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Abstract: To address the objective in a clinical trial to estimate the mean or mean
difference of an expensive endpoint Y , one approach employs a two-phase sampling
design, wherein inexpensive auxiliary variables W predictive of Y are measured in
everyone, Y is measured in a random sample, and the semi-parametric efficient esti-
mator is applied. This approach is made efficient by specifying the phase-two selection
probabilities as optimal functions of the auxiliary variables and measurement costs.
While this approach is familiar to survey samplers, it apparently has seldom been
used in clinical trials, and several novel results practicable for clinical trials are de-
veloped. Simulations are performed to identify settings where the optimal approach
significantly improves efficiency compared to approaches in current practice. Proofs
and R code are provided.

The optimality results are developed to design an HIV vaccine trial, with objec-
tive to compare the mean “importance-weighted” breadth (Y ) of the T cell response
between randomized vaccine groups. The trial collects an auxiliary response (W )
highly predictive of Y , and measures Y in the optimal subset. We show that the
optimal design-estimation approach can confer anywhere between absent and large
efficiency gain (up to 24% in the examples) compared to the approach with the
same efficient estimator but simple random sampling, where greater variability in the
cost-standardized conditional variance of Y given W yields greater efficiency gains.
Accurate estimation of E[Y |W ] is important for realizing the efficiency gain, which
is aided by an ample phase-two sample and by using a robust fitting method.
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1. Introduction

Consider a study with objective to estimate the mean of an expensive outcome
Y based on a sample of individuals. Suppose inexpensive auxiliary covariates and/or
response outcomes W predictive of Y are available. An efficient and robust approach
to meeting the objective will measure the auxiliaries in everyone and measure the
outcome in an optimally chosen sub-set, and then estimate the mean using a semi-
parametric efficient approach that provides consistent estimation without parametric
assumptions. Here we show how to optimally design a two-phase study using this
approach, developing several novel results that account for costs of phase 1 and 2
measurements. In addition to addressing the one-sample problem, these results pro-
vide optimal two-phase designs for comparing the mean of an expensive outcome
between two groups, which are of particular interest for clinical trials. In practice
sub-optimal sampling designs and estimators are frequently used; our objective is
to encourage use of the efficient trial design coupled with the efficient estimator for
settings where it is advantageous.

The problem addressed here is different from the problem of “efficient two-stage
clinical trial design;” such two-stage trials first assess the treatment effect on the
primary endpoint in an initial cohort of individuals (stage one), and, based on the
results, adaptively decide whether to enroll an additional cohort of individuals to
increase the total sample size for assessing the treatment effect (e.g., [1]). Instead,
our problem considers a clinical trial with fixed sample size, and the relevant clinical
trials statistical literature is that of “two-phase designs” (cf., [2− 7]), where the phase-
one data are variables collected from all study participants, and the phase-two data
are the expensive variable(s) collected in a judiciously chosen sub-set of participants.
Whereas the articles cited above and others focus on more efficient estimation, very
few have combined efficient two-phase sampling design with estimation, and none to
our knowledge have tackled this problem for the case where the phase-two variable of
interest is the primary endpoint [most of the literature is related to the case-control
design (e.g., [8]) or to the case-cohort design originally proposed by Prentice (1986)
[9], where the phase-two variables are expensive exposure covariates]. Outside of the
clinical trials statistical literature, survey samplers have tackled this problem, and
below we summarize how our work fits in that context.

This research is motivated by AIDS vaccine development. Development of an
AIDS vaccine administered to HIV-free volunteers that prevents HIV infection is a
global public health priority [10]. A central objective of clinical trials of current
HIV vaccine candidates is detection and characterization of vaccine-induced T cells
that react with HIV “epitopes”– short K-mer peptides of K = 8 − 12 contiguous
amino acids (e.g., RLRPGGKKK). Two study endpoints of particular interest are
the “breadth” and the “importance-weighted breadth;” breadth is the number of
reactive HIV epitopes and weighted breadth is the sum of “importance weights”
attached to the reactive epitopes, where importance reflects knowledge about the
usefulness of the epitope for potentially contributing to protection. (The methods
of [11− 13] are used to measure T cell reactions.) Clinical trials of HIV vaccine
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candidates conducted by the U.S. NIH-funded HIV Vaccine Trials Network (HVTN)
use breadth (W ) and importance-weighted breadth (Y ) as study endpoints, where Y
is expensive to measure. While the high expense makes it cost-prohibitive to measure
Y for every subject, the fact that W predicts Y provides an opportunity to effectively
use a two-phase design. This case study uses these HVTN 054 data as pilot data for
determining an optimal sampling design for HVTN protocol 083.

For two-phase clinical trials like HVTN 083 decribed later, Rotnitzky and Robin’s
([6], henceforth RR) semiparametric efficient estimator of a group mean is asymptot-
ically optimal, and we consider optimal sampling and estimation based on the RR
estimator. Methods for optimizing the sampling design for estimation of a group
mean have been developed in the survey sampling literature, for example [14− 17].
However, this literature addresses a different goal, and uses a different perspective,
than the goal and perspective of the statistical framework used in clinical trials. In
particular, survey samplers are interested in finite-population estimands such as the
average Y for a fixed population, whereas clinical trialists are concerned with “su-
perpopulation” estimands such as the mean of Y , defined for a hypothetical infinite
superpopulation from which the finite population is a sample. For clinical trials it is
of little scientific interest to compare finite-population means between groups (which
will virtually always differ); rather scientific interest centers on comparing superpop-
ulation means that may be equal.

Many of the results developed in the finite-population framework can be trans-
lated to the superpopulation framework, and this is part of our objective. For estima-
tion, Särndal, Swensson, and Wretman ([14], chapter 6) and predecessors (including
[18− 20]) developed a “regression estimator” of a population total that, in special
cases for the form of the auxiliaries, is essentially equivalent to RR’s estimator of a
group mean, which is known to statisticians working in clinical trials. Moreover, for
special cases of some of our results presented below, Särndal, Swensson, and Wret-
man’s ([14], chapter 12) optimal sampling design for the regression estimator are
equivalent to our optimal sampling designs for the RR estimator. In particular, we
develop four results for the one-sample problem (Results 1–4), where Results 3 and
4 are direct translations of results in [14], Result 1 would be a direct extension of a
result in [21] if our added constraint of a minimum sample size were dropped, and we
are not aware of results in the survey sampling literature that directly extend to Re-
sult 2. We are also not aware of results in the survey sampling literature that directly
extend to the four corresponding results that we develop for the two-sample problem
(Results 1-two, 2-two, 3-two, 4-two). All of the results are practically novel for the
clinical trials statistician given the major differences in language and perspective of
the two literatures.

In Section 2 we summarize RR’s method for estimating a group mean within a
two-phase sampling design. In Section 3 we develop results for this objective on op-
timal sampling of subjects into phase two. In Section 4 we extend these results to
the objective of comparing means between two groups. In Section 5 we describe the
case study for optimally designing the HVTN 083 two-phase HIV vaccine trial, and
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in Section 6 we compare the finite-sample efficiency of different implementations of
Result 3 based on simulated vaccine trials. In Section 7 we conclude with discus-
sion. The web-based supporting material provides proofs of the results, R code for
implementing them, and additional results.

2. RR Semiparametric Estimation of a Group Mean Using Auxiliaries

2.1. Notation and Problem Set-up

For a two-phase design, let W be a vector of auxiliaries measured in everyone and
Y be the outcome. The auxiliary W may have discrete and/or bounded quantitative
components. The outcome Y may be discrete or quantitative, with results and esti-
mation methods identical in each case; however, additional research would be needed
to extend the results to handle an outcome Y subject to censoring (e.g., a failure
time outcome). Let F be the joint cdf of W . Let R be the indicator of whether a
subject is selected into phase two for measuring Y, and define λ(W ) ≡ Pr(R = 1|W ).
Our motivating application has an unusual feature that there is a subgroup for which
the value of W completely determines the value of Y (W = 0 implies Y = 0), such
that Y is known without measurement. For such subgroups, we use the convention
that R = 1 and λ(W ) = 1 (Sections 3.1 and 3.7 provide further discussion). The
observed data are n iid copies (Wi, Ri, RiYi), i = 1, · · · , n. Let λi ≡ λ(Wi). Our goal
is estimation of the mean of Y, β ≡ E[Y ].

In our HIV vaccine trial example W and Y are measured at the same time-point
after randomization, which is typically chosen a few weeks after the last immunization.
For simplicity, throughout we assume no dropout before the measurement time-point.
While missing at random dropout could be handled using the RR methodology it
would be distracting to explicitly account for it.

2.2. Semiparametric Efficient Doubly Robust Estimation

To achieve consistent estimation of β with RR’s method, the only assumption is
that the λi’s used in the estimator exceed zero for all i. Given any fixed positive λi’s,
the semiparametric efficient estimator of β, β̂, solves

∑n
i=1 Ui(β, λi) = 0, where Ui is

RR’s efficient influence function:

Ui(β, λ) =
Ri

λi
(Yi − β)− (Ri − λi)

λi
(E [Yi|Wi]− β) . (1)

This efficient estimator is infeasible because it depends on the unknown E[Y |W ],
and in Section 3.6 we discuss estimation in practice, which requires estimation of
E[Y |W ] based on the phase-two sample. Our optimality results below are based on
minimizing the asymptotic variance of Ui(β, λ), such that they use the true E[Y |W ];
thus the results are only assured to provide reliable guidance for trials with large
sample sizes, and an important practical question is how the need to estimate E[Y |W ]
in implementing the methods affects their utility for trials with moderate sample sizes.
In Section 6 we evaluate this question via simulations by comparing the method in
practice (using estimated E[Y |W ]) with the unachievable benchmark version of the
method that uses the true E[Y |W ].
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The RR method is expected to perform well for HIV vaccine trials for two reasons.
First, the occasion where an inverse probability weighted method performs poorly,
wherein some estimated weights are large outliers (e.g., [22]), can be avoided because
the investigator designs the weights λi. Second, the RR method performs best when
there exist auxiliaries highly predictive of Y . The fact that the auxiliaries and outcome
are measured using the same assay under identical experimental conditions on the
same blood sample provides opportunity for high correlations. Consequently, Gilbert
et al. [23] advocated use of the RR method for Phase I/II vaccine trials.

3. Optimal Design of the Phase Two Selection Probabilities λi

We develop optimality results for four different objectives that occur in practice
(Results 1 through 4 below, with proofs in Supporting Materials Appendix A). All
of these results determine the optimal function λ(W ) to use in RR’s estimator, and
the first two also determine the optimal sample size. The optimal function λ(W )
depends on the unknown distribution of the data, which will need to be estimated
from pilot data. Once estimated, λ(W ) may be treated as known by design in the
analysis, so that the resulting ‘true’ λi’s are used in the RR estimator. However,
estimation efficiency may be improved by using ‘estimated’ λi’s in the RR estimator,
as described in Section 3.6.

The optimality results are developed for Bernoulli sampling, wherein each subject
i is selected based on a random Bernoulli variate with success probability λi. How-
ever, because the number of phase two subjects is random, some investigators may
prefer without replacement sampling, which affords exact control of this number. In
particular, if W has J levels W1, · · · ,WJ , then the results may be implemented via
simple random sampling without replacement within each level, such that exactly
λ(Wj) percent of subjects (after rounding) are selected at level j. This procedure is
similar to the “equal aggregate σ rule” of ([14], Section 12.4), which is described in
Supporting Materials Appendix C.

3.1. Minimizing Variance Given Expected Total Cost

The first optimality result minimizes V (λ)/n over both λ and n given a fixed
expected total budget B and n required to be greater than or equal to a fixed number
n0, where V (λ) is the semiparametric efficient variance bound for β (n0 may be 1, but
practically one may require at least n0 = 10 or 20 subjects). This bound is calculated
as the variance of the efficient influence function (1), and equals

V (λ) = Var (E [ε|W ]) + E

[
Var(ε|W )

λ(W )

]
(2)

=
∫

E [ε|w]2 dF (w) +
∫

Var(ε|w)
λ(w)

dF (w), (3)

where ε ≡ Y − β.
Let C0 be all initial trial costs that are independent of sample size n, and suppose

all other costs scale linearly with n. Of the sample-size-dependent costs, let C1 be
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the per-person costs measured in everyone, and C2(W ) be the per-person costs for
measurement of Y for a subject with auxiliary W . With B(λ) ≡ C1+E[C2(W )λ(W )]
the expected per-person sample-size dependent cost, the expected total cost is B ≡
C0 + nB(λ). Let PV E ≡ Var(E[Y |W ])/Var(Y ) be the proportion of the variation in
Y explained by W .

Result 1: The minimizer of V (λ)/n among all possible designs indexed by (λ, n)
that do not exceed the expected total cost B and with n ≥ n0 is achieved with

λ∗ (W ) =

√√√√Var (Y |W )

C2(W )

√
C1

Var (E [Y |W ])
(4)

=

√
C1

C2(W )

√√√√ Var (Y |W )

Var(Y )PV E
, (5)

n∗ =
(B − C0)

B(λ∗)
=

(B − C0) /
√
C1

√
C1 + E

[√
C2(W )Var (Y |W )

]
/
√
Var (E [Y |W ])

, (6)

provided that λ∗(W ) ≤ 1 for allW in the support ofW and n∗ ≥ n0. Otherwise, mod-
ified formulas described in the Supporting Materials Appendix A are used to achieve
the optimal solution with λ∗(W ) ≤ 1 for all W and n∗ ≥ n0. The above formulas as-
sume Var(E[Y |W ]) > 0; however, if W is a useless predictor, then Var(E[Y |W ]) = 0.
In this case, the above formulas are replaced with λ∗(W ) = 1 and n∗ = (B − C0)/

E[
√
C2(W )]2.

If the constraint n ≥ n0 were removed, then formulas (4) and (5) are Cochran’s
([21], Section 12.3) result. While the proofs of the results assume W is discrete, they
allow for the sample space Ω of W to be partitioned into an arbitrarily fine grid, with
λ∗(w) constant in each bin on the grid. Because in principal the bins can be made
as small as desired (as long as Ω is bounded), the results for discrete W allow using
continuous auxiliaries in practice. Moreover, in the Supporting Materials Appendix
A we provide an extension of the results when W is continuous, and the simulation
study supports veracity of the results for W continuous.

Note that Result 1 controls the expected total cost, but not the actual total cost,
which is random. If it is important to control the actual cost, then subjects could be
enrolled until the total cost C0 +n (C1 +

∑n
i=1RiC2(Wi)) meets the budget, in which

case formula (6) is not needed and n is random.
Because λ∗(W ) depends on the unknown data distribution, the λ∗’s are computed

by applying either formula (4) or (5), using estimates of the needed expressions from
pilot data. The optimal λ∗ (W ) is proportional to the input parameter r(W ) ≡√
Var (Y |W ) /C2(W ), the cost-standardized conditional variance of Y given W . As

such, the optimal design over-samples subjects with poorly predictive auxiliaries,
for whom measurement of W provides relatively little information about Y (i.e.,
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Var(Y |W ) is large), and for whom this direct measurement is relatively affordable
(i.e., C2(W ) is low). For these subjects directly measuring Y is most informative and
cost-effective. In contrast, the optimal design under-samples subjects with highly
predictive auxiliaries and/or with high cost for measuring Y ; for these subjects less
incremental knowledge would be gained by directly measuring Y . The parameter
r(W ) is also the key input for the other optimality results.

In addition, λ∗ (W ) depends on the cost ratio C1/C2(W ) and on the PV E. The-
orem A.2 of Supporting Materials Appendix A implies that if the subject-specific
costs in phase one dwarf those in phase two, then the optimal design will advance
all subjects to phase two with probability λ ≡ 1, and the more costly the phase-two
measurements, the more likely a sub-sampling design will be optimal. Furthermore,
the larger the PV E, the lower the selection probabilities, again due to good recovery
of information about Y from the auxiliaries.

The optimal sample size n∗ increases with the expected budget B−C0 left to run
the study after the initial cost C0 is taken into account, and increases with the PV E
(better auxiliaries frees up budget for greater sample size). Moreover, n∗ decreases
with the per-person costs C1 and C2(W ). However, its dependence on C2(W ) lessens

if E
[√

C2(W )Var (Y |W )
]
/
√
Var (E[Y |W ]) is small because in this case the auxiliaries

are good predictors, which will favor designs with lower selection probabilities.
Depending on the application, it may be more favorable to specify the inputs for

(4) or (5). For either approach pilot data on F are needed for computing n∗ in (6).

3.2. Minimizing Total Expected Cost Given Fixed Variance

For designing a study, it may be more scientifically relevant to solve the dual
problem: Given V (λ)/n fixed at a constant V , minimize the total expected cost B.
For example, suppose our goal is to give the design power 1 − γ to detect that β is
∆ or more units smaller than a fixed value β0, i.e., to reject H0 : β ≥ β0 in favor of
H1 : β < β0 when β = β0 −∆. Based on the standard asymptotic approximation, a

1-sided α/2 level test with (1− γ)% power is achieved with V =
[
∆/(z1−γ − zα/2)

]2
,

where zc is the cth percentile of the standard normal distribution.

Result 2: Fix V (λ)/n = V and require n ≥ n0 for n0 a fixed counting number.
Subject to these constraints the total expected cost B is minimized by λ∗ (W ) the
same as in (4) and (5), and

n∗ =
E [Var (Y |W ) /λ∗(W )] + Var (E [Y |W ])

V

=

√
Var(E[Y |W ])

C1

E
[√

C2(W )Var (Y |W )
]
+Var (E [Y |W ])

V
, (7)

provided that λ∗(W ) ≤ 1 for all W in the support of W and n∗ ≥ n0. Otherwise,
modified formulas described in the Supporting Materials Appendix A are used to
achieve the optimal solution.
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As for Result 1, n∗ increases with the PV E, as better auxiliaries frees up budget
for a greater sample size.

3.3. Minimizing Variance Given Fixed Expected Phase-Two Budget

Suppose phase one of the study has already been done, such that n is fixed and
the goal is to pick the λ’s that minimize V (λ) subject to a fixed phase-two expected
budget B′ = B − C0 − nC1 = nE[C2(W )λ(W )]. To do this, first the design with
λ(W ) ≡ 1 is considered, for which we check whether nE[C2(W )] ≤ B′. If so, then
λ(W ) ≡ 1 is trivially optimal (i.e., the study can afford to measure Y from all
subjects). If not, then the following Result 3 is applied.

Result 3: The minimizer of V (λ) given fixed n and fixed B′ is

λ∗ (W ) =

√√√√Var (Y |W )

C2(W )

B′

nE
[√

C2(W )Var (Y |W )
] , (8)

provided that λ∗(W ) ≤ 1 for all W in the support of W . Otherwise, a modified
formula described in the Supporting Materials Appendix A is used to achieve the
optimal solution.

3.4. Minimizing Expected Phase-Two Budget Given Fixed Variance

The dual problem of Result 3 is to minimize the phase-two expected budget B′ =
nE [C2(W )λ(W )] subject to V (λ)/n fixed at constant V . Parallel to Result 3, we
first consider λ(W ) ≡ 1, and check whether V (λ ≡ 1)/n = Var(Y )/n ≤ V ; if so, then
λ(W ) ≡ 1 is trivially optimal. If not, then Result 4 is applied.

Result 4: The minimizer of B′ given fixed V (λ)/n = V is

λ∗ (W ) =

√√√√Var (Y |W )

C2(W )

E
[√

C2(W )Var (Y |W )
]

(nV −Var (E [Y |W ]))
. (9)

provided that λ∗(W ) ≤ 1 for all W in the support of W . Otherwise, a modified
formula described in the Supporting Materials Appendix A is used to achieve the
optimal solution.

For Results 3 and 4, the larger the sample size n, the smaller the phase-two
sample is needed to achieve the same power. Results (8)–(9) are the same as results
(12.7.5) and (12.7.6) in [14], translated from the finite-population framework to the
superpopulation framework.

3.5. Efficiency Relative to the Optimal Simple Random Sampling Design

To assess the amount of potential improvement conferred by the optimal design
compared to the design that is optimal among designs restricting to simple random
sampling of subjects into phase two, we computed the relative efficiencies (REs) of
these approaches, for each of the results. For Result 1 the RE equals V (λ∗)/n∗ divided
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by V (λ̄)/n∗(λ̄), with the constant λ̄ = λi and n∗(λ̄) selected to minimize V (λ̄)/n∗(λ̄)
subject to the budget constraint; straightforward calculation yields

λ̄ =

√√√√E [Var (Y |W )]

E [C2(W )]

√
C1

Var (E [Y |W ])
(10)

and n∗(λ̄) = (B −C0)/(C1 + λ̄E [C2(W )]). For Result 2 the RE equals the variance-
constrained minimum B [computed with optimal (λ∗, n∗)] divided by the variance-
constrained minimum B for λ̄ = λi forced to be constant, with minimizer λ̄ the same
as for Result 1 and n∗(λ̄) = {Var(E [Y |W ])+E

[
Var(Y |W )/λ̄

]
}/V . For Results 3 and

4, the constraints defining the optimal simple random sampling designs are met by
λ̄ = B′/ (nE [C2(W )]) and λ̄ = E [Var (Y |W )] / {nV −Var (E [Y |W ])}, respectively.

Comparing (10) with (4) from Result 1, provides insight into the fundamental
influence of the r(W ) function for determining whether and how much efficiency can
be gained via optimal auxiliary-dependent sampling. In fact, this comparison shows
that the only way to improve efficiency over optimal simple random sampling is via
variation of r(W ) in W , and the example in Section 5 verifies greater efficiency gains
via greater variation.

In addition, for each RE calculation, given fixed values of the input parame-
ters Var(Y |W ), C2(W ), and Var(Y ), the relative efficiency of the optimal auxiliary-
dependent sampling design improves monotonically with smaller PV E. For example,
the RE for Result 3 equals

RE =
PV E ∗ Var(Y ) + n

B′

(
E[

√
C2(W )Var(Y |W )]

)2

PV E ∗ Var(Y ) + n
B′
E[Var(Y |W )]E[C2(W )]

, (11)

and by the Cauchy-Schwarz inequality RE ≤ 1 and RE gets closer to 1 with increasing
PV E. This fact implies that if a very good auxiliary is available, then it may be less
important to account for the auxiliary in the sampling design, compared to if only a
‘good’ auxiliary is available (e.g., PV E = 0.8 versus 0.5), as in the former case most
of the efficiency can be achieved in the estimation alone. This result is observed in
our simulation study in Section 6.

While everywhere else this article assumes W is measured in all subjects, it is also
of interest to compare the optimal two-phase design to a one-phase design, wherein
Y is measured in everyone and W is not measured, given that no prediction of Y is
needed. This comparison addresses the question of when is it worth the full cost of
measuring Y in everyone versus saving the cost of Y for some subjects but incurring
the cost of measuring W ? Supporting Materials Appendix B derives the condition
determining which design is more efficient, under Results 1 and 2. While there does
not appear to be a straightforward condition in general, when C2(W ) and Var(Y |W )
are constant, for both results the one-phase design is superior if and only if

√
PV E/[1 +

√
1− PV E] <

√
C1/C2.
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Therefore, the one-phase design is more efficient when the auxiliary is a weak predic-
tor, and the phase one and two costs both influence the tipping point.

3.6. Estimation and Optimization in Practice

For estimating β, it is not possible in practice to solve the efficient score function
(1), because it depends on the unknown true regression E[Y |W ]. Therefore, in prac-
tice estimation proceeds in two steps (see [24] for a helpful discussion). First, model
selection is used to identify a good-fitting regression model g(W ; γ) for E[Y |W ],
which only uses the elements of the full auxiliary vector helpful for the prediction;
thus in practice W is restricted to ‘useful auxiliaries’ through an initial dimension-
ality reduction step. This model is fit on the phase-two sample (those with R = 1).
Based on the selected model g(W ; γ) that depends on parameters γ, a predicted
value ĝi ≡ Ê[Y |Wi] = g(Wi; γ̂) is computed for each subject i = 1, · · · , n. Second,
the equation

∑n
i=1 U

g
i (β, λi) = 0 is solved for β, where

Ug
i (β, λi) =

Ri

λi
(Yi − β)− (Ri − λi)

λi
(ĝi − β) . (12)

Solutions β̂ are consistent and asymptotically normal for any choice of the λi as long
as they are bounded away from zero. Inferences for β can be based on the sandwich
variance estimator or the bootstrap.

Successful implementation of an efficient two-phase study requires joint consid-
eration of the needs of the optimization step and the estimation step. For any of
the Results 1–4, the optimization step determines λ∗(W ) (and n∗ for Results 1 and
2) by specifying all of the needed inputs, which include Var(Y |W ) and C2(W ) for
all of the results. Subject matter knowledge and pilot data are used to maximize
accuracy of the specifications. Success for this task depends crucially on the nature
and dimensionality of the L-vector of available auxiliaries W . In particular, if the L
components of W each take values on a fine grid then Var(Y |W ) is approximately an
L-variate surface, and if L is larger than 1 or 2, a very excellent pilot data-set may
be required to adequately describe it. Assuming that all W ’s are measured in both
the pilot and main studies, three implementation approaches are: (1) Base the design
on a univariate auxiliary, which is chosen among the potential auxiliary variables as
the one that yields the optimal λ∗(W ) that minimizes the estimated variance bound
(estimated based on the pilot data); (2) Base the design on a univariate auxiliary
defined as the linear combination of auxiliary variables that minimizes the estimated
variance bound based on the pilot data; and (3) Base the design on a multivariate
auxiliary, using a parametric model to estimate the input parameter Var(Y |W ) from
the pilot data.

For the analysis step, the RR estimator is used with the same W in g(W ; γ)
as was used for specifying the inputs into the optimal design formulas. Thus un-
der design approaches (1) or (2) with a univariate W , g(W ; γ) could be estimated
nonparametrically or parameterically, whereas under design approach (3), the curse
of dimensionality implies g(W ; γ) must be estimated parametrically. The survey-
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sampling literature on two-phase design and analysis has focused almost exclusively
on approach (1) with W a discrete categorical auxiliary, which is understandable
because it is in this setting where pilot data are most often available for adequate
specification of the inputs, and, moreover, in this setting E[Y |W ] is trivially modeled
correctly, which helps ensure good-performance of the RR estimator. Nevertheless,
in applications with good pilot data and/or understanding of the subject matter, ef-
ficiency may be improved by using a continuous or multivariate W . While our proofs
assume a discrete W , as noted above, by allowing for an arbitrary number of levels
of W , they may be implemented using continuous or multivariate W . Obviously, the
more data available for guiding the inputs, and for checking the assumptions under
which optimality is attained, the more likely the chosen optimal design-and-analysis
approach will perform well in practice.

For the analysis step, thus far we have considered RR’s estimator using the λi’s
chosen from the optimal design step treated as true/known constants. An alternative
approach uses estimated λi’s computed as fitted values from a maximum likelihood fit
of the logistic regression model logit(λ(W ;α)) = logit(λ∗(W )) + αTW, where λ∗(W )
is the true λ(·), and the corresponding λ∗

i ’s are entered into the model-fit as offsets.
This approach assures consistent estimation of the λi’s and can improve efficiency
compared to using the true λi’s. No efficiency is lost when true λi’s are used if
E[Y |W ] is correctly modeled. We recommend using estimated λi’s in practice, as
this approach generally provides at least as good efficiency as RR’s estimator using
true λi’s (confirmed in the simulation study in Section 6), and sometimes provides im-
proved efficiency. Whether true or estimated λ∗

i ’s are used, in practice they should be
plotted, to ensure no outliers near zero, which may lead to highly variable estimators.

3.7. Accommodating ‘Perfect’ Auxiliaries

Certain values of the auxiliaries may perfectly predict or constrain Y . If there
exists a constant y0 and a set W such that Pr(Y = y0|W ∈ W) = 1, then Var(Y |W ) =
0 for all W ∈ W such that the optimality formulas λ∗(W ) from any of the Results 1–4
do not apply. This causes no problem, however, because when W perfectly predicts
Y , there is no need to measure Y , such that λ∗(W ) is trivially equal to one. Moreover,
the estimation based on (12) is implemented with Ug

i (β, λ) set to y0 − β and λi and
Ri set to 1 for subjects with Wi ∈ W.

4. Optimal Design for the Two-Sample Problem

For the two-sample problem common in clinical trials, each parameter βl ≡ E[Yl],
(l = 1: group 1; l = 2: group 2) is estimated by RR’s estimator, and the goal is
estimation of the difference β1 − β2. Novel two-sample versions of Results 1–4 can
be developed. Now the selection probabilities, sample sizes, and all of the input
variables and parameters except B − C0 and B′ may differ for the two groups and
hence are indexed by a subscript l. Let nl0 be the fixed minimal sample size for group
l, for l = 1, 2. Let Vl(λl) be the semiparametric efficient variance bound for βl, and

set V ′
l ≡ Var (E [Yl|Wl]) and E∗

l ≡ E
[√

C2l(Wl)Var(Yl|Wl)
]
. The results involve the
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same terms as the one-sample results, and we show the extension of Result 1 to the
two-sample problem, relegating the remaining three results to Supporting Materials
Appendix A.

Result 1-two: With

λ∗
l (Wl) =

√√√√Var (Yl|Wl)

C2l(Wl)

√
C1l

Var (E [Yl|Wl])
, (13)

n∗
l =

√
V ′
l /C1l(B − C0)

E∗
1 + E∗

2 +
√
C11V

′
1 +

√
C12V

′
2

, (14)

the design specified by (λ∗
1, λ

∗
2, n

∗
1, n

∗
2) is optimal in that, among all possible designs

indexed by (λ1, λ2, n1, n2) that do not exceed the expected total cost B, it minimizes
V1(λ1)/n1 + V2(λ2)/n2, provided that λ∗

l (Wl) ≤ 1 for all Wl in the support of Wl.
Otherwise, the modified optimality formulas described in the Supporting Materials
Appendix A are needed.

Parallel to the one-sample problem, the cost-adjusted conditional variances are the
key input parameters. In addition, note that the ratio of optimal sample sizes n∗

1/n
∗
2

equals
√
V ′
1/C11/

√
V ′
2/C12, such that the phase-one cost adjusted relative variance

determines the optimal randomization allocation.

5. Case Study: Optimal Design of a Two-Phase HIV Vaccine Trial

We use HVTN 054 as pilot data for developing optimal sampling designs for the
Phase I HVTN 083 protocol. HVTN 083 randomizes study volunteers to one of five
candidate prime-boost HIV envelope protein-based vaccine regimens, with n = 30
per group. The objectives are to assess vaccine-induced T cell responses for each
regimen and to compare the responses among the pairs of regimens. Here we consider
the optimal sampling design for estimating the mean importance-weighted breadth,
E[Y ], for a single vaccine group.

In general (including for HVTN 054 and 083), HVTN vaccine trials evaluate T cell
responses using a standard test panel of 1280 15-mer HIV peptides as a globally repre-
sentative set of peptides for measuring reactive T cell epitopes. The trials measure the
number of reactive 15-mers for each trial participant and define a subject’s response
breadth (W ) as the number of reactive 15-mers. A variety of importance-weighted
breadth endpoints Y are of interest, defined as the sum of importance-weights across
a subject’s reactive 15-mers, which may be expensive to determine. In particular,
determination of the weight attached to a reactive 15-mer may require “fine epitope
mapping,” wherein many separate experiments are conducted on 9-mer peptides (and
perhaps on 8-, 10-, 11- or 12-mer peptides) within the 15-mer to determine the ac-
tual reactive T cell epitope. The high expense implies it may be cost-prohibitive
to measure Y in every subject. Fortunately, however, breadth is a highly predictive
auxiliary.
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Figure 1 shows data on W and Y from HVTN 054, where Y uses as importance-
weight for a reactive 15-mer the magnitude of the T cell response to the optimized
epitope inside the 15-mer. The breadth W is a highly predictive auxiliary variable,
with R2 = 0.79 in a simple linear regression model (Figure 1). The extreme outlier
was removed for these calculations because we do not want the chosen optimal design
to be sensitive to this unusual observation. Adding a quadratic term did not improve
the R2; therefore we use only the single auxiliary W to optimally design the HVTN
083 study.

We determined the costs C1 and C2(W ) by reviewing laboratory costs for HVTN
vaccine trials. However, because the real costs cannot be published, we multiplied
each real cost by a hidden proportionality constant. This yields C1 = $13, 500, which
includes all lab costs needed to define W for each subject. To estimate C2(W ),
we decompose the breadth auxiliary W into two pieces: W̃ = Wkn + Wun, where
Wkn (Wun) is the number of the subject’s reactive 15-mers for which the optimal
9-mer inside the 15-mer is known (unknown). If the optimal 9-mer inside a 15-mer is
known, then only the single 9-mer needs to be tested; whereas if the optimal 9-mer
is unknown, then all seven 9-mers tiling the 15-mer need to be tested. Given that
it costs approximately $1000 to measure the ELISpot response to a single 9-mer, it
follows that a linear cost function has the form C2(W ) = 1000Wkn + 7000Wun.

For the design exercise, throughout this section we index C2(W ) by a constant
q ∈ [0, 1], C2(W, q) = [1000q + 7000(1− q)]W , where q is the proportion of reactive
15-mers that have a known optimal 9-mer. While q could be viewed as a random
variable and hence is an additional auxiliary variable, for simplicity we conduct the
design exercise using only the breadth auxiliary W , by assuming that everyone has
the same fixed constant q. A range of fixed q’s is considered as a form of sensitivity
analysis to assess how the results depend on the fraction q. Result 1 requires fixing
the expected total variable cost budget B − C0 = n(C1 + E [C2(W, q)λ(W )]), which
we determine by setting n = 30, C1 = $13, 500, q = 0.5, and λ(W ) = 0.5, which
yields B − C0 = $645, 000. For Results 2 and 4, V was chosen to give 90% power
(1-sided 0.025-level test) to detect a one standard deviation (value 2.6 estimated
by median absolute deviation) lower mean value than the null hypothesized value.
To specify the key input parameter for determining the optimal λ(W ), r(W, q) =√
Var(Y |W )/C2(W, q)), we estimate Var(Y |W ) in two steps. First, we compute the

sample variances of Y for four subgroups of subjects defined by those with W = 0
and the tertiles of those with W > 0. Second, we explored various model-fits to the
four points, and found a commonly used parametric form ([14], page 449) to fit well,
Var(Y |W ) = cW ν, where c = 0.55 and ν = 1.45 gave the best maximum likelihood
fit. For the two terms in the results that require computing an expectation over the

distribution of W , E
[√

C2(W, q)Var(Y |W )
]
and Var(E[Y |W ]), we use the empirical

distribution from the pilot study HVTN 054. Specifically, E
[√

C2(W, q)Var(Y |W )
]
is

specified as the sample average of the
√
C2(Wi, q)Var(Y |Wi) values and Var(E[Y |W ])
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as the sample variance of the the fitted values Ê[Y |Wi] based on a simple linear
regression model (which fits well, Figure 1), for i = 1, · · · , n.

Figure 2 shows the optimal (λ∗(W ), n∗) values for Results 1 and 2, for 11 cost
functions C2(W, q) indexed by q = 0, 0.1, 0.2, · · · , 1.0, and for a constant cost function
C2(W, const) ≡ I(W > 0)1260, computed as C2(W, const) = E [C2(W, q = 0.5)] using
the empirical distribution of W from HVTN 054. For subjects with auxiliary W = 0,
Y is known to be 0 at no cost, such that in all cases the optimal design selects all
subjects with W = 0 (indicated by the dots in the upper-left corners). For W > 0,
r(W, q) modestly increases withW for the designs indexed by q, moreso as q increases.
The legend of Figure 2(a) shows that for Result 1 the optimal design is 4–9% more
efficient than the simple random sampling optimal design, with greater efficiency
gains achieved when r(W, q) varies more in W . The optimal design has sample size
n∗ between 24 and 33, where designs with more expensive phase two costs have
smaller sample sizes. The reverse pattern is found for Result 2 (Figure 2(b)), which
is explained by the different outcomes being minimized. In addition, compared to
Result 1, there are smaller ranges of optimal sample sizes (n∗ = 21 − 27) and of
efficiency gains compared to the simple random sampling optimal design (2–4%).

Figure 3 shows the optimal λ∗(W ) for Result 3, using three fixed phase-two bud-
gets B′ = $120, 000, $240, 000, or $600, 000. These budgets are chosen to represent
vaccines with low, moderate, and high T-cell breadth (averages of W̄ = 2, 4, and 10
reactive 15-mers), calculated as B′(W̄ ) = 30 ∗ (1000 ∗ 0.5 + 7000[1− 0.5]) W̄ ∗ λ with
λ = 0.5. The pattern of REs is similar to those for Result 1. This demonstrates the
fact that, if B′ is made large enough, the optimal design will use complete phase-two
sampling. Figure 4 shows the optimal λ∗(W ) values for Result 4. For the cost func-
tions indexed by q, the optimal λ∗(W ) is constant in q because of canceling in formula
(9). The smaller the treatment effect size the study is powered to detect, the more
subjects are sampled into phase two. The cost-constant designs have larger efficiency
gain than the cost-dependent designs (RE = 0.76 compared to RE = 0.91).

This case study illustrates that the optimal sampling design is only expected to
confer material efficiency improvements over the simple random sampling optimal de-
sign if the cost-standardized conditional variance function r(W, q) varies substantially
in W . The r(W, q) specified from HVTN 054 is moderately variable in W , yielding
between a 2–24% efficiency gain. With more justification provided next, the optimal
stratified random sampling design may be a prudent choice for HVTN 083.

6. Finite-Sample Efficiency of the Two-Phase Methods

Based on the well-characterized asymptotic properties of the RR estimator, for
large studies with large amounts of pilot data, the above results should provide reli-
able guidance on the relative performance of different estimation approaches, where
the ‘estimation approach’ refers to the combination of the sampling design (procedure
to estimate the λi) and analysis (implementation of the RR estimator). Otherwise,
simulation studies are useful for comparing finite-sample performance. We apply Re-
sult 3 to the problem of sampling design and estimation of β = E[Y ] given fixed n and
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expected phase-two expected budget B′, comparing the following three approaches:

1. Naive: Ignore auxiliaries in design and analysis

2. Analysis Only: Use auxiliaries in analysis (RR method) but not design

3. Design and Analysis: Use auxiliaries in both design and analysis, with λ∗(W )
determined by formula (8), and Var(Y |W ) estimated from pilot data by:

a. Maximum likelihood estimation in a correctly specified variance model
b. Maximum likelihood estimation in an incorrectly specified variance model
c. The sample variance for the relevant quartile of W (stratified sampling)
d. The true function (unobtainable gold standard reference)

Approach 1 is the ‘base case’ that is standard practice, which uses simple random
sampling of Y and estimates β with the sample mean Ȳ . Approach 2 uses optimal
simple random sampling of Y followed with the efficient RR estimator incorporating
W . Approach 3 uses the same RR estimator as Approach 2 but also uses an estimated
optimal sampling design following Result 3, based on three approaches to specifying
Var(Y |W ) based on a pilot data-set.

We consider a continuous univariate W , which allows investigating our conjecture
that the results hold for continuousW , and for comparison to approaches with discrete
W . The simulations address the impact of the following factors on the RE of the
estimation approaches: (i) Predictive accuracy of the auxiliary (R2 = 0.2, 0.5, or
0.8); (ii) Sample size of the pilot study (small or large, m = 50 or m = 200); (iii)
Sample size of the study (moderate or large, n = 200 or n = 1000); (iv) use of true or
estimated λi’s; and (v) Correct or incorrect specification of the conditional variance
model (3a-3d). Bias was also compared, but all estimation approaches were unbiased
(as predicted by theory) and is not reported on further. The simulations were also
performed with m = 1000; results were nearly identical to those with m = 200,
indicating that m = 200 represents a large pilot sample size scenario.

The RR estimator (described at (12)) for Approaches 2 and 3 is obtained by
specifying a linear regression model E[Y |W ] = g(W ; γ), and fitting it from study
subjects with R = 1 either by ordinary least squares (OLS) or by the robust linear
regression MM-estimator (ROB) of Yohai [25], implemented with the lmrob function
in the R package robustbase. To evaluate the effect of needing to estimate E[Y |W ]
we also implemented the unobtainable RR estimator with the true regression function
E[Y |W ]. In each case the methods were applied with ‘true’ λ(Wi)’s, specified based
on the pilot data and formula (8), and also with estimated λ(Wi)’s, calculated as
exp(logit(λi) + α̂Wi)/{1+ exp(logit(λi) + α̂Wi)}, where α̂ is the maximum likelihood
estimator in a logistic regression model, as described in Section 3.6.

Pairs of pilot and study data-sets were simulated as follows. To generate a pilot
data-set, for each of the m subjects, first W was simulated as N(3.3, 0.5). Sec-
ond Y was simulated as N(α0 + α1W,Var(Y |W )), with (α0, α1) set to (0.1,3) and
Var(Y |W ) = exp(c0 + ν0W + ν1W

2). The true parameters (c0, ν0, ν1) were set to
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achieve weak (R2 = 0.2), moderate (R2 = 0.5), or strong (R2 = 0.8) prediction of Y ,

and were set to reflect the case where r(W ) =
√
Var(Y |W )/C2(W ) is independent

of W or depends strongly on W (approximately quadratic). We use the constant
C2(W ) = 4000 such that C2(·) and r(·) do not need to be indexed by q. The re-
sulting six settings are (c0, ν0, ν1) = (2.890, 0, 0), (1.504, 0, 0), (0.118, 0, 0) for r(W )
independent of W and (-1.026,-0.2,0.3), (-2.413,-0.2,0.3), (-3.799,-0.2,0.3) for r(W )
dependent on W . To gauge the potential for efficiency gains, for each setting we
computed the asymptotic variance bound V (λ) (formula (3)) analytically using (8).
For the settings with r(W ) independent of W , the V (λ)’s are equal for Approaches
2 and 3, implying that Approach 3 should not confer improvements over Approach
2. In contrast, for the settings with r(W ) dependent on W , the ratio of variance
bounds for Approach 3a versus Approach 2 are 0.52, 0.55, 0.65 for R2 = 0.2, 0.5, 0.8;
and for Approach 3a versus 3c are 0.81, 0.83, 0.88, implying that the fully optimal
Approach 3a should confer improvements over both optimal simple random sampling
and optimal stratified sampling.

To generate a two-phase study data-set, for each of the n subjects, first W was
simulated the same as for the pilot study. Second, the λ′

is for each approach were
specified. We use C2(W ) = 4000 and B′ = n ∗ 4000 ∗ 0.10, so that on average
10% of subjects are selected for phase two. For Approaches 1 and 2 that use simple
random sampling, λi is taken to be B′/(4000n) = 0.10. For Approach 3c, the m
pilot subjects and n study subjects are divided into their respective quartiles of W .
For each quartile j = 1, 2, 3, 4, λj is determined by (8) with C2(j) = 4000, V̂ar(Y |j)
the sample variance of Y in the group of pilot subjects with W in the jth quartile

of W values of study subjects, E
[√

C2(W )Var (Y |W )
]
= 1

n

∑n
i=1

√
C2(Wi)Var(Y |Wi),

and Var (E[Y |W ]) the sample variance of the Ê[Y |Wi]’s, for i = 1, · · · , n. Then,
for Wi in quartile j of study subjects, λi is taken as λj . For Approach 3a, λi is
determined by (8), with C2(W ) = 4000, Var(Y |W ) the maximum likelihood estimate
in the correctly specified model Var(Y |W ) = exp(c0 + ν0W + ν1W

2) fit to the pilot
data with heteroscedastistic linear regression model (with the remlscore function in

the R library statmod), E
[√

C2(W )Var (Y |W )
]
= 1

n

∑n
i=1

√
C2(Wi)Var (Y |Wi), and

Var (E[Y |W ]) the sample variance of the Ê[Y |Wi]’s. For Approaches 3b and 3d, λi

is determined similarly, where for 3b Var(Y |W ) is determined by fitting the mis-
specified model Var(Y |W ) = exp(c0 + ν0W ) and for 3d the true curve Var(Y |W )
is used. Once λi was fixed, the selection indicator Ri was generated according to a
Bernoulli experiment with success probability λi, and for each subject with Ri = 1,
Yi was generated the same as for the pilot data.

Based on 10,000 generated pairs of pilot plus study data-sets, the sample variances
of the estimates β̂ were computed. The RE of two estimators is measured by the
ratio of these Monte Carlo variances. Figures 5 and 6 show results for studies with
n = 1000 and n = 200 subjects, respectively, in each case at the two levels of pilot
study sample sizes (m = 50 or m = 200), using estimated λi’s. The pilot study
size has almost no effect on the RE results for the large study (n = 1000), and a

17



minor effect for the smaller study (n = 200), with the RE differences between the
pilot scenarios having no apparent systematic pattern. For the large-sample setting
(Figure 5), the RR estimator (2, 3a-3d) is much more efficient than the complete-case
estimator (1) irrespective of the sampling design, and, when r(W ) is constant (top
panel), the efficiency is essentially unaffected by the sampling design. In addition,
when r(W ) varies with W (bottom panel), using a more efficient sampling design
(3a-3d) improves efficiency compared to optimal simple random sampling (2); using
the (unknowable) true curve r(W ) does not improve efficiency compared to using the
estimated curve (3d vs 3a); misspecifying r(W ) incurs a minor efficiency cost (3b
vs 3a); under OLS fitting the methods 3a-3d are substantially more efficient when
the true E[Y |W ] is used instead of the estimated E[Y |W ], whereas robust fitting
removes this difference; and under both OLS and ROB fitting the optimal approach
(3a) is always equally or more efficient than the quartilized stratified sampling optimal
approach (3c). In addition, the efficiency improvement of methods 3a-3d over method
2 is largest for R2 = 0.20 and smallest for R2 = 0.80; this demonstrates the concept
that if an excellent predictive auxiliary is available, then it may be less important to
use the optimal sampling design, as a large amount of efficiency is gained solely from
including the auxiliary in the analysis (as discussed in Section 3.5).

For the small-sample setting (Figure 6), we observe the same comparative per-
formance of the different methods when the true E[Y |W ] is used, but different com-
parative performance when the estimated E[Y |W ] is used. In particular, under OLS
fitting and R2 = 0.2 or 0.5, the optimal approach (3a) is much less efficient than
simple random sampling (2), and, for the weakest R2, is even less efficient than the
complete-case estimator. Moreover, under OLS fitting the optimal stratified sampling
approach (3c) is much more efficient than the optimal approach (3a). This finding is
explained by the fact that on average only 20 subjects have Y measured, making im-
precise the estimation of E[Y |W ] for some simulated data-sets, and the Monte Carlo
sample variance is sensitive to outlying simulation results. These problems are largely
repaired by robust fitting (we studied the MM-estimator of Yohai [25]), under which
the optimal approach (3a) is always more efficient than simple random sampling (2),
and is generally at least as efficient as the stratified sampling optimal approach (3c).
Furthermore, for the smaller study the need to estimate E[Y |W ] generally incurs a
larger efficiency-cost than for the larger study. We infer that for studies with a small
phase-two sample it is important to use a robust method for estimating E[Y |W ],
and the optimal stratified sampling approach may be expected to perform as well as
the fully optimal approach; achieving a material efficiency gain via the fully optimal
approach may require a relatively large study.

The simulations presented in Figures 5 and 6 were repeated using true λi’s instead
of estimated λi’s, yielding similar results (not shown), with the estimated approach
providing slightly greater efficiency gains for Approach 3a versus Approach 2.

7. Discussion

For a two-phase sampling study where the goal is to estimate a mean or mean
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difference of an expensive endpoint Y (e.g., a clinical trial), we developed optimal
approaches to auxiliary-covariate based sampling design followed by semiparametric
efficient estimation. We showed that combining optimal sampling with optimal es-
timation can improve efficiency in practice compared to the simpler approach that
uses simple random sampling and optimizes only the estimation. In particular, the
optimal combined approach offers superior performance when there are auxiliaries W
available that at least weakly predict Y , and there is adequate knowledge and pi-
lot data to characterize the cost-standardized conditional variance Var(Y |W )/C2(W )
reasonably well and to support that it varies substantially in W . We also found
that, for relatively small studies, it is important to use a robust estimator of E[Y |W ]
within the RR estimator to realize the efficiency gain. Moreover, for small studies we
found that the simplified optimal combined approach that uses stratified two-phase
sampling tends to provide at least as good as efficiency as the fully optimal approach
that specifies Var(Y |W ) more finely. In addition, while we developed the optimal
combined approach for a discrete auxiliary W with an arbitrary number of levels,
which allows the results to be used in practice with a continuous W and with multi-
ple continuous W (through contructing arbitrarily fine grids), for most applications
we expect it to provide a significant advantage only if W has a limited number of
levels or is univariate continuous, for in these case it is most feasible to accurately
estimate Var(Y |W ) with pilot data and to accurately estimate E[Y |W ] with study
data. It is rare in practice for clinical trials to use a combined optimal design and
analysis approach, and we hope this article will encourage increased consideration of
this approach.

We developed four optimality results for each of the one-sample and two-sample
problems, which will fit different contexts for two-phase clinical trials. For trials
where it is practical to design the whole trial (both phases) up front, such as when
the expensive endpoint of interest and its predictive auxiliary endpoint are well-
understood from the outset, Results 1 and 2 apply. Result 2 is ideal for study design
when feasible, as it powers the study to detect a scientifically relevant alternative
hypothesis; however it will not apply if the sponsor has a fixed budget, in which case
Result 1 is appropriate. Results 3 and 4 fit the common scenario in practice where
expensive biomarker studies are designed after the core study. By waiting until phase
one is complete before designing phase two, Results 3 and 4 can benefit from richer,
up-to-date information (for example, HIV vaccine trial designs rapidly adapt to the
latest technologies for measuring immune responses). For such settings, Result 4 is
ideal for two-phase design because it allows powering the trial for a relevant alternative
hypothesis, and Result 3 will be needed when the sponsor fixes the phase-two budget.

While we focused on two-phase studies, the RR estimation method accommodates
general Q-phase studies, where at phase one auxiliaries are measured in everyone, at
phase two additional auxiliaries are measured in a random sample, and so on for
subjects sampled through all successive phases, and the outcome Y is measured in
subjects who are sampled in phase Q. Such designs find application in T cell HIV
vaccine trials because three or four phases of laboratory testing of HIV peptide pools
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may be used to determine the primary endpoint. The optimality results for two-phase
studies extend to general Q-phase studies, but the formulas become increasingly com-
plex with increasing Q; for example Supporting Materials Appendix D provides the
lengthy formulas for Result 1 in three-phase studies. Furthermore, as Q increases
it becomes increasingly difficult to specify the growing number of input parameters
stably enough for the optimal strategy to improve efficiency compared to a simpler
strategy; thus the methods described here may have their greatest practical applica-
tion for two-phase studies.

Web-based Supporting Materials Materials

Title: Appendices Appendix A provides proofs of all of the optimality results for
discrete W , including a statement of Results 1-two, 2-two, 3-two, and 4-two, and
provides an extension of the results for continuous W . Appendix B provides the
result and proof of when a one-phase versus two-phase design is more efficient
(based on Results 1 and 2). Appendix C summarizes an approach to selecting
the phase two sample under without replacement sampling, and Appendix D
provides an optimality result for the three-phase sampling design. (pdf file)

Title: opt2phdesignanalysis R code for implementing optimal design Results 1–4
and for implementing the analysis with the RR method. (text file)
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Figure Legends

Figure 1. For the HVTN 054 HIV vaccine trial: (a) Correlation of the auxiliary
W (15-mer level breadth) with the study endpoint Y (importance-weighted breath).
Panel (b) shows a boxplot of Y within categories defined by ranges of W .

Figure 2. (a) Optimal λ∗ (W ) and n∗ under Result 1; (b) Optimal λ∗ (W ) and n∗

under Result 2. The bottom line is for the largest phase-two cost (q = 0), and as the
lines step up with increasing q the phase-two cost decreases.

Figure 3. Optimal λ∗ (W ) under Result 3 for (a) small, (b) moderate, and (c) large
expected phase-two budgets.

Figure 4. Optimal λ∗ (W ) under Result 4.

Figure 5. For studies with n = 1000 subjects, the figure shows Monte Carlo sam-
ple variances of β calculated from 10,000 generated pairs of pilot and study data-
sets for the design-analysis approaches (1) Naive, (2) Analysis Only, (3) Optimal
design and analysis: (a) Correctly Specified, (b) Incorrectly Specified, (c) Quar-
tilized Stratified, (d) Unobtainable Gold Standard. For the top panel the true

r(W ) =
√
Var(Y |W )/C2(W ) is constant and for the bottom panel it is approxi-

mately quadratic. Solid (dotted) lines indicate the RR estimator with true (esti-
mated) E[Y |W ]. OLS indicates E[Y |W ] was estimated by ordinary least squares and
ROB indicates E[Y |W ] was estimated by the robust estimator of Yohai [25]. Symbols
2, 5, and 8 indicate R2 = 0.2, 0.5, 0.8. Estimated λi’s were used.

Figure 6. For studies with n = 200 subjects, the figure shows the same information
as in Figure 5.
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