
ar
X

iv
:1

71
2.

08
82

4v
2 

 [
m

at
h.

O
A

] 
 1

9 
Ja

n 
20

18

Lp OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS

GUILLERMO CORTIÑAS AND MA. EUGENIA RODRIGUEZ

Abstract. For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an

Lp-operator algebra Op(Q) which contains the Leavitt path C-algebra LQ as a dense subal-

gebra and is universal for those Lp-representations of LQ which are spatial in the sense of

N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), Op(Rn) = O
p
n , the

Lp-Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup

generated by Q, Op(Q) = F
p

tight
(S(Q)) is the tight semigroup Lp-operator algebra intro-

duced by Gardella and Lupini. We prove that Op(Q) is simple as an Lp-operator algebra if

and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure

ρ(LQ) of the image of any nonzero spatial Lp-representation ρ : LQ → L(Lp(X)). We also

show that if LQ is purely infinite simple and p , p′, then there is no nonzero continuous

homomorphism Op(Q)→ Op′ (Q). Our results generalize some similar results obtained by

Phillips for Lp-Cuntz algebras.

1. Introduction

Let Q be a countable oriented graph, let Q0 and Q1 be the sets of vertices and edges,

and let LQ be the Leavitt path C-algebra. For 1 ≤ p < ∞ we call a representation ρ : LQ →

L(Lp(X)) spatial if X is aσ-finite measure space and ρmaps the elements of Q0⊔Q1⊔(Q1)∗

to partial isometries which are spatial in the sense of [12, Definition 6.4]. Each spatial

representation ρ induces a seminorm on LQ via ||a||ρ = ||ρ(a)||; the supremum ‖ ‖ of these

seminorms is a norm (Proposition 4.23) and we writeOp(Q) for the completion of (LQ, ‖ ‖).

For p < {1, 2}, Op(Q) agrees with the tight semigroup algebra introduced by Gardella and

Lupini in [8] (Proposition 7.12). We prove the following.

Theorem 1.1. (Simplicity theorem) Let Q be a countable graph and let 1 ≤ p < ∞, p , 2.

The following are equivalent.

i) LQ is simple.

ii) Every nonzero spatial Lp-representation of LQ is injective.

iii) Every nondegenerate contractive nonzero Lp-representation of Op(Q) is injective.

If furthermore we have either that Q0 is finite or that p > 1, then the above conditions

are also equivalent to:

iv) For every Lp-operator algebra B, every contractive, nonzero homomorphism Op(Q) →

B is injective.

Condition iv) says that Op(Q) is simple as an Lp-operator algebra. Since every Lp-

operator algebra is isometrically embedded in L(Lp(X)) for some σ-finite measure space

X, simplicity is equivalent to the condition that every contractive nonzero representation

ρ : Op(Q) → L(Lp(X)), degenerate or not, be injective. We show (using a classical result

of Andô [5] and a recent result of Gardella and Thiel [10]) that if either Q0 is finite or p > 1,
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then the restriction of ρ to LQ factors through a nondegenerate spatial representation; this

allows us to prove that iii)⇐⇒ iv).

To prove Theorem 1.1 we first show the following uniqueness theorem.

Theorem 1.2. (Uniqueness theorem) Let Q be a countable graph such that LQ is simple.

Let 1 ≤ p < ∞, X a σ-finite measure space and ρ : LQ → L(Lp(X)) a nonzero spatial

representation. Then the canonical map Op(Q)→ ρ(LQ) is an isometric isomorphism.

Specializing Theorem 1.2 to the case when Q has only one vertex recovers N.C. Phillips’

uniqueness result for Lp-analogues of Cuntz algebras [12, Theorem 8.7]. We also show

(Theorem 11.2) that if Q and Q′ are countable graphs with LQ purely infinite simple and

1 ≤ p , p′ < ∞ then it is often the case that no nonzero continuous homomorphism

Op(Q)→ Op′ (Q′) exists. For example this is the case when LQ′ is simple. In particular, we

have the following.

Theorem 1.3. Let Q be a countable graph. If LQ is purely infinite simple then there is no

nonzero continuous homomorphism Op(Q)→ Op′ (Q).

A similar result for Lp-Cuntz algebras was obtained by N.C. Phillips in [12, Theorem

9.2].

The rest of this paper is organized as follows. In Section 2 we recall some defini-

tions and basic facts on Leavitt path algebras and prove some elementary technical lem-

mas. In Section 3 we show (Lemma 3.3) that LQ is the universal algebra for tight alge-

braic representations of the inverse semigroup S(Q) generated by Q. Spatial represen-

tations of the Leavitt path algebra LQ of a countable graph Q are introduced in Section

4. We give examples of such representations and show in Proposition 4.23 that for every

countable Q and 1 ≤ p < ∞ there is an injective, nondegenerate spatial representation

LQ → L(ℓp(N)). Spatial representations of matrix algebras MnLQ for 1 ≤ n ≤ ∞ are

considered in Section 5 and it is shown that they are the same as spatial representations

of the Leavitt path algebra over the graph MnQ (Remark 5.1) and that any such repre-

sentation is equivalent to the matricial amplification Mnρ of a spatial representation ρ of

LQ (Lemma 5.4). Section 6 is concerned with a characterization of spatiality of repre-

sentations in terms of norm estimates. We prove a spatiality criterion which we shall

presently explain. The subalgebra (LQ)0,1 = span{v ∈ Q0, ee∗, e ∈ Q1} ⊂ LQ is a direct

sum of –possibly infinite dimensional– matrix algebras and is thus naturally equipped with

a canonically equipped with an Lp-operator norm. The spatiality criterion, Theorem 6.4

–which generalizes [12, Theorem 7.7]– says that if p ∈ [1,∞), p , 2, then a nondegener-

ate representation ρ : LQ → L(Lp(X)) is spatial if and only if its restriction to (LQ)0,1 is

contractive and ‖ρ(x)‖ ≤ 1 for every x ∈ Q1
∐

(Q1)∗ (cf. [12, Theorem 7.7]). Along the

way we also prove a spatiality criterion for nondegenerate Lp-representations of matricial

algebras (Proposition 6.3) which generalizes [12, Theorem 7.2]. Both spatiality criteria

fail to be true if the nondegeneracy hypothesis is dropped (see Remark 6.5). In Section 7

we define Lp-operator algebras and introduce the Lp-operator algebra Op(Q). By defini-

tion, any spatial representation of LQ → L(Lp(X)) factors uniquely through a contractive

representation Op(Q) → L(Lp(X)) (1 ≤ p < ∞). Moreover we prove, using the spatial-

ity criterion of Section 6, that for p , 2, any nondegenerate contractive representation

Op(Q)→ L(Lp(X)) induces a nondegenerate spatial representation LQ → L(Lp(X)) (The-

orem 7.8). Using a result of E. Gardella and H. Thiel from [10], we show that if moreover

p , 1, then the nondegeneracy hypothesis may be dropped (Theorem 7.9). We also show,

using the material of Section 3, that if p < {1, 2} then Op(Q) is the same as the Lp-algebra
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F
p

tight
(S(Q)) introduced by E. Gardella and M. Lupini in [8], which is universal for tight

Lp-spatial representations of S(Q). In the next section we show that adding heads and tails

to a graph Q to obtain a new graph Q′ without sources, sinks or infinite emitters results

in an isometric inclusion Op(Q) → Op(Q′) (Corollary 8.8). Section 9 is devoted to the

proof of Theorem 1.2 (Theorem 9.1). The technical result of the previous section is used

here to reduce the proof to the case of graphs without sources, sinks or infinite emmitters.

After this reduction, the strategy of proof is similar to that of [12, Theorem 8.7], although

it requires several nontrivial technical adjustments. Simplicity Theorem 1.1 is proved in

Section 10. In fact we prove in Theorem 10.1 that the simplicity of LQ is equivalent not

only to the conditions of Theorem 1.1, but also to other more restrictive conditions, e.g.

that every nondegenerate spatial nonzero representation LQ → L(ℓp(N)) be injective. The

last section of this article is Section 11, where we prove Theorem 11.2, of which Theorem

1.3 is a particular case.

Notation 1.4. In this paper N = Z≥1 and N0 = Z≥0. All algebras, vector spaces, and tensor

products are over C. All identities pertaining measure spaces are to be interpreted up to

sets of measure zero. For example we say that a family {Xn}n≥1 of measurable sets in a

measurable space X = (X,B, µ) is disjoint if Xn ∩ Xm has measure zero for all n , m, and

write
∐

n Xn for their union. In case the latter agrees with X up to measure zero, we write

X =
∐

n Xn. This reflects the fact that under the above hypothesis (X,B, µ) is equivalent

to set theoretic coproduct
∐

n Xn equipped with the σ-algebra generated by
∐

n Bn and the

measure induced by the sequence of measures {µ|Xn
}. We write L0(X) for the vector space

of classes of measurable functions X → C.

Acknowledgements. This article has evolved from the PhD thesis of the second named

author [15]. We are indebted to Chris Phillips for discussions on his paper [12]. Thanks

also to our colleague Daniel Carando for several useful discussions and references on Lp-

spaces. The first named author also wishes to thank Eusebio Gardella for an enlightening

email exchange including several useful comments on a previous version of this paper.

2. Graphs and Leavitt path algebras

An oriented graph or quiver Q = (Q0,Q1, r, s) consists of sets Q0 and Q1 of vertices

and edges, and range and source functions r, s : Q1 → Q0 . We say that Q is finite or

countable if Q0 and Q1 are both finite or countable. A vertex v ∈ Q0 is an infinite emitter

if s−1(v) is infinite, and is a sink if s−1(v) = ∅. A vertex is singular if it is either a sink

or an infinite emitter. We write sing(Q) = sink(Q) ∪ inf(Q) ⊂ Q0 for the set of singular

vertices and reg(Q) = Q0 \ sing(Q). We call Q singular if sing(Q) , ∅ and nonsingular (or

regular) otherwise. We call Q row-finite if it has no infinite emitters. A vertex v is a source

if r−1(v) = ∅; we write sour(Q) ⊂ Q0 for the set of sources.

Since all our graphs will be oriented, we shall use the term graph to mean oriented

graph.

A path α is a (finite or infinite) sequence of edges α = e1 . . . ei . . . such that r(ei) =

s(ei+1) (i ≥ 1). For such α, we write s(α) = s(e1); if α is finite of length l, we put |α| = l

and r(α) = r(el). Vertices are considered as paths of length 0. A finite path α is closed if

s(α) = r(α). A closed path α = α1 . . . αn is a cycle if in addition s(ei) , s(e j) if i , j. Let

P = P(Q) be the set of finite paths, and let Pn be the set of paths of length n. Thus,

(2.1) P =
∐

n∈N0

Pn.

We consider the following preorder in P:
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(2.2) α ≤ β ⇐⇒ ∃ γ such that r(β) = s(γ) and α = βγ.

Observe that (2.2) also makes sense when α is an infinite path.

Definition 2.3. Let Q be a graph. The Leavitt path algebra LQ is the quotient of the free

C-algebra on Q0 ∪ Q1 ∪ (Q1)∗, modulo the following relations:

• vv′ = δv,v′v ∀ v, v′ ∈ Q0,

• s(e)e = er(e) = e ∀ e ∈ Q1,

• r(e)e∗ = e∗s(e) = e∗ ∀ e ∈ Q1,

• (CK1) e∗e′ = δe,e′r(e) ∀ e, e′ ∈ Q1,

• (CK2) v =
∑

{e∈Q1:s(e)=v}

ee∗, if v ∈ reg(Q).

The Leavitt path algebra is a ∗-algebra with involution determined by v 7→ v, e 7→ e∗.

It has a Z-grading where vertices have degree zero, edges have degree 1, and |e∗| = −1 for

e ∈ Q1 ([1, Corollary 2.1.5]). We write

(2.4) (LQ)n = span{αβ∗ : |α| − |β| = n}

for the n-th homogeneous component with respect to this grading.

The elementary lemmas below shall be used later in the article.

Lemma 2.5. Let Q be a nonsingular graph and a1, . . . , am ∈ LQ. Then there exist n ∈ N,

a finite set F ⊂ P, and finitely supported functions λi : F × Pn → C, (α, β) 7→ λi
α,β

(i = 1, . . .m, α ∈ F, β ∈ Pn), such that

ai =

∑

α∈F

∑

β∈Pn

λi
α,βαβ

∗, ∀i = 1, . . . ,m.

Proof. For each i = 1, . . . ,m, we may write ai =
∑ni

j=1
λi

j
αi

j
βi

j

∗
with paths βi

j
of length

n := max
i, j
{|βi

j|}, using relation (CK2) of Definition 2.3. Put Fi := {αi
j

: j = 1, . . . , ni},

Gi := {βi
j

: j = 1, . . . , ni} and F :=

m
⋃

i=1

Fi. Rewriting the sums for each i, we have

ai =
∑

α∈F

∑

β∈Pn
λi
α,β
αβ∗ with λi

α,β
= 0 if α < Fi or β < Gi. �

Lemma 2.6. Let Q be a graph, B a C-algebra, and ρ : LQ → B a homomorphism. Let

u := {uv}v∈Q0 ⊂ B such that uv is invertible in ρ(v)Bρ(v) (v ∈ Q0). Then there is a unique

homomorphism ρu : LQ → B such that

ρu(e) = us(e)ρ(e), ρu(e∗) = ρ(e∗)u−1
s(e) and ρu(v) = ρ(v) (∀e ∈ Q1, v ∈ Q0).

Proof. One checks that the elements ρ(x), x ∈ Q0 ∪ Q1 ∪ (Q1)∗ satisfy the relations of

Definition 2.3. �

3. Leavitt path algebras and semigroups

Let Q be a graph and P = P(Q) the set of finite paths. Write

(3.1) S = S(Q) = {0} ∪ {αβ∗ : α, β ∈ P} ⊂ LQ.

S is the inverse semigroup associated with Q. The Cohn algebra of Q is the semigroup

algebra CQ = C[S] of S; its elements are the finite linear combinations of the elements of
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S with multiplication induced by that of S. Observe that LQ is the quotient of CQ modulo

the relation CK2. Consider

S ⊃ E = {0} ∪ {αα∗ : α ∈ P}

the sub-semigroup of idempotent elements. The set E is partially ordered by p ≤ q ⇐⇒

pq = p and is a semilattice for this partial order. Observe that for the order of paths defined

in (2.2), the bijectionP → E\{0}, α 7→ αα∗ is a poset isomorphism. Note also that p, q ∈ E

are incomparable if and only if pq = 0. Let p ∈ E and Z ⊂ {q ∈ E : q ≤ p}. We call Z a

cover of p if for every q ≤ p there exists z ∈ Z such that zq , 0. A representation of S in

a vector space V is a semigroup homomorphism ρ : S → (End(V), ◦), where the latter is

the set of linear endomorphisms considered as a semigroup under composition. The image

of E under a representation ρ generates a boolean algebra Bρ with operations p ∧ q = pq,

p∨q = p+q− pq. By [7, Proposition 11.8], the boolean representation ρ : E → Bρ is tight

in the sense of [7, Definition 11.6] if and only if for every p ∈ E and every finite cover Z

of p, we have

(3.2)
∨

z∈Z

ρ(z) = ρ(p).

Following [7, Definition 13.1], we call the representation ρ of S tight if its restriction to E

is tight.

Although the following lemma is well-known to experts, we have not been able to find

it explicitly stated in the literature, so we include it here with proof. The particular case of

Lemma 3.3 when Q has a single vertex is [10, Lemma 7.5]. See also [17, Corollary 5.3].

Lemma 3.3. Let ρ : S(Q) → End(V) be a representation. Then ρ is tight if and only if it

extends to an algebra homomorphism LQ → End(V).

Proof. If v ∈ reg(Q), then Z = {ee∗ : e ∈ Q1, s(e) = v} is a finite cover of v and the

supremum in (3.2) equals
∑

e∈Z ρ(ee∗). It follows that if ρ is tight then it extends to an

algebra homomorphism LQ → End(V). Assume conversely that ρ extends to LQ. We

have to prove that (3.2) holds. Since the supremum in (3.2) depends only on the maximal

elements of Z and any two of these are incomparable we may assume that no two distinct

elements of Z are comparable. Hence

∨

z∈Z

ρ(z) =
∑

z∈Z

ρ(z).

If α ∈ P and r(α) = v, then W = α∗Zα is a cover of v and
∑

z∈Z = α
∑

w∈W wα∗. Hence we

may further assume that α = v. We must then prove that the following identity holds in LQ

∑

z∈Z

z = v

for each finite cover Z of v in which no two distinct elements are comparable. We do this

by induction on n = m(Z) = max{|α| : αα∗ ∈ Z}. For n = 0 this is trivial. Assume n ≥ 1

and let A = {α ∈ Pn : αα∗ ∈ Z}. Each α ∈ A writes uniquely as α̃eα where |α̃| = n − 1 and

eα ∈ Q1. For w ∈ B := {s(eα) : α ∈ A}, put Cw = {eα : s(eα) = w}; because Z is a cover,
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Cw = s−1(w). Hence
∑

α∈A

αα∗ =
∑

β∈Ã

∑

α̃=β

αα∗

=

∑

β∈Ã

∑

s(e)=r(β)

βee∗β∗

=

∑

β∈Ã

ββ∗.

Let Z′ = (Z \ A)∪ Ã; then m(Z′) = n− 1, any two distinct elements of Z′ are incomparable,

and by the calculation above,
∑

z′∈Z′ z′ =
∑

z∈Z z. This concludes the proof. �

4. Spatial representations of LQ

Let E be a Banach space. We write L(E) for the Banach algebra of bounded linear

maps E → E. A representation of LQ on E is an algebra homomorphism ρ : LQ → L(E).

We say that ρ is nondegenerate if ρ(LQ)E ⊂ E is dense. In this paper we shall be mostly

concerned with Lp-representations, that is, with representations on Banach spaces of the

form Lp(X) (1 ≤ p < ∞) where X = (X,B, µ) is a σ-finite measure space. If A ∈ B, we

write P(A) for the set of subsets of A and consider A as a measure space with σ-algebra

BA := B ∩ P(A) and measure µ|BA
; thus

A = (A,BA, µ|BA
).

We writeN(µ) = {A ∈ B : µ(A) = 0}, Bµ = B/N(µ).

In what follows, we need to borrow several definitions from [12], pertaining to (partial)

isometries between Lp-spaces.

Let X = (X,B, µ) and (Y,C, ν) be σ-finite measure spaces. A measurable set transfor-

mation from X to Y is homomorphism of σ-algebras S : Bµ → Cν. If S is bijective, then

S ∗(µ) = µS −1 is a σ finite measure on C, absolutely continuous with respect to ν. By

[12, Proposition 5.6], there is also a map S ∗ : L0(X) → L0(Y) such that S ∗(χE) = χS (E)

(E ∈ Bµ). Let 1 ≤ p < ∞; to a bijective measurable set transformation S from X to Y and

a measurable function h : Y → C such that |h(x)| = 1 for almost every x ∈ B one associates

an isometric isomorphism u : Lp(X)→ Lp(Y) as follows:

(4.1) u(ξ)(y) = h(y)([
dS ∗(µ)

dν(y)
])1/pS ∗(ξ)(y) (ξ ∈ Lp(X)).

An isometric isomorphism u : Lp(X) → Lp(Y) is called spatial if there exist S and h such

that u is of the form (4.1). If p , 2, then every isometric isomorphism inL(Lp(X), Lp(Y)) is

spatial, by the Banach-Lamperti theorem ([12, Theorem 6.9 and Lemma 6.15]). A partial

isometry s : Lp(X) → Lp(X) is spatial if there are A, B ∈ Bµ, called respectively the

domain and the range support of s, such that for the projection πA : Lp(X) → Lp(A) and

the inclusion ιB : Lp(B)→ Lp(X) we have a factorization

(4.2) s = ιBuπA

where u : Lp(A) → Lp(B) is a spatial isometric isomorphism. If S and h are as in (4.1)

we call s the spatial partial isometry associated with the spatial system (S , A, B, h); S and

h are the spatial realization and the phase factor of the spatial system. The reverse of the

spatial partial isometry (4.2) is the spatial partial isometry t = ιAu−1πB. If p = 2, then the

reverse of a spatial partial isometry s is just its adjoint t = s∗.
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Example 4.3. Let X = (X,B, µ) be a σ-finite measure space. Let E ∈ B and let χE

be the characteristic function. Then the canonical projection πE : Lp(X) → Lp(E) ⊂

Lp(X), πE(ξ) = χEξ is a spatial partial isometry with spatial system (IdBE
, E, E, 1). Every

idempotent spatial partial isometry is of this form, by [12, Lemma 6.18].

Remark 4.4. Spatial partial isometries in general and spatial idempotents in particular have

norm 1. However the converse does not hold. For example,
(

1/2 1/2

1/2 1/2

)

∈ M2 = B(ℓp({1, 2})

is a norm one idempotent that is not spatial in our sense (which is that of [12]) for any

p ≥ 1 ([12, Example 7.3]). However it is self-adjoint and therefore 2-spatial in the sense

of [8, Definition 4.6].

A representation ρ : LQ → L(Lp(X)) is spatial if for each v ∈ Q0, ρ(v) is a spatial

idempotent and for each e ∈ Q1, ρ(e) is a spatial partial isometry with reverse ρ(e∗). If ρ is

spatial then ρ(x) is spatial for every x ∈ S(Q), whence by Lemma 3.3 a spatial representa-

tion of LQ is the same as a tight spatial representation of S(Q), that is, a tight representation

of S(Q) which takes values in the inverse semigroupS(Lp(X)) of spatial partial isometries.

Remark 4.5. As we explained above, the reverse of a spatial isometry s ∈ L2(X) is just

its adjoint. Hence any spatial representation LQ → L(L2(X)) is a ∗-representation. The

converse does not hold. For example C is the Leavitt path algebra of the graph consisting

of a single vertex and no edges, and the representation ρ : C → M2 = L(ℓ2(N)) that sends

1 to the self-adjoint idempotent of Remark 4.4 is a ∗-representation that is not spatial in

our sense.

Remark 4.6. If ρ is spatial and α, β ∈ P(Q) are paths with r(α) = r(β), then ρ(αβ∗) is

a spatial partial isometry. In particular, ρ(αα∗) is an idempotent spatial partial isometry,

and thus by Example 4.3, there is Xα ∈ B such that ρ(αα∗) is the canonical projection

πXα
: Lp(X) → Lp(Xα) ⊂ Lp(X). If S α is the measurable set transformation of ρ(α) then

Xα = S α(Xr(α)), so the spatial system of ρ(α) is of the form

(S α, Xr(α), Xα, gα)

for some gα : Xα → C such that |g(x)| = 1 for almost all x ∈ Xα. If α ≥ β, say β = αγ,

then Xβ ⊂ Xα because Xβ = S α(Xγ) ⊂ S α(Xr(α)) = Xα. On the other hand if α and β

are not comparable then Xα and Xβ are disjoint. In particular, for each v ∈ Q0 the family

{Xe : s(e) = v} ⊂ B ∩ P(Xv) is disjoint, and if v is regular its union is the whole Xv:

(4.7) Xv =

∐

e∈s−1(v)

Xe (v ∈ reg(Q)).

It follows from (4.7) that if Q is nonsingular then for each l ≥ 0 we have

(4.8) Xv =

∐

α∈vPl(Q)

Xα (Q0
= reg(Q)).

Conversely, if we are given disjoint families {Xv : v ∈ Q0} ⊂ B and {Xe : e ∈ Q1, s(e) =

v} ⊂ B ∩ P(Xv) (v ∈ Q0) satisfying (4.7) and a family {se : e ∈ Q1} of spatial partial

isometries in L(Lp(X)) with range and source projections πXe
and πXv

, then we have a

unique algebra homomorphism ρ : LQ → L(Lp(X)) mapping ρ(v) = πXv
, ρ(e) = se, and

sending e∗ to the reverse of se.
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Lemma 4.9. Let X be a σ-finite measure space. A spatial representation ρ : LQ →

L(Lp(X)) is nondegenerate if and only if

(4.10) X =
∐

v∈Q0

Xv.

Proof. Immediate from the fact that

ρ(LQ)Lp(X) =
∑

v∈Q0

ρ(v)Lp(X) =
⊕

v∈Q0

Lp(Xv).

�

It follows from (4.8) and Lemma 4.9 that if Q is nonsingular and ρ is nondegenerate,

then for each l ≥ 0 we have

(4.11) X =
∐

α∈Pl(Q)

Xα.

Lemma 4.12. Let Q be a graph, 1 ≤ p < ∞, X = (X,B, µ) a σ-finite measure space, and

ρ : LQ → L(Lp(X)) a spatial representation. Then there are X′ ∈ B and a nondegenerate

spatial representation ρ′ : LQ → L(Lp(X′)) such that ρ factors as ρ′ followed by the

inclusion L(Lp(X′)) ⊂ L(Lp(X)).

Proof. Put X′ =
∐

v∈Q0 Xv. �

Example 4.13. Let Q be a graph, and let

(4.14) X = XQ = {α : infinite path in Q} ∪ {α ∈ P : r(α) ∈ sing(Q)}.

For α ∈ P, let

X ⊃ Zα = {x ∈ X : α ≥ x} = αX.

The sets Zα are the basis of a topology which makes it a locally compact Hausdorff space;

modulo our different conventions for ranges and sources, this is the space considered in

[6, page 3]. The inverse semigroup S = S(Q) acts on X by partial homeomorphisms; an

element u = αβ∗ ∈ S acts on X with domain Zβ and range Zα via

(4.15) αβ∗(βx) = αx.

Let B the the σ-algebra of all Borel subsets of X. The semigroup S of (3.1) acts on X via

(4.15). If α, β ∈ P with r(α) = r(β), then

(4.16) S αβ∗ : B|Zβ → B|Zα , A 7→ αβ∗(A)

is a bijective homomorphism of σ-algebras. Let µ be a measure on B; µ is quasi-invariant

under αβ∗ if µ|Zβ and µ|Zα ◦ βα
∗ are equivalent measures (that is, if they are absolutely

continuous with respect to each other); µ is quasi-invariant under S it is quasi-invariant

under any element of S. One can show that X always has a σ-finite measure that is quasi-

invariant under S. For example, in case X is countable we can take µ to be the counting

measure. Assume that µ is a σ-finite measure on the Borel subsets of X, quasi-invariant

under S, and let sαβ∗ be the spatial isometry of (4.1) with spatial realization S = S αβ∗ and

constant phase factor h = 1. Then

S → L(Lp(X, µ)), αβ∗ 7→ sαβ∗

is a tight nondegenerate spatial representation of S and thus induces a nondegenerate spa-

tial representation ρµ : LQ → L(Lp(X, µ)). In general, ρµ is not injective. For example, if

Q consists of one vertex and one loop, then LQ � C[t, t−1] and ρµ is 1-dimensional.
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Construction 4.17. Let X be a countable set, and let I(X) be the inverse semigroup of all

partially defined injections

X ⊃ dom f
f
−→ X.

Let Q be a countable graph, S = S(Q) its associated inverse semigroup and S : S → I(X)

a semigroup homomorphism. For each α ∈ P = P(Q), set Xα = dom(S α). We shall

assume that S is tight, i.e. that the identities (4.7) and (4.10) are satisfied. Let G = G(S, X)

be the groupoid of germs, as defined in [7, Section 4]. The elements of G are equivalence

classes [αβ∗, x] where r(α) = r(β), x ∈ Xβ; the equivalence relation is determined by the

prescription that [αβ∗, x] = [αγγ∗β∗, x] for any γ ∈ P with s(γ) = r(α). For αβ∗ ∈ S \ {0},

put

Θα,β = {[αβ
∗, x] : x ∈ Xβ} ⊂ G.

Let A(G) ⊂ map(G,C) be the linear subspace generated by the characteristic functions

χΘα,β , (αβ∗ ∈ S \ {0}). One checks that A(G) is an algebra under the convolution product

(it is in fact the Steinberg algebra of G [16]) and that

(4.18) ψ : LQ → A(G), φ(αβ∗) = χΘα,β

is an algebra homomorphism. Let

(4.19) L : A(G)→ L(ℓp(G)), L( f )(ξ)(h) =
∑

g∈G

f (g)ξ(g−1h)

This is well-defined because the domain and range functions are injective on each Θα,β.

One checks that L is a monomorphism. Consider the composite

(4.20) ρ = Lψ : LQ → L(ℓp(G)).

Let αβ∗ ∈ S(Q) and consider the following subsets of G:

A = {[γδ∗, δx] : β ≥ γx}, B = {[αβ∗γδ∗, δx] : β ≥ γx}.

The map

A→ B,

[γδ∗, δx] 7→ [αβ∗, γx][γδ∗, δx] = [αβ∗γδ∗, δx]

is bijective and thus induces a cardinality preserving bijection S α,β : P(A) → P(B). One

checks that ρ(αβ∗) is the spatial isometry with spatial system (S α,β, A, B, 1). Hence ρ is a

spatial, nondegenerate representation.

Lemma 4.21. Assume that in Construction 4.17, one has Xv , ∅ for all v ∈ Q0. Then

(4.18) is an isomorphism and (4.20) is an injective, nondegenerate spatial representation.

Proof. PutA(G)n = span{ψ(αβ∗) : |αβ∗| = n}; we have

(4.22) A(G) =
∑

n

A(G)n.

Let c : G → Z, c([αβ∗, x]) = |αβ∗|; note that the elements of A(G)n are supported in

c−1({n}). It follows from this that the sum in (4.22) is direct. Moreover, because c is a

groupoid homomorphism, we have A(G)nA(G)m ⊂ A(G)n+m. Thus ψ is a homogeneous

homomorphism of graded algebras. But for v ∈ Q0, ψ(v) is the characteristic function of

{[v, x] : x ∈ Xv} which is nonempty by hypothesis, so ψ(v) , 0. By [1, Theorem 2.2.15]

this implies that ψ is an isomorphism. �

Proposition 4.23. Let Q be a countable graph. Then LQ has an injective, nondegenerate

spatial representation LQ → L(ℓp(N)).



10 GUILLERMO CORTIÑAS AND MA. EUGENIA RODRIGUEZ

Proof. Let X be any countably infinite set. Because X is infinite and #Q0 ≤ #X, there

exists a bijection φ : X → Q0 × X. For v ∈ Q0, set Xv = φ
−1({v} × X); observe that (4.10) is

satisfied by construction. Put Q1(v,−) = s−1({v}) ⊂ Q1 and let

Rv =

{

Q1(v,−) v ∈ reg(Q)

{v}
∐

Q1(v,−) v ∈ sing(Q).

Because #Xv = #X is infinite and #Rv ≤ #Xv, there is a bijection ζv : Xv → Rv × X.

Set Xe = ζ−1
s(e)

({e} × Xs(e)) (e ∈ Q1). By construction, (4.7) is satisfied. For e ∈ Q1, let

r−1×1 : {r(e)}×X → {e}×X be the obvious bijection. Define a semigroup homomorphism

S : S(Q)→ I(X) by setting

S v = 1Xv
, S e = ζ

−1
s(e)(r

−1 × 1)φ : Xr(e) → Xe, S e∗ = S −1
e (v ∈ Q0, e ∈ Q1).

Let G be the groupoid of germs associated to this action of S on X, and consider the

nondegenerate spatial representation ρ : LQ → L(ℓp(G)) of (4.20). Then ρ is injective by

Lemma 4.21; furthermore, #G = ℵ0 and any bijection G � N induces a spatial isometric

isomorphism ℓp(G) � ℓp(N). �

5. Matrix algebras and spatial representations

Let 1 ≤ n ≤ ∞ and let A be an algebra. Write Mn for the algebra of n × n-matrices

with finitely many nonzero entries, and MnA = Mn ⊗ A. If i, j ∈ N, we write Ei, j for

the canonical matrix unit. Let Q be a countable graph, X a σ-finite measure space, and

1 ≤ p < ∞. Call a representation ρ : Mn(LQ)→ L(Lp(X)) spatial if for every x ∈ Q0 ∪ Q1

and i, j, ρ(Ei, j ⊗ x) is a spatial partial isometry with reverse ρ(E j,i ⊗ x∗).

Remark 5.1. Let n ≤ ∞ and let MnQ be the graph obtained by adding a head

. . . // vi

ev
i // vi−1

ev
i−1 // . . .

ev
2 // v1

ev
1 // v

for each v ∈ Q0 and i < n. By [3, Propositions 9.3 and 9.8], there is a ∗-isomorphism

LMnQ

�

−→ MnLQ,(5.2)

v 7→ E1,1 ⊗ v, vi 7→ Ei+1,i+1 ⊗ v

e 7→ E1,1 ⊗ e, ev
i 7→ Ei+1,i ⊗ e

It is clear that a representation MnLQ → L(Lp(X)) is spatial in the matricial sense above if

and only if its composition with the map (5.2) is a spatial representation of LMnQ.

Example 5.3. Let σ : LQ → L(Lp(X)) be a spatial representation. Let I = {1, . . . , n} if

n is finite, and I = N if n = ∞. We have a canonical isometric isomorphism Lp(I × X) �

ℓp(I, Lp(X)). Let

σI : MnLQ → L(ℓp(I, Lp(X)))

σI(Ei, j ⊗ a)(ξ)(k) = δk,iσ(a)(ξ( j)).

Then σI is spatial. Indeed if a ∈ S(Q) and σ(a) is a spatial isometry with domain support

E and rank support F, thenσI (Ei, j⊗a) is a spatial isometry with domain support { j}×E and

range support {i} × F. We remark that for I = {1, . . . , n}, σI is the representation induced

by the amplification of σ in the sense of [8, Definition 4.10].

Lemma 5.4. Let Q be a countable graph, I a countable set, X a σ-finite measure space,

1 ≤ p < ∞, and ρ : MI LQ → L(Lp(X)) a nondegenerate spatial representation. Then

there exist a σ-finite measure space Y, a spatial representation σ : LQ → L(Lp(Y)) and
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a spatial isometric isomorphism u : ℓp(I, Lp(Y)) → Lp(X) such that ρ(a) = uσI(a)u−1

(a ∈ LQ).

Proof. Let Xi,v be the domain support of the spatial idempotent ρ(Ei,i ⊗ v) (∈ I, v ∈ Q0).

Set Xi =
∐

v∈Q0 Xi,v; we have X =
∐

i∈I Xi. Hence we have Lp-direct sum decompositions

Lp(X) =
⊕

i∈I
Lp(Xi) and Lp(Xi) =

⊕

v∈Q0 Lp(Xi,v). Choose i0 ∈ I, and let Y = Xi0 . Then

u =
⊕

i,v
ρ(Ei,i0 ⊗ v) is a spatial isometric isomorphism ℓp(I, Lp(Y)) =

⊕

i∈I
Lp(Y) →

Lp(X). Let σ : LQ → L(Lp(Y)), σ(a) = ρ(Ei0,i0 ⊗ a). One checks that u conjugates σI to ρ,

concluding the proof. �

6. A spatiality criterion

We write Mn = MnC for the matrix algebra and M∞ =
⋃

n Mn. We have a natural

identification Mn = L(ℓp({1, . . . , n}) for n < ∞ and a natural embedding M∞ → L(ℓp(N));

by pulling back the operator norm, we get a norm || ||p on Mn (1 ≤ n ≤ ∞) which makes

the latter into a normed algebra M
p
n . If I is a set and

(6.1) n = (ni)i∈I

is a family with 1 ≤ ni ≤ ∞, we write

(6.2) M
p
n =

⊕

i∈I

M
p
ni

for the algebraic direct sum equipped with the supremum norm ||(ai)|| = supi∈I ||ai||p. We

write Ei
a,b

(i ∈ I), 1 ≤ a, b ≤ ni for the canonical matrix unit.

The following proposition generalizes [12, Theorem 7.2].

Proposition 6.3. Let p ∈ [1,∞), p , 2, I a countable set, n as in (6.1), and M
p
n as in (6.2).

Let X = (X,B, µ) be a σ-finite measure space with µ , 0. The following are equivalent for

a nondegenerate representation ρ : M
p
n → L(Lp(X)).

i) ρ(Ei
a,b

) is a spatial partial isometry for all i ∈ I, 1 ≤ a, b ≤ ni.

ii) ρ is contractive.

Proof. Assume that i) holds. Then each ρ(Ei
a,a) is a spatial idempotent, whence by Ex-

ample 4.3 there is Xi
a ∈ B such that ρ(Ei

a,a) = πX i
a

is the canonical projection. For

each i ∈ I put Ni = N if ni = ∞ and Ni = {1, . . . , ni} if ni < ∞. Because ρ is

nondegenerate, we have X =
∐

i∈I

∐

a∈Ni
Xi

a. Put Xi
=

∐

a∈Ni
Xi

a. By restriction, we

obtain a nondegenerate representation ρi : Mni
→ L(Lp(Xi)) satisfying i); hence we

may assume that I = {1} has only one element. If n < ∞, nondegeneracy implies that

ρ(1) = 1, so ρ is contractive by [12, Theorem 7.2]. Assume n = ∞. Proceed as in

loc. cit., using the partial isometries ρ(E1,a) : Lp(Xa) → Lp(X1) to construct an isometry

u : Lp(X)→ ℓp(N, Lp(X1)) = ℓp(N) ⊗p Lp(X1) (the Lp-tensor product) that conjugates ρ to

the contractive representation T 7→ T ⊗ 1. It follows that ρ is contractive, concluding the

proof that i)⇒ii). Assume now that ii) holds. Then {ρ(Ei
a,a) : i ∈ I, a ∈ Ni} is a family of

orthogonal idempotents. Let Bi
a = ρ(Ei

a,a)Lp(X); then the algebraic direct sum B =
⊕

i,a
Bi

a

is dense in Lp(X). For each z ∈ S1, i ∈ I and a ∈ Ni define an operator ui,a(z) : B → B as

multiplication by z on Bi
a and the identity on every other summand. Because ρ is contrac-

tive, ui,a(z) has norm 1, so it extends to a norm 1 operator ui,a(z) ∈ L(Lp(X)). Since this

also holds for ui,a(z−1), ui,a(z) is a bijective isometry. Hence it is spatial, by the Banach-

Lamperti theorem. Now proceed as in [12, page 42] to deduce that ρ(Ei
a,a) = (1−ui,a(−1))/2

is a spatial idempotent. Hence there exists Xi
a ∈ B such that Bi

a = Lp(Xi
a) and X =

∐

Xi
a.
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Since ρ(Ei
a,b

) is an isometry Bi
b
→ Bi

a, another application of the Banach-Lamperti theorem

shows that it is spatial. �

Recall that the Leavitt path algebra is equipped with a Z-grading LQ =
⊕

n
(LQ)n where

(LQ)n is as in (2.4). Write (LQ)0,n ⊂ (LQ)0 for the subalgebra linearly spanned by the

elements of the form αβ∗ with r(α) = r(β) and |α| = |β| ≤ n. We have an increasing union

(LQ)0 =

∞
⋃

n=0

(LQ)0,n.

Each (LQ)0,n is isomorphic to a direct sum of (possibly infinite dimensional) matrix alge-

bras.

Theorem 6.4. (cf. [8, Theorem 7.7] ) Let X = (X,B, µ) be a σ-finite measure space with

µ , 0, p ∈ [1,∞), p , 2, and Q a countable graph. The following are equivalent for a

nondegenerate representation ρ : LQ → L(Lp(X)).

i) ρ is spatial.

ii) ||ρ(e)||, ||ρ(e∗)|| ≤ 1 (e ∈ Q1) and the restriction of ρ to ((LQ)0,1, || ||p) is contractive.

Proof. The implication i)⇒ ii) is clear using Proposition 6.3. Assume that ii) holds; then

ρ(e) is a bijective isometry ρ(r(e))Lp(X)→ ρ(ee∗)Lp(X) with inverse ρ(e∗). By Proposition

6.3, ρ(v) and ρ(ee∗) are spatial idempotents (v ∈ Q0), (e ∈ Q1). Hence it follows from

the Banach-Lamperti theorem [12, Theorem 6.9] and from [12, Lemma 6.15] that ρ(e) and

ρ(e∗) are spatial. This concludes the proof. �

Remark 6.5. The assumption that ρ be nondegenerate in necessary in both Proposition 6.3

and Theorem 6.4. For example the trivial graph on one vertex has Leavitt algebra C, which

equals M
p

1
for all 1 ≤ p < ∞, and the representationC→ M

p

2
that maps 1 to the idempotent

of Remark 4.4 is contractive but not spatial.

7. The Lp-operator algebra Op(Q)

Definition 7.1. Let p ∈ [1,∞). An Lp-operator algebra is a Banach algebra B together

with a norm on each MnB that makes into a Banach algebra in such a way that there exists

a nondegenerate representation ρ : B → L(Lp(X)) for some σ-finite measure space X,

such that Mnρ : MnB → MnL(Lp(X)) = L(Lp(
∐n

i=1 X)) is isometric for each 1 ≤ n < ∞.

We call B standard if X can be chosen to be a standard Borel space. A homomorphism

f : A → B between Lp-operator algebras is p-completely contractive (resp. isometric) if

Mn f is contractive (resp. isometric) for every n.

Remark 7.2. By [13, Proposition 1.25], any separable Lp-operator algebra admits an iso-

metric representation in a separable, whence standard Lp-space. Thus a separable Lp-

operator algebra is automatically standard.

Remark 7.3. If p , 1 and B has a contractive approximate unit, then the condition that

the isometric representation in Definition 7.1 be nondegenerate can be dropped, by [10,

Theorem 3.19].

A spatial p-seminorm is a seminorm h : LQ → R≥0 such that there exist a σ-finite

measure space X and spatial representation ρ : LQ → L(Lp(X)) such that h(a) = ||ρ(a)|| (a ∈

LQ). Observe that by Lemma 4.12, every spatial seminorm is induced by a nondegenerate
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spatial representation. Put

p-ssn(Q) ={h : LQ → R≥0 spatial p-seminorm},(7.4)

||a|| = sup{h(a) : h ∈ p-ssn(Q)}.(7.5)

By Proposition 4.23, || || is a norm. Write Op(Q) = LQ

|| ||
for the completion of LQ with

respect to the norm (7.5); Op(Q) is a Banach algebra, and the canonical map LQ → O
p(Q)

is injective, again by Proposition 4.23. Since Q is countable, there is a countable family

{ρn} of σ-finite nondegenerate spatial representations such that || || is the norm associated

to the Lp-direct sum

(7.6) ρ =
⊕

n

ρn : LQ → L(Lp(
∐

n

Xn))

which is a nondegenerate spatial representation. Hence Op(Q) is isometrically isomorphic

to the closure of ρ(LQ).

Proposition 7.7. Let Q be a countable graph. Then Op(Q) has a canonical structure of

Lp-operator algebra such that there is an isometric isomorphism MnO
p(Q) � Op(MnQ)

(∞ > n ≥ 1).

Proof. By Remark 5.1, the canonical map MnLQ � LMnQ → O
p(MnQ) is universal for

Lp- spatial representations. By Lemma 5.4 and the discussion above, for each n there is a

spatial representation ρn : LQ → L(Lp(Xn)) such that || ||n := ||Mnρn( )|| is the supremum of

all p-spatial norms on LMn(Q). Let X =
∐

n Xn and let ρ =
⊕

n
ρn : LQ → L(Lp(X)) be the

Lp-direct sum. Then ||Mnρ( )|| = || ||n for all n ≥ 1, and we have isometric isomorphisms

Op(MnQ) � Mnρ(Mn(LQ)) = Mn(ρ(LQ)) = Mn(ρ(LQ)) � MnO
p(Q).

�

Theorem 7.8. Let X be σ-finite measure space with nonzero measure, p ∈ [1,∞), p , 2, Q

a countable graph, ρ̂ : Op(Q) → L(Lp(X)) a nondegenerate representation and ρ : LQ →

L(Lp(X)) the restriction of ρ̂. Then the following conditions are equivalent:

i) ρ is spatial.

ii) ρ̂ is contractive.

Proof. If ρ is spatial then it induces a contractive homomorphism ρ̂′ : Op(Q)→ L(Lp(X))

which agrees with ρ on LQ; since ρ̂ does the same, we must have ρ̂ = ρ̂′. This proves that

i)⇒ii). Conversely if ii) holds, then ρ is spatial by Theorem 6.4. �

Theorem 7.9. Let X be σ-finite measure space with nonzero measure, p as in Theorem 7.8,

Q a countable graph, ρ̂ : Op(Q)→ L(Lp(X)) a representation and ρ : LQ → L(Lp(X)) the

restriction of ρ̂. Further assume either that p , 1 or that Q0 is finite. Then the following

conditions are equivalent:

i) There exist aσ-finite measure space Y, an isometry ι : Lp(Y)→ Lp(X), a norm 1 operator

π : Lp(X) → Lp(Y) such that πι = 1, and a spatial representation ρ′ : LQ → L(Lp(Y)),

such that for f : L(Lp(Y))→ L(Lp(X)), f (T ) = ιTπ, the following diagram commutes

LQ

ρ′
$$❍

❍
❍
❍
❍
❍
❍
❍
❍

ρ
// L(Lp(X))

L(Lp(Y))

f

88qqqqqqqqqq

ii) ρ̂ is contractive.
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Proof. If i) is satisfied, then ρ′ factors through a contractive representation ρ̂′ : Op(Q) →

L(Lp(Y)). Thus f ρ̂′ = ρ̂ is contractive. Assume conversely that ii) holds. Let E ⊂

L(Lp(X)) be the closure of ρ(LQ)L(Lp(X)). If Q0 is finite then Op(Q) is unital with unit

1 =
∑

v∈Q0 v which has norm 1; thus E is the image of the contractive idempotent ρ(1). For

general Q, the family {
∑

v∈F v} indexed by the finite subsets of Q0 is a contractive approxi-

mate unit of Op(Q); hence if p , 1, then again E is the image of a contractive idempotent,

by [10, Corollary 3.13]. Hence under either hypothesis, by [5, Theorem 4] there are a con-

tractive projection π′ : Lp(X)→ E and an isometric isomorphism h : E → Lp(Y) for some

standard Borel space Y. If p = 1 but Put π = hπ′, let ι be h−1 followed by the inclusion

E ⊂ Lp(X), and set ρ′(a) = hρ(a)h−1. It is clear that the diagram commutes; moreover, ρ′

is spatial by Theorem 6.4. �

Remark 7.10. Let S(Q) be the semigroup of (3.1) and let 1 < p < ∞. Let F
p

tight
(S(Q)) be

the standard Lp-operator algebra of [8, Definition 6.7]; F
p

tight
(S(Q)) is universal for tight

Lp-representations of S(Q) which are spatial in the sense of [8, Definition 4.6] and take

values in Lp-spaces of standard Borel spaces. As pointed out above, the spatiality notion of

[8] agrees with ours for p , 2. Hence by Lemma 3.3 and the universal property of Op(Q),

for p ∈ (1,∞), p , 2, we have a canonical contractive homomorphism

(7.11) Op(Q)→ F
p

tight
(S (Q)) (p ∈ (1,∞), p , 2).

Moreover, since the p-operator space structure on F
p

tight
(S (Q)) is defined in [8] so that

Mn(F
p

tight
(S (Q)) = F

p

tight
(S (MnQ)), the induced map Mn(Op(Q)) → Mn(F

p

tight
(S (Q))) is

also contractive, by Proposition 7.7. In other words (7.11) is p-completely contractive.

Proposition 7.12. The map (7.11) is a p-completely isometric isomorphism.

Proof. It suffices to show that F
p

tight
(S(Q)) is universal for all σ-finite representations. Let

X be a σ-finite measure space and let ρ : LQ → L(Lp(X)) be a spatial representation;

we have to show that ρ factors through LQ → F
p

tight
(S(Q)). An argument similar to that

of the proof of Theorem 7.9 shows that ρ factors through a nondegenerate representation

ρ′ : LQ → L(Lp(Y)) with Y standard Borel. Thus ρ factors through LQ → F
p

tight
(S(Q)), as

required. �

8. Spatial seminorms, desingularization, and source removal

Let Q be a countable, singular graph. Recall from [2, Section 5] that the desingulariza-

tion of Q is a nonsingular graph Qd obtained from Q as follows. For each sink v, add an

infinite tail

(8.1) v = v0

f1
→ v1

f2
→ v2

f3
→ · · ·

For each infinite emitter v, number the elements of s−1(v) = {e1, e2, . . . } and add a tail (8.1)

and an arrow gi : vi → r(ei) (1 ≤ i). There is a canonical ∗-monomorphism [2, Proposition

5.5]

φd : LQ → LQd ,(8.2)

φd(v) = v, φd(e) =

{

e s(e) ∈ reg(Q)

f1 · · · figi e = ei

If Q is a graph such that sour(Q) , ∅, we may embed it in the source-free graph Qr obtained

by adding an infinite head

(8.3) w = w0

f1
← w1

f2
← w2

f3
← · · ·
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at each w ∈ sour(Q). The obvious inclusion Q ⊂ Qr induces an algebra monomorphism

(8.4) φr : LQ → LQr .

Observe that for # ∈ {d, r}, composition with φ# sends spatial representations of LQ#
to

spatial representations of LQ. Hence we have an induced map

(8.5) p-ssn(Q#)→ p-ssn(Q), h 7→ h ◦ φ#.

Proposition 8.6. Let Q be a countable graph, 1 ≤ p < ∞, and # ∈ {r, d}. Then the map

(8.5) is surjective.

Proof. It suffices to show that for every nonzero spatial representation ρ : LQ → L(Lp(X))

there exist a spatial representation ρ# : LQ#
→ L(Lp(Y)) and a spatial isometry s : Lp(X)→

Lp(Y) with reverse t, with both Y and s depending on ρ and #, such that for the map

σ : L(Lp(X))→ L(Lp(Y)), σ(A) = sAt, the following diagram commutes:

(8.7) LQ

φ#

��

ρ
// L(Lp(X))

σ

��
LQ# ρ#

// L(Lp(Y))

We begin by the case # = r. If α ∈ P(Q), we write Xα for the support of the spatial

projection ρ(αα∗). Regard N as a measure space with counting measure; set Y := X ⊔
⊔

w∈sour(Q)(Xw × N). Let s and t be the inverse isometries induced by the inclusion X ⊂ Y.

The canonical identification Xw → Xw × {n} induces an isometric spatial isomorphism

τn : Lp(Xw) → Lp(Xw × {n}). Extend ρ along φr to a map ρr : LQr → L(Lp(Y)) by setting

ρr(wn) := IdLp(Xw×{n}), ρr( fn) := τnτ
−1
n−1

, ρr( f ∗n ) = τn−1τ
−1
n . One checks that ρr is well-defined

and makes (8.7) commute. Next we consider the case # = d. The measure space Y will be

a coproduct

Y = X ⊔
∐

v∈sing(Q),n≥1

Yvn
;

the isometries s, t will be those induced by the inclusion X ⊂ Y. For v ∈ sink(Q), we set

Yvn
= Xv × {n}, τn : Xv

�

−→ Xv × {n} the obvious bijection, and put ρd( fn) = τn−1τ
−1
n . If

v ∈ inf(Q) and X′v = Xv \
∐∞

i=1 Xei
, we set

Yvn
= X′v ⊔

∐

i≥n

Xei

and let ρd( fn) be induced by the inclusion Yvn
⊂ Yvn−1

and ρd(gn) by the composite of

ρ(en) : Lp(Xr(en)) → Lp(Xen
) followed by the inclusion Lp(Xen

) ⊂ Lp(Yvn
). One checks

that this prescription defines a spatial representation ρd : LQd → L(Lp(Y)) that makes (8.7)

commute. �

Corollary 8.8. The canonical homomorphisms (8.2) and (8.4) induce isometric homomor-

phisms Op(Q)→ Op(Qd) and Op(Q)→ Op(Qr).

9. A uniqueness theorem

The purpose of this section is to prove the following theorem.

Theorem 9.1. Let Q be a countable graph and 1 ≤ p < ∞. If LQ is simple, then the

set p-ssn(Q) of p-spatial seminorms on LQ has only one nonzero element. In particular,
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if ρ : LQ → L(Lp(X)) is any nonzero spatial representation and ρ(LQ) ⊂ L(Lp(X)) the

operator norm closure, then the natural map is an isometric isomorphism

Op(Q)
�

−→ ρ(LQ).

The proof of Theorem 9.1 will be given at the end of the section, after a series of

propositions, definitions, and lemmas, which adapt and extend those in [12, Section 8].

Definition 9.2. Let Q be a countable row-finite graph, p ∈ [1,∞), X = (X,B, µ) a σ-finite

measure space, and ρ : LQ → L(Lp(X)) a representation.

(1) We say that ρ is free if there is a partition X =
⊔

m∈Z Em, Em ∈ B, such that for all

m ∈ Z, e ∈ Q1, we have

(9.3) ρ(e)(Lp(Em)) ⊂ Lp(Em+1) and ρ(e∗)(Lp(Em)) ⊂ Lp(Em−1).

(2) We say that ρ is approximately free if for every N ∈ N, there are n ≥ N and a

partition X =

n−1
⊔

m=0

Em, Em ∈ B, such that for m = 0, . . . , n − 1 and all e ∈ Q1 (9.3)

holds if we set En = E0 and E−1 = En−1.

Lemma 9.4. Let p ≥ 1, X = (X,B, µ) and Y = (Y,C, ν) σ-finite measure spaces, Q a

row-finite graph, ρ : LQ → L(Lp(X)) a representation, and u ∈ L(Lp(Y)) an invertible

operator. Then, there is unique representation ρu : LQ → L(Lp(X × Y)) such that, for all

e ∈ Q1, we have ρu(e) = ρ(e) ⊗ u and ρu(e∗) = ρ(e∗) ⊗ u−1.

Moreover, ρu has the following properties:

(a) If α ∈ LQ is homogeneous of degree k with respect to the Z-grading of (2.4), then

ρu(α) = ρ(α) ⊗ uk.

(b) If u is isometric, p , 2 and ρ is spatial, then ρu is spatial.

(c) If there is a partition Y =
∐

m∈Z

Fm, Fm ∈ C, such that u(Lp(Fm)) = Lp(Fm+1) ∀m ∈

Z, then ρu is free in the sense of Definition 9.2.

Proof. The proof is analogous to that of [12, Lemma 8.2] using Lemma 2.6 instead of

[12, Lemmas 2.18, 2.19 and 2.20]. �

Proposition 9.5. Let p, X, Q, and ρ be as in Lemma 9.4. Let u ∈ L(ℓp(Z)) be the shift

operator, (u(x))(m) := x(m − 1) (x ∈ ℓp(Z)). Let ρu be as in Lemma 9.4. Then, for all

a ∈ LQ, we have ‖ρu(a)‖ ≥ ‖ρ(a)‖.

Proof. The proof is analogous to that of [12, Proposition 8.3], using Lemma 9.4 instead of

[12, Lemma 8.2]. �

Lemma 9.6. Let Q be a nonsingular countable graph such that LQ is simple. Let X =

(X,B, µ) be a σ-finite measure space. Let {Xv}v∈Q0 ⊂ B a family of sets of nonzero measure,

{Xe}e∈Q1 ⊂ B a disjoint family such that X =
∐

v∈Q0

Xv and Xv =

∐

{e:s(e)=v}

Xe (∀v ∈ Q0), and

S e : (Xr(e),B|Xr(e)
, µ|Xr(e)

)→ (Xe,B|Xe
, µ|Xe

) (e ∈ Q1)

a bijective measurable set transformation. If α = α1 · · ·αm is a path, write S α = S α1
◦ · · · ◦

S αm
. Then, for each n ≥ 0 and each v ∈ Q0 there is a set Ev ∈ B|Xv

such that µ(Ev) , 0,

and such that the family

{S α(Ev) : r(α) = v, |α| ≤ n}

is disjoint.
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Proof. We shall use the fact that, because LQ is simple, Q is cofinal, i.e. for every v ∈ Q0

and each cycle c there is a path starting at v and ending at some vertex in c (see [1, Theorem

2.9.7]). Let v ∈ Q0. If v ∈ Q0 is not in any cycle, we set Ev = Xv; observe that µ(Ev) ,

0 by hypothesis. Because v is not in any cycle, any two distinct paths ending in v are

incomparable, and so Ev satisfies the disjointness condition of the lemma. Next assume

that v belongs to a cycle. Let α := αv be a cycle based at v and let β be a closed path with

s(β) = v that agrees with α up to an exit, goes out following the exit, returns to c (which is

possible by cofinality) and follows it till it gets back to v. Consider the infinite path

γ := αβααββαααβββ . . .

It is long, but straightforward to check that

(9.7) ∄θ ∈ P(Q) such that θθ ≥ γ.

Let n ∈ N and v ∈ E0. For i ≥ 1, let γi be the i-th edge of γ. Put

B ∋ Ev := Xγ1...γ2n
.

Then µ(Ev) , 0 because µ(Xw) , 0 for all w ∈ Q0. Let η and τ be different paths such that

r(η) = r(τ) = v, of lengths k and l respectively (k ≤ l ≤ n). We have to check that S η(Ev)

and S τ(Ev) are disjoint. If k = 0 this is clear from Remark 4.6, because S τ(Ev) = Xτγ1...γ2n

and the paths τγ1 . . . γ2n and γ1 . . . γ2n are incomparable, by (9.7). So assume that 0 < k ≤ l;

if η and τ are incomparable, we are done. Otherwise, we must have η > τ; say τ = ηδ.

Hence S η(Ev)∩S τ(Ev) = S η(Ev∩S δ(Ev)) has measure zero because Ev∩S δ(Ev) does. �

Let (X,B, µ) be a σ-finite measure space and τ1, . . . , τn ∈ L(Lp(X)) spatial partial

isometries with reverses σ1, . . . , σn. Call τ1, . . . , τn orthogonal if τ jσi = σiτ j = 0 ∀i , j.

Lemma 9.8. Let X be a σ-finite measure space, p ∈ [1,∞), τ1, . . . , τn ∈ L(Lp(X)) orthog-

onal spatial partial isometries, λ ∈ Cn, and τλ =

n
∑

i=1

λiτi. Then ‖τλ‖ = ‖λ‖∞.

Proof. Straightforward. �

Proposition 9.9. Let Q be a nonsingular countable graph without sources. Let p ∈ [1,∞),

p , 2, and let X and Y be measure spaces and ρ : LQ → L(Lp(X)) and φ : LQ → L(Lp(Y))

spatial representations. Assume that LQ is simple and that ρ is approximately free. Then

‖ρ(a)‖ ≤ ‖φ(a)‖ (a ∈ LQ).

Proof. This proposition generalizes [12, Proposition 8.6]; we shall adapt the argument

therein using Lemma 9.6 instead of [12, Lemma 8.5]. Let X′ =
∐

v∈Q0 Xv; observe that the

corestriction ρ′ of ρ to L(Lp(X′)) is approximately free. Hence by Lemma 4.12 we may

assume that ρ and φ are both nondegenerate. For each α ∈ P = P(Q), let Rα and S α be

the bijective measurable set transformations Xr(α) → Xα, Yr(α) → Yα associated to ρ(α)

and φ(α), as in Remark 4.6. We have to show that if a ∈ LQ is such that ‖ρ(a)‖ = 1, then

‖φ(a)‖ ≥ 1. By Lemma 2.5, there are N0 ≥ 0, a finite set F0 ⊂ P and a finitely supported

function λ0 : F0 × PN0
→ C such that

a =
∑

α∈F0

∑

β∈PN0

λ0
α,βαβ

∗

Because sour(Q) = ∅ by hypothesis, for each v ∈ s(F0) we may choose a path τv ∈ PN0

with r(τv) = v. Put

x =
∑

v∈s(F0 )

τv, b = xa.
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Because every path in the set τF0
= {τv : v ∈ s(F0)} is of length N0, any two of them

are incomparable. Hence by Remark 4.6, the elements of ρ(τF0
) are orthogonal spatial

partial isometries. Therefore ‖ρ(x)‖ = 1, by Lemma 9.8; similarly, ‖ρ(x∗)‖ = 1. Hence

‖ρ(b)‖ = ‖ρ(a)‖ = 1 and by the same argument, ‖φ(b)‖ = ‖φ(a)‖. Therefore it suffices to

show that for every ǫ > 0,

(9.10) ‖φ(b)‖ > 1 − ǫ.

For β ∈ PN0
and α ∈ F0, let

λτs(α)α,β = λ
0
α,β.

Put F = {τs(α)α : α ∈ F0}; the map F0 → F, α 7→ τs(α)α is clearly surjective. Moreover,

because τv ∈ PN0
for all v ∈ s(F0), it is also injective. Using this in the third step, we

obtain

b =(
∑

v∈s(F0)

τv)(
∑

α∈F0

∑

β∈PN0

λ0
α,βαβ

∗)

=

∑

v∈s(F0 )

∑

α∈F0
s(α)=v

∑

β∈PN0

λτvα,βαβ
∗

=

∑

α∈F

∑

β∈PN0

λα,βαβ
∗

Let N1 = max{|α| : α ∈ F0}; then N0 ≤ |α| ≤ N0 + N1 for all α ∈ F. If N0 = N1 = 0,

then b is a linear combination of vertices, b =
∑

v λvv, whence by Lemma 9.8 we have

‖φ(b)‖ = ‖λ‖∞ = ‖ρ(b)‖ = 1.

Hence (9.10) holds in this case. So we may assume N0 + N1 > 0, and take j > (N0 +

N1)(2/ǫ)p. By our hypothesis on ρ, there are N ≥ j(N0 + N1) and a partition

(9.11) X =

N−1
∐

n=0

Dn

such that for the remainder n̄ of n modulo N, we have ρ(e)(Lp(Dn̄)) ⊂ Lp(Dn+1) and

ρ(e∗)(Lp(Dn̄)) ⊂ Lp(D
n−1). By the argument of [12, pages 54–55], upon cyclic permu-

tation of the Dn if necessary, there exists

ξ =

N−1
∑

m=0

ξm ∈

N−1
⊕

m=0

Lp(Dm) = Lp(X)

with ξm = 0 for m ≤ N0 − 1 and for m ≥ N −N1, and such that ‖ξ‖ ≤ 1 and ‖ρ(b)ξ‖ > 1− ǫ.

For each γ ∈ P, put

Dγ = Rγ(Xr(γ) ∩ D0) = D|γ| ∩ Xγ.

Because Q is nonsingular by hypothesis, and because we have assumed that ρ is nonde-

generate, for each l ≥ 0 we have a decomposition (4.11). It follows from this that

(9.12) Dm =

∐

|γ|=m

Dγ (0 ≤ m ≤ N − 1).

Let

W = P≤N−1 =

∐

0≤l≤N−1

Pl.
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It follows from (9.11) and (9.12) that

X =
∐

γ∈W

Dγ.

Hence we can write any η ∈ Lp(X) as a sum

η =
∑

γ∈W

ηγ (ηγ ∈ Lp(Dγ)).

Next, by Lemma 9.6, for each v ∈ Q0 there is a measurable set Ev ⊂ Y of nonzero measure

such that the family {S γ(Er(γ)) : γ ∈ W} is disjoint. Choose a norm-one element ζv ∈ Lp(Ev)

for each v ∈ Q0. Let

u : Lp(X)→ Lp(X × Y), uη =
∑

γ∈W

ρ(γ)ηγ ⊗ φ(γ)ζr(γ).

One checks, as in the proof of [12, Proposition 8.6], that u is an isometry. Let ψ = 1 ⊗ φ :

LQ → L(Lp(X × Y)), be as in Lemma 9.4. Observe that

(9.13) ‖ψ(b)‖ = ‖φ(b)‖.

A calculation similar to that of the proof of [12, Proposition 8.6] shows that for ξ as above,

(9.14) uρ(b)ξ = ψ(b)uξ.

It follows from (9.13) and (9.14) that (9.10) holds. This completes the proof. �

Proof of Theorem 9.1 Because LQ is simple by hypothesis, the C∗-algebra C∗(Q) is simple;

thus every nonzero ∗-representation LQ → L(L2(X)) induces the same norm. But by

Remark 4.5 every spatial representation is a ∗-representation, so the theorem is clear for

p = 2. Assume p , 2. By Proposition 8.6 and Corollary 8.8, we may assume that Q is

nonsingular and has no sources. By Lemma 9.4 and Propositions 9.5 and 9.9, every spatial

seminorm is associated to a free spatial representation. Applying Proposition 9.9 again,

we get that any two nonzero approximately free spatial representations lead to the same

seminorm. �

10. A simplicity theorem

Theorem 10.1. Let p ∈ [1,∞), p , 2. The following are equivalent for a countable graph

Q.

i) LQ is simple.

ii) Every spatial nonzero Lp-representation of LQ is injective.

ii’) Every spatial nonzero representation LQ → L(ℓp(N)) is injective.

ii”) Every nondegenerate spatial nonzero representation LQ → L(ℓp(N)) is injective.

iii) Every nondegenerate, contractive, nonzero Lp-representation of Op(Q) is injective.

iii’) Every nondegenerate, contractive, nonzero representation Op(Q)→ L(ℓp(N)) is injec-

tive.

If in addition we assume either that p , 1 or that Q0 is finite, then the above conditions

are also equivalent to the following.

iv) Every nonzero contractive homomorphism from Op(Q) to another Lp-operator algebra

is injective.

Proof. If either p , 1 or Q0 is finite, then iii) and iv) are equivalent, by Theorem 7.9. Let

2 , p ∈ [1,∞). It follows from Theorems 7.8 and 9.1 that i)⇒iii). By Lemma 4.12 and

Theorem 7.8, iii)⇒ii). Similarly, iii’)⇒ii”). It is clear that ii)⇒ii’)⇒ii”) and that iii)⇒iii’).

It remains to show that ii”)⇒i). By [1, Theorem 2.9.1], LQ is simple if and only if Q0 is
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the only nonempty hereditary and saturated subset of vertices, and every cycle in Q has an

exit. We shall show that if any of these two conditions does not hold, then ii”) does not hold

either. So suppose there is a proper hereditary and saturated subset H ⊂ Q0. Let Q/H be the

quotient graph of [1, Definition 2.4.11]. Then the natural map π : LQ → LQ/H is a nonzero

surjection with nonzero kernel the ideal I(H) generated by H. Hence if ρ is an injective

nondegenerate spatial representation LQ/H → L(ℓp(N)) (which exists by Proposition 4.23)

then ρπ is a nondegenerate nonzero spatial representation LQ → L(ℓp(N)) which is not

injective. So assume that Q0 is the only nonempty saturated and hereditary set of vertices,

or equivalently, by [1, Lemma 2.9.6], that Q is cofinal in the sense of [1, Definitions 2.9.4]

and that it has a cycle c without exits. Cofinality implies that c is the only cycle of Q

modulo cycle rotation (by [1, Lemma 2.7.1 and Theorem 2.7.3]), and that sink(Q) = ∅

(by [1, Lemma 2.9.5]). Moreover, Q cannot have any infinite emmitters. For suppose

v ∈ inf(Q); then v cannot be in any cycle, since any cycle containing v would have exits.

In particular if e ∈ Q1 and s(e) = v then r(e) , v and by [1, Lemma 2.0.7] the hereditary

and saturated closure of {r(e)} does not contain v, a contradiction. Hence Q = reg(Q), and

therefore the space X of (4.14) consists of the infinite paths of Q. If s(c) = w, then any

such path is of the form αc∞ for some finite path α ∈ P with r(α) = w. In particular X is

countable and Xw = Xcn = {c∞} for all n ≥ 1. Hence for the counting measure µ, there is a

spatial isometric isomorphism Lp(X, µ) � ℓp(N), and the nondegenerate representation ρµ
of Example 4.13 maps c − c2 to zero, so it is not injective. This concludes the proof. �

Remark 10.2. By [9], an Lp-operator algebra may admit Banach algebra quotients which

are not again Lp-operator algebras. Thus Phillips’ theorem that the Lp-Cuntz algebra O
p

d

is simple as a Banach algebra for 2 ≤ d < ∞ ([14, Theorem 5.14]) does not follow from

Theorem 10.1 above.

11. Op(Q) vs. Op′ (Q)

Let Rn be the countable graph with exactly one vertex and n loops, 1 ≤ n ≤ ∞. We

write Ln = L(Rn), O
p
n = O

p(Rn). In particular,

L∞ = C{xi, x∗i : 1 ≤ i}/〈x∗i x j − δi, j〉.

Lemma 11.1. Let Q be a countable graph and let 1 ≤ p < ∞. Assume that LQ is purely

infinite simple. Then there is a homomorphism L∞ → LQ which induces an isometry

O
p
∞ → O

p(Q).

Proof. Let α be a cycle in Q and let v = s(α). Choose a closed path β with s(β) = v so that

α and β are not comparable under the preorder of paths, as in the proof of Lemma 9.6. Then

β∗α = α∗β = 0 and, of course, α∗α = β∗β = v. Hence there is a ∗-homomorphismφ : L∞ →

LQ such that φ(xi) = β
iα. Observe that if ρ : LQ → L(Lp(X)) is any spatial representation,

then ρφ is again spatial. Hence φ induces a contractive homomorphism φ̂ : O
p
∞ → O

p(Q).

By Theorem 9.1, if ρ : LQ → L(Lp(X)) is a nonzero spatial representation, then φ̂ agrees,

up to isometric isomorphism, with the isometric inclusion ρφ(L∞) ⊂ ρ(LQ). �

Theorem 11.2. Let Q,Q′ be countable graphs and let 1 ≤ p , p′ < ∞ . Assume that LQ

is purely infinite simple. If in addition, any of the following conditions holds, then there is

no nonzero continuous homomorphism Op(Q)→ Op′ (Q′).

i) LQ′ is simple.

ii) p′ ≤ 2 and p < (p′, 2].

iii) p′ > 2 , p.
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Proof. Assume there is a nonzero continuous homomorphism f : Op(Q) → Op′ (Q′). Be-

cause the inclusion LQ ⊂ O
p(Q) is dense, f (LQ) , 0, which in view of the simplicity of

LQ implies that f is injective on LQ. Let φ : L∞ → LQ be as in Lemma 11.1. Then fφ

is injective, whence f φ̂ : O
p
∞ → O

p′ (Q′) is a nonzero continuous homomorphism. Hence

there exists X ∈ {N, [0, 1]} and a spatial representation ρ′ : LQ′ → L(Lp′ (X)) such that

ρ̂′ f φ̂ : O
p
∞ → L(Lp′ (X)) is nonzero. By [12, Lemma 9.1] this implies that Lp′ (X) con-

tains a subspace isomorphic to ℓp(N). If X = N, this cannot be, as noted in the proof of

[12, Theorem 9.2], by [11, page 54]; if X = [0, 1] and either ii) or iii) holds, this cannot

happen either, by [4, Theorem 6.4.19]. Thus parts ii) and iii) of the theorem are proved.

Part i) also follows, using Proposition 4.23 and Theorem 9.1. �
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