA, the model performance must be verified for predict-

ng drugs’ concentrations in the presence of DPA as well. Therefore,

he model was applied to the test set in which DPA was injected to

he solutions with random and high concentrations. MCR-ALS was

un on the test samples with the same constraints used for val-

dation set and seven components was determined by the use of

VD. Successively, the performance of MCR-ALS to predict concen-

rations of the studied drugs in test set was very acceptable as can
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Table 2 

Predicted and nominal concentrations (μM) of the studied drugs in validation and test sets by MCR-ALS and PARAFAC2. 

Validation set 

LDP MCR-ALS PARAFAC2 CDP MCR-ALS PARAFAC2 MDP MCR-ALS PARAFAC2 BA MCR-ALS PARAFAC2 TOL MCR-ALS PARAFAC2 ENT MCR-ALS PARAFAC2 

Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted 

260 261 264 15 14.9 15.6 55 55.1 56 20 20.1 21.5 5.5 5.6 5.9 50 50.3 52.1 

300 298 304.5 24 23.8 24.9 60 60.3 61.4 12 12 11.1 24 24 25.9 45 45.1 47.3 

180 178.5 185.7 150 152.1 154 45 45 44 10 9.8 10.6 33 32.8 35 21 21 22.6 

11 11.1 10.1 121 120.4 118.9 33 32.6 31.5 5 5 5.3 12 12.1 10.5 11 11.2 13 

20 19.7 18.8 133 134 134.7 21 21.2 22 8 8.1 8.4 6 6 6.6 31 31.1 34 

6 5.9 6.4 90 90.5 92 42 42.4 44 15 14.9 15.5 66 66.5 68.1 12 11.9 11.5 

244 245.2 247 85 85.3 87 31 31 29.5 22 22 21.1 75 75.7 78.9 8.6 8.7 8 

310 308.4 316.4 54 53.6 55 29 29.3 27.7 5 5 5.2 9 9.1 9.7 25 25 23.1 

180 182.1 176 33 33.2 31.8 23 23.1 24 28 28.2 29.6 3.5 3.5 4 41 40.5 44.3 

100 101.1 97.2 22 22.1 23.1 35 34.7 36.4 11 11 12.3 18 18.2 19.6 50 50.2 52.5 

Test set 

LDP MCR-ALS PARAFAC2 CDP MCR-ALS PARAFAC2 MDP MCR-ALS PARAFAC2 BA MCR-ALS PARAFAC2 TOL MCR-ALS PARAFAC2 ENT MCR-ALS PARAFAC2 

Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted Nominal Predicted Predicted 

98 98.3 100.1 50 50.2 51.8 60 60.7 63.9 35 35.2 37.3 41 41.3 44.5 15 15.1 16.2 

88 88.1 92 80 80.2 82 58 58.1 64 20 20 24 29 28.8 33 25 25.5 28 

77 77 74 90 90.3 86.7 45 44.5 51 18 18.4 16.1 54 54.2 50 31 31 36 

200 201 195 100 100 106.9 54 54.4 52.1 22 22.7 19.5 4.6 4.6 4 28 28.1 22 

300 300 306.5 149 150.1 161 33 32.8 30.1 34 35 32 11 11 12.3 55 54.5 48 

210 211.4 214.5 54 54.3 57.9 22 22.6 20 30 30.6 27.1 38 38.3 39.9 44 44 51 

220 220 224 33 33 36.3 50 50 54.9 15 14.4 16.3 80 81 83 21 21.6 26 

280 281.4 275 22 22.1 24.8 48 48 52.6 10 10.2 10.4 20 20.5 24 18 18.2 12.8 

144 145 141 79 80 75 31 31.1 35.8 8 8 8.8 10 10 10.9 43 43 49.5 

233 233 229.4 88 87.3 83 30 30.4 35 14 13.6 15.3 5 5.1 6 53 54 60.8 
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Fig. 4. Raw voltammograms: (A) calibration set, (B) validation set and (C) test set. 
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3.3.2. PARAFAC2 modeling 

PARAFAC2 was also applied to build a calibration model for pre-

dicting concentrations of LDP, CDP, MDP, BA, TOL and ENT in val-

idation and test samples. The pretreated second-order DPV data

were collected into a three-way data array having dimensional-

ity 33 × 5 × 175, 33 calibration samples, 5 pulse heights and 175
otentials. At the first step, the PARAFAC2 model with six com-

onents was fitted to the data. Then, individual PARAFAC2 mod-

ls were built each time by including one of the validation or

est samples in the array. Proper number of factors was selected.

n this work, the correct number of factors for each sample was

etermined by calculating the explained variance of the model.

oltammograms of the drugs were used in the initialization stage

nd non-negativity constraint was applied to concentrations and

oltammograms. The obtained PARAFAC2 model didn’t show a

ood performance in predicting concentrations of the validation

et samples, as shown in Table 2 . As can be seen, there are sig-

ificant differences between nominal and predicted concentrations

hich show the inefficiency of PARAFAC2 in predicting drugs con-

entrations in validation set. In order to verify the prediction abil-

ty of PARAFAC2 in the presence of DPA as uncalibrated interfer-

nce, it was also applied to the test set and its results are showing

n Table 2 . As can be seen, PARAFAC2 was not successful in the

nalysis of test set samples either. 

.4. Comparing predictive ability of MCR-ALS and PARAFAC2 

In order to evaluate the performance of MCR-ALS and

ARAFAC2, each model was validated by RMSEP and REP for pre-

iction of the validation and test sets and results are presenting

n Table 3 . As can be seen, lower RMSEP and REP values were ob-

ained for MCR-ALS than PARAFAC2 which guaranteed a better per-

ormance for MCR-ALS. The AFOMs including sensitivity, analytical

ensitivity, selectivity and limit of detection for determination of

DP, CDP, MDP, BA, TOL and ENT by MCR-ALS and PARAFAC2 in

alidation and test sets are also presented in Table 3 . As can be

een, the AFOMs confirmed that the MCR-ALS was more selective

nd sensitive than PARAFAC2 to predict drugs’ concentrations in

he absence and presence of DPA. For the sake of further evalu-

tions of the accuracy of MCR-ALS and PARAFAC2, the predicted

oncentrations of both validation and test sets were regressed on

he nominal concentrations (not shown). Here, an ordinary least

quares (OLS) analysis of predicted concentrations versus nominal

nes was applied [49] . The calculated intercept and slope were

ompared with their theoretically expected values (intercept = 0,

lope = 1, ideal point), based on the elliptical joint confidence re-

ion (EJCR) test. Ellipses contain the ideal point confirm that the

redicted and nominal concentrations do not present significant

ifference at the level of 95% confidence and the elliptic size de-

otes the precision of the analytical method, smaller size corre-

ponds to higher precision [50] . Fig. 5 A–D shows the corresponding

llipses of the EJCR analyses. As can be concluded from Fig. 5 A–D,

ood predictions for LDP, CDP, MDP, BA, TOL and ENT in both val-

dation and test sets were obtained by MCR-ALS which shows the

ccurate determination of drugs by the developed methodology. 

.5. Comparing the ability of MCR-ALS with HPLC-UV as reference 

ethod for the analysis of serum samples 

When a new analytical methodology is developed, it is nec-

ssary to check its results with those of a well-known reference

ethod. Regarding this important point, we expanded our study

or comparing the accuracy of MCR-ALS for simultaneous determi-

ation of LDP, CDP, MDP, BA, TOL and ENT in a human serum sam-

le with HPLC-UV as reference method. To evaluate the feasibility

f MCR-ALS for exploiting second-order advantage, simultaneous

uantification of the studied drugs was performed in a partially

iluted human serum sample. The serum sample was partially di-

uted with PBS (0.05 M, pH 2) and spiked with different amounts

f LDP, CDP, MDP, BA, TOL and ENT. Then, aliquots of the diluted

amples were injected into the electrochemical cell. The DPV sig-

als of the prepared samples in optimized conditions and differ-
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Table 3 

Analytical figures of merit and statistical indicators for determination of LDP, CDP, MDP, BA, TOL and ENT by MCR-ALS and PARAFAC2. 

Validation set 

MCR-ALS 

Drug SEN 

a (μA (μM) −1 ) SEL b LOD (μM) ANAL SEN 

c (μM) −1 RMSEP REP (%) 

LDP 4.1 0.83 5.11 73.41 1.3031 0.8089 

CDP 5.5 0.88 12.3 88.00 0.7981 1.0978 

MDP 2.9 0.79 13.1 81.21 0.2550 0.6817 

BA 4.5 0.80 2.60 85.42 0.1049 0.7712 

TOL 4.4 0.91 1.80 77.16 0.2915 1.1569 

ENT 4.9 0.78 5.40 79.11 0.2145 0.7280 

PARAFAC2 

Drug SEN (μA (μM) −1 ) SEL LOD (μM) ANAL SEN (μM) −1 RMSEP REP (%) 

LDP 3.6 0.66 7.10 54.31 3.8072 2.3633 

CDP 3.8 0.71 14.01 51.20 1.9005 2.6142 

MDP 2.3 0.70 14.51 66.71 1.3457 3.5982 

BA 3.1 0.73 5.11 69.54 0.9497 6.9834 

TOL 3.6 0.69 3.46 55.41 1.8248 7.2414 

ENT 3.5 0.75 6.78 61.23 2.1592 7.3291 

Test Set 

MCR-ALS 

Drug SEN (μA (μM) −1 ) SEL LOD (μM) ANAL SEN (μM) −1 RMSEP REP (%) 

LDP 4.3 0.88 54.61 75.64 0.7759 0.4194 

CDP 4.9 0.83 11.60 91.23 0.5450 0.7315 

MDP 2.5 0.80 15.05 86.03 0.3847 0.8926 

BA 3.9 0.85 6.11 88.11 0.5109 2.4800 

TOL 4.3 0.83 9.06 89.00 0.3899 1.3324 

ENT 5.1 0.81 66.50 85.69 0.4382 1.3158 

PARAFAC2 

Drug SEN (μA (μM) −1 ) SEL LOD (μM) ANAL SEN (μM) −1 RMSEP REP (%) 

LDP 3.2 0.68 59.00 56.43 4.2411 2.2925 

CDP 3.2 0.65 13.19 55.01 5.3355 7.1618 

MDP 2.1 0.72 18.40 58.71 4.4322 10.2834 

BA 2.8 0.70 10.76 61.21 2.1849 10.6065 

TOL 3.3 0.69 11.80 59.06 2.7698 9.4663 

ENT 3.1 0.71 68.10 52.31 5.6971 17.1084 

a Sensitivity. 
b Selectivity. 
c Analytical Sensitivity. 

Table 4 

Results of the analysis of human serum sample by MCR-ALS and reference method (HPLC-UV). 

Opium alkaloid MCR-ALS Reference method (HPLC-UV) 

Added (μM) Found (μM) Recovery (%) Found (μM) Recovery (%) 

LDP None N.D a – N.D –

5 5.02 100.4 5.00 100 

28 27.8 99.3 28.06 100.2 

150 151.2 100.8 150.5 100.33 

CDP None N.D – N.D –

200 200 100 200 100 

54 53.8 99.6 54 100 

10 10.15 101.5 10 100 

MDP None N.D – N.D –

5 4.9 98 5.1 101.1 

100 102.3 102.2 101.2 101.2 

50 53.1 105.8 53.04 100.7 

BA None N.D – N.D –

3 3.1 103.2 3.01 100.3 

20 20.3 101.5 20.2 100.1 

30 29.7 99 30.3 100.1 

TOL None N.D – N.D –

4 4.1 102.4 4.1 102.4 

50 50.3 100.6 50.2 100.4 

100 100.5 100.5 100 100 

ENT None N.D – N.D –

10 9.5 95 10.2 101.9 

50 48.7 99.4 50.5 100.9 

40 41.2 102.9 41.1 102.7 

a Not detected. 
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Fig. 5. Elliptical joint regions (at 95% confidence level) for the slopes and intercepts of the regressions: (A) MCR-ALS, validation set, (B) PARAFAC2, validation set, (C) MCR- 

ALS, test set and (D) PARAFAC2, test set. LDP (blue ellipse), CDP (red ellipse), MDP (green ellipse), BA (yellow ellipse), TOL (maroon ellipse) and ENT (cyan ellipse). Black 

point marks the ideal point (0,1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

s  

w  

P  

A  

c  

s  

o  

c  

m  

m  

t  

s  

a  

t  

U  

m  

l  

a  

t  

A

 

s  

fi

ent pulse heights (0.2, 0.15, 0.10, 0.05 and 0.025 V) were recorded

at the GE. Table 4 presents the results obtained by the MCR-ALS

with those obtained by HPLC-UV. The recovery rates for MCR-ALS

results were achieved between 95% and 103.2%, showing that the

blood serum matrix does not show any significant interference in

simultaneous determination of LDP, CDP, MDP, BA, TOL and ENT.

Although, the results indicate that the accuracy of the reference

method is slightly better than that of the MCR-ALS but, it must be

noted that the results obtained by MCR-ALS are in an acceptable

agreement with those of obtained by HPLC-UV. 

Taking into account that the acceptable results were obtained

by MCR-ALS and HPLC-UV methods, either of them can be recom-

mended for the simultaneous determination of LDP, CDP, MDP, BA,

TOL and ENT in serum samples. Recommendation of the MCR-ALS

depends on the analyst’s knowledge about the theoretical consid-

erations on the chemometric methods. If the analyst suffers from

instrumental limitations for applying HPLC-UV, it is better to use

the proposed method. However, this option needs having a back-

ground about the theoretical aspects of chemometric methods. 

4. Conclusions 

This work reports developing an attractive electroanalytical

methodology for simultaneous determination of six anti-Parkinson

drugs including LDP, CDP, MDP, BA, TOL and ENT in the presence

of DPA as uncalibrated interference at the surface of a gold elec-
rode with the help of three-way multivariate calibration. The six

tudied drugs exhibited a strong voltammetric overlapping which

as successfully resolved. Two second-order algorithms including

ARAFAC2 and MCR-ALS were used to model building and MCR-

LS was more successful than PARAFAC2 in predicting drugs’ con-

entrations. Therefore, MCR-ALS was applied to the analysis of

erum samples as real cases. Because of the non-bilinear behavior

f voltammetric data, the COW algorithm was chosen as an effi-

ient chemometric algorithm to tackle the non-linearity of voltam-

etric data. The baseline of the DPV signals was successfully re-

oved by AsLSSR as an efficient chemometric algorithm. Finally,

he application of the developed electroanalytical methodology to

imultaneously assay the concentrations of LDP, CDP, MDP, BA, TOL

nd ENT in human serum samples allowed us to obtain satisfac-

ory results which were in an excellent accordance with the HPLC-

V as reference method. The potential advantages of the developed

ethod in this study such as sensitivity, rapidity and low-cost al-

ow one to propose the present method as a promissory, cheap and

ccessible alternative for routine determination of the concentra-

ions of LDP, CDP, MDP, BA, TOL and ENT in human serum samples.
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