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L? OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS

GUILLERMO CORTINAS AND MA. EUGENIA RODRIGUEZ

AssTRACT. For each 1 < p < oo and each countable oriented graph Q we introduce an
LP-operator algebra O(Q) which contains the Leavitt path C-algebra Ly as a dense subal-
gebra and is universal for those LP-representations of Lo which are spatial in the sense of
N.C. Phillips. For R, the graph with one vertex and n loops (2 < n < c0), OP(R,) = O%, the
LP-Cuntz algebra introduced by Phillips. If p ¢ {1,2} and S(Q) is the inverse semigroup
generated by Q, OP(Q) = F tpight(S(Q)) is the tight semigroup L”-operator algebra intro-
duced by Gardella and Lupini. We prove that O”(Q) is simple as an L”-operator algebra if
and only if Ly is simple, and that in this case it is isometrically isomorphic to the closure

p(Lg) of the image of any nonzero spatial L”-representation p : Lo — L(LP(X)). We also
show that if Ly is purely infinite simple and p # p’, then there is no nonzero continuous
homomorphism O”(Q) — 01’/(Q). Our results generalize some similar results obtained by
Phillips for L”-Cuntz algebras.

1. INTRODUCTION

Let Q be a countable oriented graph, let Q° and Q' be the sets of vertices and edges,
and let Ly be the Leavitt path C-algebra. For 1 < p < co we call a representationp : Ly —
L(LP(X)) spatial if X is a o-finite measure space and p maps the elements of o'uQ'u(Yy
to partial isometries which are spatial in the sense of [12, Definition 6.4]. Each spatial
representation p induces a seminorm on Ly via ||all, = [lo(a)||; the supremum || || of these
seminorms is a norm (Proposition 4.23) and we write O”(Q) for the completion of (Lo, || ||).
For p ¢ {1,2}, OP(Q) agrees with the tight semigroup algebra introduced by Gardella and
Lupini in [8] (Proposition 7.12). We prove the following.

Theorem 1.1. (Simplicity theorem) Let Q be a countable graph and let 1 < p < oo, p # 2.
The following are equivalent.

i) Lo is simple.

ii) Every nonzero spatial LP-representation of Ly is injective.

iii) Every nondegenerate contractive nonzero LP-representation of OP(Q) is injective.

If furthermore we have either that Q° is finite or that p > 1, then the above conditions

are also equivalent to:

iv) For every LP-operator algebra B, every contractive, nonzero homomorphism O?(Q) —
B is injective.

Condition iv) says that O(Q) is simple as an L’-operator algebra. Since every L’-
operator algebra is isometrically embedded in £(L”(X)) for some o-finite measure space
X, simplicity is equivalent to the condition that every contractive nonzero representation
o 0P(Q) - L(LP(X)), degenerate or not, be injective. We show (using a classical result
of Andd [5] and a recent result of Gardella and Thiel [10]) that if either Q° is finite or p > 1,
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then the restriction of p to Ly factors through a nondegenerate spatial representation; this
allows us to prove that iii) & iv).
To prove Theorem 1.1 we first show the following uniqueness theorem.

Theorem 1.2. (Uniqueness theorem) Let Q be a countable graph such that Ly is simple.
Let1 < p < oo, X a o-finite measure space and p : Lo — L(LP(X)) a nonzero spatial
representation. Then the canonical map OP(Q) — p(Lg) is an isometric isomorphism.

Specializing Theorem 1.2 to the case when Q has only one vertex recovers N.C. Phillips’
uniqueness result for LP-analogues of Cuntz algebras [12, Theorem 8.7]. We also show
(Theorem 11.2) that if Q and Q’ are countable graphs with L, purely infinite simple and
1 < p # p’ < oo then it is often the case that no nonzero continuous homomorphism
0r(Q) — O (Q’) exists. For example this is the case when L is simple. In particular, we
have the following.

Theorem 1.3. Let Q be a countable graph. If Lo is purely infinite simple then there is no
nonzero continuous homomorphism OP(Q) — O (Q).

A similar result for L”-Cuntz algebras was obtained by N.C. Phillips in [12, Theorem
9.2].

The rest of this paper is organized as follows. In Section 2 we recall some defini-
tions and basic facts on Leavitt path algebras and prove some elementary technical lem-
mas. In Section 3 we show (Lemma 3.3) that Ly is the universal algebra for tight alge-
braic representations of the inverse semigroup S(Q) generated by Q. Spatial represen-
tations of the Leavitt path algebra Ly of a countable graph Q are introduced in Section
4. We give examples of such representations and show in Proposition 4.23 that for every
countable Q and 1 < p < oo there is an injective, nondegenerate spatial representation
Lo — L(¢P(N)). Spatial representations of matrix algebras M,Ly for 1 < n < oo are
considered in Section 5 and it is shown that they are the same as spatial representations
of the Leavitt path algebra over the graph M,,Q (Remark 5.1) and that any such repre-
sentation is equivalent to the matricial amplification M,p of a spatial representation p of
Lo (Lemma 5.4). Section 6 is concerned with a characterization of spatiality of repre-
sentations in terms of norm estimates. We prove a spatiality criterion which we shall
presently explain. The subalgebra (Lg)o,; = span{v € Q°,ee*,e € Q'} C Ly is a direct
sum of —possibly infinite dimensional— matrix algebras and is thus naturally equipped with
a canonically equipped with an LP-operator norm. The spatiality criterion, Theorem 6.4
—which generalizes [12, Theorem 7.7]- says that if p € [1, o), p # 2, then a nondegener-
ate representation p : Lo — L(LP(X)) is spatial if and only if its restriction to (Lg)o,; is
contractive and [|jo(x)|| < 1 for every x € Q' [[(Q@")* (cf. [12, Theorem 7.7]). Along the
way we also prove a spatiality criterion for nondegenerate L”-representations of matricial
algebras (Proposition 6.3) which generalizes [12, Theorem 7.2]. Both spatiality criteria
fail to be true if the nondegeneracy hypothesis is dropped (see Remark 6.5). In Section 7
we define LP-operator algebras and introduce the L”-operator algebra O”(Q). By defini-
tion, any spatial representation of Ly — L(L”(X)) factors uniquely through a contractive
representation O”(Q) — L(LP(X)) (1 < p < c0). Moreover we prove, using the spatial-
ity criterion of Section 6, that for p # 2, any nondegenerate contractive representation
OP(Q) — L(LP(X)) induces a nondegenerate spatial representation Ly — L(L”(X)) (The-
orem 7.8). Using a result of E. Gardella and H. Thiel from [10], we show that if moreover
p # 1, then the nondegeneracy hypothesis may be dropped (Theorem 7.9). We also show,
using the material of Section 3, that if p ¢ {1, 2} then OP(Q) is the same as the L’-algebra
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F ggm(S(Q)) introduced by E. Gardella and M. Lupini in [8], which is universal for tight
L?-spatial representations of S(Q). In the next section we show that adding heads and tails
to a graph Q to obtain a new graph Q' without sources, sinks or infinite emitters results
in an isometric inclusion OP(Q) — OP(Q’) (Corollary 8.8). Section 9 is devoted to the
proof of Theorem 1.2 (Theorem 9.1). The technical result of the previous section is used
here to reduce the proof to the case of graphs without sources, sinks or infinite emmitters.
After this reduction, the strategy of proof is similar to that of [12, Theorem 8.7], although
it requires several nontrivial technical adjustments. Simplicity Theorem 1.1 is proved in
Section 10. In fact we prove in Theorem 10.1 that the simplicity of Ly is equivalent not
only to the conditions of Theorem 1.1, but also to other more restrictive conditions, e.g.
that every nondegenerate spatial nonzero representation Ly — L(¢7(N)) be injective. The
last section of this article is Section 11, where we prove Theorem 11.2, of which Theorem
1.3 is a particular case.

Notation 1.4. In this paper N = Z>| and Ny = Z5(. All algebras, vector spaces, and tensor
products are over C. All identities pertaining measure spaces are to be interpreted up to
sets of measure zero. For example we say that a family {X,},>; of measurable sets in a
measurable space X = (X, B, w) is disjoint if X,, N X,,, has measure zero for all n # m, and
write [ [, X,, for their union. In case the latter agrees with X up to measure zero, we write
X = 11, X,. This reflects the fact that under the above hypothesis (X, B, ) is equivalent
to set theoretic coproduct [ [, X,, equipped with the o-algebra generated by [ [,, 8, and the
measure induced by the sequence of measures {yx,}. We write L°(X) for the vector space
of classes of measurable functions X — C.

Acknowledgements. This article has evolved from the PhD thesis of the second named
author [15]. We are indebted to Chris Phillips for discussions on his paper [12]. Thanks
also to our colleague Daniel Carando for several useful discussions and references on L”-
spaces. The first named author also wishes to thank Eusebio Gardella for an enlightening
email exchange including several useful comments on a previous version of this paper.

2. GRAPHS AND LEAVITT PATH ALGEBRAS

An oriented graph or quiver Q = (Q°, Q',r, s) consists of sets Q° and Q' of vertices
and edges, and range and source functions r,s : Q' — Q" . We say that Q is finite or
countable if Q° and Q' are both finite or countable. A vertex v € QU is an infinite emitter
if s71(v) is infinite, and is a sink if s7'(v) = 0. A vertex is singular if it is either a sink
or an infinite emitter. We write sing(Q) = sink(Q) U inf(Q) c Q° for the set of singular
vertices and reg(Q) = Q" \ sing(Q). We call Q singular if sing(Q) # 0 and nonsingular (or
regular) otherwise. We call Q row-finite if it has no infinite emitters. A vertex v is a source
if " 1(v) = 0; we write sour(Q) c QU for the set of sources.

Since all our graphs will be oriented, we shall use the term graph to mean oriented
graph.

A path « is a (finite or infinite) sequence of edges @ = e;...e;... such that r(e;) =
s(ei+1) (i > 1). For such a, we write s(a@) = s(e;); if a is finite of length I, we put |o| = [
and r(a) = r(e;). Vertices are considered as paths of length 0. A finite path « is closed if
s(a) = r(a). A closed path @ = a; ..., is a cycle if in addition s(e;) # s(e;) if i # j. Let
P = P(Q) be the set of finite paths, and let P, be the set of paths of length n. Thus,

2.1) P = ]_[ P,.

neNy

We consider the following preorder in $:
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2.2) a < & 3y suchthat r(B) = s(y) and @ = By.

Observe that (2.2) also makes sense when « is an infinite path.

Definition 2.3. Let Q be a graph. The Leavitt path algebra Ly is the quotient of the free
C-algebra on Q° U Q' U (Q")*, modulo the following relations:

w =0,y vV e o°,

s(e)e =er(e) =eVec Q!

r(e)e* = e*s(e) = e Vee Q!

(CK1) e*e’ =6, 01(e) Ve, e’ € Q'

e (CK2)v= Z ee”, if v € reg(Q).

{e€Q!:5(e)=v}
The Leavitt path algebra is a #-algebra with involution determined by v — v, e - e*.
It has a Z-grading where vertices have degree zero, edges have degree 1, and |¢*| = —1 for
e € Q' ([1, Corollary 2.1.5]). We write
2.4 (Lg)n = span{e” : o] - |B] = n}

for the n-th homogeneous component with respect to this grading.
The elementary lemmas below shall be used later in the article.

Lemma 2.5. Let Q be a nonsingular graph and ay, . .., a, € Lg. Then there exist n € N,
a finite set F C P, and finitely supported functions A' : F x P, — C, (a,) = /lfm,
(i=1,...m a€F, eP,) suchthat

a= Y Agap, Vi=1,....m.

a€F BeP,
Proof. For each i = 1,...,m, we may write a; = ¥/’ A;a;ﬂ;* with paths ﬁi. of length
n = max{|ﬂ;|}, using relation (CK2) of Definition 2.3. Put F; := {a; cj=1,...,n,
i.j

G; = {,Bj. cj=1,...,n}and F := UF,-. Rewriting the sums for each i, we have
i=1
4i = YocF 2pep, ﬂﬁlﬁaﬂ* with /l;ﬁ =0ifa¢ FiorB¢G.. m]

Lemma 2.6. Let Q be a graph, B a C-algebra, and p : Lo — B a homomorphism. Let
u = {uyhego C B such that u, is invertible in p(v)Bp(v) (v € 0%. Then there is a unique
homomorphism p, : Lo — B such that

pule) = ugop(e), pule”) = ple g, and p,(v) = p(v) (Yee Q', ve Q).

Proof. One checks that the elements p(x), x € 0°u Q' U (OYH* satisfy the relations of
Definition 2.3. O
3. LEAVITT PATH ALGEBRAS AND SEMIGROUPS
Let Q be a graph and = P(Q) the set of finite paths. Write
3.1 S=80Q) ={0}u{af" : a,B e P} C Ly.

S is the inverse semigroup associated with Q. The Cohn algebra of Q is the semigroup
algebra Cy = C[S] of S; its elements are the finite linear combinations of the elements of
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S with multiplication induced by that of S. Observe that L is the quotient of Cyp modulo
the relation CK2. Consider

So>&E={0}U{aa” : a € P}

the sub-semigroup of idempotent elements. The set & is partially ordered by p < g
pg = p and is a semilattice for this partial order. Observe that for the order of paths defined
in (2.2), the bijection ¥ — &\ {0}, @ — aa” is a poset isomorphism. Note also that p,g € &
are incomparable if and only if pg = 0. Letpe EandZ Cc {ge E: g < p}). WecallZa
cover of p if for every g < p there exists z € Z such that zg # 0. A representation of S in
a vector space V is a semigroup homomorphism p : S — (End(V), o), where the latter is
the set of linear endomorphisms considered as a semigroup under composition. The image
of & under a representation p generates a boolean algebra B, with operations p A g = pq,
pVq=p+q-pq. By [7, Proposition 11.8], the boolean representation p : & — B, is tight
in the sense of [7, Definition 11.6] if and only if for every p € & and every finite cover Z
of p, we have

(3.2) \/ o2 = p(p).

zeZ

Following [7, Definition 13.1], we call the representation p of S tight if its restriction to &
is tight.

Although the following lemma is well-known to experts, we have not been able to find
it explicitly stated in the literature, so we include it here with proof. The particular case of
Lemma 3.3 when Q has a single vertex is [10, Lemma 7.5]. See also [17, Corollary 5.3].

Lemma 3.3. Let p : S(Q) — End(V) be a representation. Then p is tight if and only if it
extends to an algebra homomorphism Ly — End(V).

Proof. If v € reg(Q), then Z = {ee* : e € Q',s(e) = v} is a finite cover of v and the
supremum in (3.2) equals Y,z p(ee*). It follows that if p is tight then it extends to an
algebra homomorphism Ly — End(V). Assume conversely that p extends to Ly. We
have to prove that (3.2) holds. Since the supremum in (3.2) depends only on the maximal
elements of Z and any two of these are incomparable we may assume that no two distinct
elements of Z are comparable. Hence

\/ 0@ =) 0@,

€Z €Z

If« € Pand r(a) = v, then W = @*Za isa cover of v and .., = @ },,cw wa". Hence we
may further assume that @ = v. We must then prove that the following identity holds in L

Yo

€Z

for each finite cover Z of v in which no two distinct elements are comparable. We do this
by induction on n = m(Z) = max{|e| : aa* € Z}. For n = 0 this is trivial. Assume n > 1
andlet A = {a € P, : aa” € Z}. Each @ € A writes uniquely as @e, where |@| = n — 1 and
ey € Ql. Forw € B :={s(ey) : @ € A}, put C,, = {e, : s(e,) = w}; because Z is a cover,
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C, = s '(w). Hence

S a0 =3 Yo

acA BeA a=p

=D, D, Beck

BeA se)=r(B)

:Zﬁﬁ.

BeA

LetZ' = (Z\A)UA; then m(Z’) = n— 1, any two distinct elements of Z’ are incomparable,
and by the calculation above, }} ., 2 = .7 z. This concludes the proof. O

4. SPATIAL REPRESENTATIONS OF L

Let E be a Banach space. We write £(E) for the Banach algebra of bounded linear
maps £ — E. A representation of Ly on E is an algebra homomorphism p : Ly — L(E).
We say that p is nondegenerate if p(Lo)E C E is dense. In this paper we shall be mostly
concerned with LP-representations, that is, with representations on Banach spaces of the
form LP(X) (1 < p < o) where X = (X, B, u) is a o-finite measure space. If A € B, we
write P(A) for the set of subsets of A and consider A as a measure space with o-algebra
B4 = BN P(A) and measure yg, ; thus

A=(A,Ba,13,).

We write N(u) = {A € B : u(A) =0}, B, = B/N ().

In what follows, we need to borrow several definitions from [12], pertaining to (partial)
isometries between L”-spaces.

Let X = (X, B, ) and (Y, C, v) be o-finite measure spaces. A measurable set transfor-
mation from X to Y is homomorphism of o-algebras S : B, — C,. If § is bijective, then
S.(u) = uS~!is a o finite measure on C, absolutely continuous with respect to v. By
[12, Proposition 5.6], there is also a map S.. : L°(X) — L°(Y) such that S.(yz) = xs@)
(E € 8,). Let 1 < p < oo; to a bijective measurable set transformation S from X to ¥ and
a measurable function /2 : ¥ — C such that |a(x)| = 1 for almost every x € B one associates
an isometric isomorphism u : L” (X) — LP(Y) as follows:

S
dv(y)

An isometric isomorphism u : LP(X) — LP(Y) is called spatial if there exist S and & such
that u is of the form (4.1). If p # 2, then every isometric isomorphism in L(L?(X), L7 (Y)) is
spatial, by the Banach-Lamperti theorem ([12, Theorem 6.9 and Lemma 6.15]). A partial
isometry s : LP(X) — LP(X) is spatial if there are A, B € B, called respectively the
domain and the range support of s, such that for the projection w4 : L7(X) — LP(A) and
the inclusion ¢t : LP(B) — L?(X) we have a factorization

4.1 ué)(y) = h(y)([ DPS.(O0) (& € LP(X)).

“4.2) S = LU

where u : LP(A) — LP(B) is a spatial isometric isomorphism. If S and /4 are as in (4.1)
we call s the spatial partial isometry associated with the spatial system (S, A, B, h); S and
h are the spatial realization and the phase factor of the spatial system. The reverse of the
spatial partial isometry (4.2) is the spatial partial isometry ¢t = tyu~'7p. If p = 2, then the
reverse of a spatial partial isometry s is just its adjoint # = s*.
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Example 4.3. Let X = (X, 8, u) be a o-finite measure space. Let £ € B and let yg
be the characteristic function. Then the canonical projection g : LP’(X) — LP(E) C
LP(X), mp(€) = xe€ is a spatial partial isometry with spatial system (I/dg,, E, E, 1). Every
idempotent spatial partial isometry is of this form, by [12, Lemma 6.18].

Remark 4.4. Spatial partial isometries in general and spatial idempotents in particular have
norm 1. However the converse does not hold. For example,

(1/2 1/2

1/2 1/2) € M> = B, 2)

is a norm one idempotent that is not spatial in our sense (which is that of [12]) for any
p > 1 ([12, Example 7.3]). However it is self-adjoint and therefore 2-spatial in the sense
of [8, Definition 4.6].

A representation p : Lo — L(LP(X)) is spatial if for each v € 0°, p(v) is a spatial
idempotent and for each e € Q', p(e) is a spatial partial isometry with reverse p(e*). If p is
spatial then p(x) is spatial for every x € S(Q), whence by Lemma 3.3 a spatial representa-
tion of Ly is the same as a tight spatial representation of S(Q), that s, a tight representation
of S(Q) which takes values in the inverse semigroup S(L” (X)) of spatial partial isometries.

Remark 4.5. As we explained above, the reverse of a spatial isometry s € L*(X) is just
its adjoint. Hence any spatial representation Lo — L(L*(X)) is a #-representation. The
converse does not hold. For example C is the Leavitt path algebra of the graph consisting
of a single vertex and no edges, and the representation p : C — M, = L(¢*>(N)) that sends
1 to the self-adjoint idempotent of Remark 4.4 is a *-representation that is not spatial in
our sense.

Remark 4.6. If p is spatial and a, € P(Q) are paths with r(a) = r(B), then p(e5*) is
a spatial partial isometry. In particular, p(aa®) is an idempotent spatial partial isometry,
and thus by Example 4.3, there is X, € B such that p(aa”) is the canonical projection
nx, : LP(X) = LP(X,) C LP(X). If S, is the measurable set transformation of p(@) then
Xo = S o(Xa)), so the spatial system of p(«) is of the form

(Sa/, Xr(a/), Xa, ga/)

for some g, : X, — C such that |g(x)| = 1 for almost all x € X,. If @ > B, say 8 = «ay,
then Xz C X, because Xg = S,(X,) C So(Xi0)) = Xo. On the other hand if & and
are not comparable then X,, and Xz are disjoint. In particular, for each v € Q° the family
{X, : s(e) = v} € BN P(X,) is disjoint, and if v is regular its union is the whole X,:

@.7) X, =[] X ereg).

ees 1 (v)

It follows from (4.7) that if Q is nonsingular then for each / > 0 we have

(4.8) = || X« (@ =reg(0).

aevPi(Q)

Conversely, if we are given disjoint families {X, : v € Q°} ¢ Band {X, : e € Q', s(e) =
v} € BN P(X,) (v € Q) satisfying (4.7) and a family {s, : e € Q'} of spatial partial
isometries in L(L”(X)) with range and source projections my, and nx,, then we have a
unique algebra homomorphism p : Lo — L(LP(X)) mapping p(v) = nx,, p(e) = s., and
sending e¢* to the reverse of s,.
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Lemma 4.9. Let X be a o-finite measure space. A spatial representation p : Lo —
L(LP(X)) is nondegenerate if and only if

(4.10) X = ]_[ X,.
veQO
Proof. Immediate from the fact that
pLoL'(X)= ) pWLPX) = (D L7 (X,).
veQ® veQ®

O

It follows from (4.8) and Lemma 4.9 that if Q is nonsingular and p is nondegenerate,
then for each [ > 0 we have

(4.11) X= U Xo-

aeP(Q)

Lemma 4.12. Let Q be a graph, 1 < p < o0, X = (X, B, u) a o-finite measure space, and
p: Lo = L(LP(X)) a spatial representation. Then there are X' € 8B and a nondegenerate
spatial representation p’ : Ly — L(LP(X")) such that p factors as p’ followed by the
inclusion L(LP(X")) € L(LP(X)).

Proof. Put X’ = [[,ep0 X,. O
Example 4.13. Let Q be a graph, and let

(4.14) X = Xy = {a : infinite path in Q} U {@ € P : r(a) € sing(Q)}.

For a € P, let

XoZ,={xeX:a=>x}=aX

The sets Z, are the basis of a topology which makes it a locally compact Hausdorff space;
modulo our different conventions for ranges and sources, this is the space considered in
[6, page 3]. The inverse semigroup S = S(Q) acts on X by partial homeomorphisms; an
element u = ¢f* € S acts on X with domain Zg and range Z, via

(4.15) af* (Bx) = ax.

Let B the the o-algebra of all Borel subsets of X. The semigroup S of (3.1) acts on X via
(4.15). If @, B € P with r(a) = r(B), then

(416) SQIB* . BIZI; - B\Zn’ A Q',B*(A)

is a bijective homomorphism of o-algebras. Let u be a measure on B; u is quasi-invariant
under o if w7, and pyz, o Ba” are equivalent measures (that is, if they are absolutely
continuous with respect to each other); i is quasi-invariant under § it is quasi-invariant
under any element of S. One can show that X always has a o-finite measure that is quasi-
invariant under S. For example, in case X is countable we can take u to be the counting
measure. Assume that u is a o-finite measure on the Borel subsets of X, quasi-invariant
under S, and let s, be the spatial isometry of (4.1) with spatial realization S = S ,5- and
constant phase factor 2 = 1. Then

S LLP(X, ), af’ > sop

is a tight nondegenerate spatial representation of S and thus induces a nondegenerate spa-
tial representation p,, : Lo — L(LP(X,p)). In general, p, is not injective. For example, if
Q consists of one vertex and one loop, then Ly = C[t,7"'] and Py 18 1-dimensional.
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Construction 4.17. Let X be a countable set, and let 7 (X) be the inverse semigroup of all
partially defined injections

X 5 dom f -5 X.

Let Q be a countable graph, S = S(Q) its associated inverse semigroup and § : S — 7(X)
a semigroup homomorphism. For each @ € P = P(Q), set X, = dom(S,). We shall
assume that S is tight, i.e. that the identities (4.7) and (4.10) are satisfied. Let G = G(S, X)
be the groupoid of germs, as defined in [7, Section 4]. The elements of G are equivalence
classes [aB", x] where r(a) = r(B), x € Xp; the equivalence relation is determined by the
prescription that [@*, x] = [ayy*S*, x] for any y € P with s(y) = r(a). For of* € S\ {0},
put
Oup ={laf " x] 1 xeXp} CG.

Let A(G) c map(G, C) be the linear subspace generated by the characteristic functions
X0, (@B € S\ {0}). One checks that A(G) is an algebra under the convolution product
(it is in fact the Steinberg algebra of G [16]) and that

(4.18) ¥:Llo > AG), ¢aB) = xo,,

is an algebra homomorphism. Let

(4.19) L:AG) — LIL(G), LH)E(h) = Zf (&™)
g€G

This is well-defined because the domain and range functions are injective on each Oy g.
One checks that L is a monomorphism. Consider the composite

(4.20) p=Ly: Lo — LUL(G)).
Let @B € S(Q) and consider the following subsets of G-
A = {[ys",6x] : B = yx}, B = {[aB*ys",6x] : B > yx).
The map
A — B,
[yo", 0x] = [ef", yx][yd", 6x] = [ef"yd", 6x]

is bijective and thus induces a cardinality preserving bijection S,z : P(A) — P(B). One
checks that p(a”) is the spatial isometry with spatial system (S 4, A, B, 1). Hence p is a
spatial, nondegenerate representation.

Lemma 4.21. Assume that in Construction 4.17, one has X, # 0 for all v € Q°. Then
(4.18) is an isomorphism and (4.20) is an injective, nondegenerate spatial representation.

Proof. Put A(G), = span{y(af*) : [ef*| = n}; we have
(4.22) AG) = ) AG

Letc : G — Z, c([af*,x]) = |aB*|; note that the elements of A(G), are supported in
¢ '({n}). Tt follows from this that the sum in (4.22) is direct. Moreover, because ¢ is a
groupoid homomorphism, we have A(G),A(G)m C A(G)n+m. Thus ¥ is a homogeneous
homomorphism of graded algebras. But for v € Q°, y(v) is the characteristic function of
{[v, x] : x € X,} which is nonempty by hypothesis, so ¥(v) # 0. By [1, Theorem 2.2.15]
this implies that ¢ is an isomorphism. O

Proposition 4.23. Let Q be a countable graph. Then Ly has an injective, nondegenerate
spatial representation Lo — L(€P(N)).
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Proof. Let X be any countably infinite set. Because X is infinite and #Q° < #X, there
exists a bijection ¢ : X — 0°x X. Forv e Q° set X, = ¢~ '({v} x X); observe that (4.10) is
satisfied by construction. Put Q' (v, —) = s7!({v}) ¢ Q' and let

o - { 0'(n-)  vereg(Q)
PTAMIHQ (v, o) v e sing(Q).
Because #X, = #X is infinite and #R, < #X,, there is a bijection ¢, : X, — R, X X.
Set X, = 5;(};)({6} X Xye)) (e € Q). By construction, (4.7) is satisfied. For e € Q!, let
r'x 1 : {r(e)} x X — {e} x X be the obvious bijection. Define a semigroup homomorphism
S : 8(Q) — I(X) by setting

Sy=1lx. Se=400 ' xD: Xy > Xe, Se =8, (e’ ec0h.

Let G be the groupoid of germs associated to this action of S on X, and consider the
nondegenerate spatial representation p : Ly — L({7(G)) of (4.20). Then p is injective by
Lemma 4.21; furthermore, #G = 8y and any bijection G = N induces a spatial isometric
isomorphism {#(G) = {P(N). m|

5. MATRIX ALGEBRAS AND SPATIAL REPRESENTATIONS

Let 1 < n < oo and let A be an algebra. Write M, for the algebra of n X n-matrices
with finitely many nonzero entries, and M,A = M, ® A. If i, j € N, we write E; ; for
the canonical matrix unit. Let Q be a countable graph, X a o-finite measure space, and
1 < p < co. Call arepresentation p : M, (Lg) — L(LP(X)) spatial if for every x € Q° U Q!
and i, j, p(E; ; ® x) is a spatial partial isometry with reverse p(E;; ® x™).

Remark 5.1. Letn < oo and let M,,Q be the graph obtained by adding a head

.
€ €

Vi Vi-1 e Vi 1%

for each v € Q" and i < n. By [3, Propositions 9.3 and 9.8], there is a *-isomorphism

(5.2) Lu,o — MLy,
v E1®v, Vit Eiyi®v
e E1®e, e m—Ey,;®e
It is clear that a representation M,Ly — L(LP(X)) is spatial in the matricial sense above if

and only if its composition with the map (5.2) is a spatial representation of Ly, o.

Example 5.3. Let o : Lp — L(LP(X)) be a spatial representation. Let [ = {1,...,n} if
n is finite, and / = N if n = co. We have a canonical isometric isomorphism L7(] X X) =
€P(I, LP(X)). Let
o MyLg — L(IP(I, L7(X)))
o(Eij ® a)(&)(k) = 6k io(a)(E())).
Then o7 is spatial. Indeed if a € S(Q) and o(a) is a spatial isometry with domain support
E and rank support I/, then o;(E; j®a) is a spatial isometry with domain support {j} X £ and

range support {i} X F. We remark that for I = {1,...,n}, oy is the representation induced
by the amplification of o in the sense of [8, Definition 4.10].

Lemma 5.4. Let Q be a countable graph, I a countable set, X a o-finite measure space,
1 <p<oo,andp: MLy — L(LP(X)) a nondegenerate spatial representation. Then
there exist a o-finite measure space Y, a spatial representation o : Lo — L(LP(Y)) and
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a spatial isometric isomorphism u : (I, LP(Y)) — LP(X) such that p(a) = uo(a)u™'
(a € LQ)

Proof. Let X;, be the domain support of the spatial idempotent p(E;; ® v) (€ I,v € Q).
Set X; = HVEQO Xiv; we have X = [],; X;. Hence we have LP-direct sum decompositions
Lr(X) = @, LP(X;) and LP(X;) = @vegﬂ LP(X;,). Choose ip € I, and let Y = X;,. Then
u = EBI.!V p(Eij, ® v) is a spatial isometric isomorphism £7(1, LP(Y)) = D, L(Y) —
LP(X). Leto : Lo — L(LP(Y)), o(a) = p(Ej, i, ® a). One checks that u conjugates o to p,
concluding the proof. O

6. A SPATIALITY CRITERION

We write M, = M,C for the matrix algebra and M., = |J, M,. We have a natural
identification M,, = L({P({1,...,n}) for n < co and a natural embedding M., — L({7(N));
by pulling back the operator norm, we get a norm || ||, on M, (1 < n < co) which makes
the latter into a normed algebra M?%. If I is a set and

(6.1) n= (i
is a family with 1 < n; < oo, we write
(6.2) My =P,

iel
for the algebraic direct sum equipped with the supremum norm ||(a;)|| = sup; llaill,. We
write E;b (iel), 1< a,b < n;for the canonical matrix unit.
The following proposition generalizes [12, Theorem 7.2].

Proposition 6.3. Let p € [1,0), p # 2, I a countable set, n as in (6.1), and M~ as in (6.2).
Let X = (X, B, i) be a o-finite measure space with i # 0. The following are equivalent for
a nondegenerate representation p : Mﬂp — L(LP(X)).

i) p(Efl’h) is a spatial partial isometry foralli e I,1 < a,b < n;.

ii) p is contractive.

Proof. Assume that i) holds. Then each p(EfM) is a spatial idempotent, whence by Ex-
ample 4.3 there is X/, € B such that p(E,,) = Ty 1s the canonical projection. For
eachi e Iput N; = Nifn; = coand N; = {l,...,m} if n; < oco. Because p is
nondegenerate, we have X = [[;c; [luen, Xi- Put X' = [luen, Xi. By restriction, we
obtain a nondegenerate representation p' : M, — L(LP(X')) satisfying i); hence we
may assume that / = {1} has only one element. If n < oo, nondegeneracy implies that
p(l) = 1, so p is contractive by [12, Theorem 7.2]. Assume n = oo. Proceed as in
loc. cit., using the partial isometries p(E;,) : LP(X,) — LP(X;) to construct an isometry
u: LP(X) — P(N, LP(X1)) = tP(N) ®, LP (X)) (the LP-tensor product) that conjugates p to
the contractive representation 7 — T ® 1. It follows that p is contractive, concluding the
proof that i)=1ii). Assume now that ii) holds. Then {p(E;’a) 1i€l,a e Nj}is afamily of
orthogonal idempotents. Let B}, = p(E}, ,)L”(X); then the algebraic direct sum B = (P, , B,
is dense in L”(X). Foreach z € S', i € I and a € N; define an operator uj4(z) : B— Bas
multiplication by z on B! and the identity on every other summand. Because p is contrac-
tive, u;,(z) has norm 1, so it extends to a norm 1 operator u;,(z) € L(LP(X)). Since this
also holds for u;4(z7"), u;4(z) is a bijective isometry. Hence it is spatial, by the Banach-
Lamperti theorem. Now proceed as in [12, page 42] to deduce that p(E ﬁw) = (1-u;u(-1))/2
is a spatial idempotent. Hence there exists X’ € B such that B, = L/(X\) and X = [ X_..
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Since p(E;’ ,) 18 an isometry B;; — B!, another application of the Banach-Lamperti theorem
shows that it is spatial. O

Recall that the Leavitt path algebra is equipped with a Z-grading Ly = @n(LQ)n where
(Lo)n is as in (2.4). Write (Lg)o,, C (Lg)o for the subalgebra linearly spanned by the
elements of the form " with r(a) = r(B) and |a| = |8| < n. We have an increasing union

00

(Lo = _J(Lo)on

n=0

Each (L), is isomorphic to a direct sum of (possibly infinite dimensional) matrix alge-
bras.

Theorem 6.4. (cf. [8, Theorem 7.7] ) Let X = (X, B, i) be a o-finite measure space with
u#0, pell,o), p+2 and Q a countable graph. The following are equivalent for a
nondegenerate representation p : Lo — L(LP(X)).

i) p is spatial.

i) llo(@)ll, llo(e)l < 1 (e € Q') and the restriction of p to ((Lg)o.15 1l 1lp) is contractive.

Proof. The implication i)= ii) is clear using Proposition 6.3. Assume that ii) holds; then
p(e) is a bijective isometry p(r(e))LP(X) — p(ee*)LP(X) with inverse p(e*). By Proposition
6.3, p(v) and p(ee*) are spatial idempotents (v € 0%, (e € OY). Hence it follows from
the Banach-Lamperti theorem [12, Theorem 6.9] and from [12, Lemma 6.15] that p(e) and
p(e”) are spatial. This concludes the proof. O

Remark 6.5. The assumption that p be nondegenerate in necessary in both Proposition 6.3
and Theorem 6.4. For example the trivial graph on one vertex has Leavitt algebra C, which
equals M forall I < p < co, and the representation C — M} that maps 1 to the idempotent
of Remark 4.4 is contractive but not spatial.

7. THE LP-0PERATOR ALGEBRA OF(Q)

Definition 7.1. Let p € [1,0). An LP-operator algebra is a Banach algebra B together
with a norm on each M, B that makes into a Banach algebra in such a way that there exists
a nondegenerate representation p : B — L(L?(X)) for some o-finite measure space X,
such that M,,p : M,,B — M, L(L"(X)) = LILP(]]}_, X)) is isometric for each 1 < n < co.
We call B standard if X can be chosen to be a standard Borel space. A homomorphism
f : A — B between LP-operator algebras is p-completely contractive (resp. isometric) if
M, f is contractive (resp. isometric) for every n.

Remark 7.2. By [13, Proposition 1.25], any separable L”-operator algebra admits an iso-
metric representation in a separable, whence standard L”-space. Thus a separable L7-
operator algebra is automatically standard.

Remark 7.3. If p # 1 and B has a contractive approximate unit, then the condition that
the isometric representation in Definition 7.1 be nondegenerate can be dropped, by [10,
Theorem 3.19].

A spatial p-seminorm is a seminorm & : Ly — Ryo such that there exist a o-finite
measure space X and spatial representationp : Lo — L(L?(X)) such that h(a) = [|p(a)|| (a €
Lg). Observe that by Lemma 4.12, every spatial seminorm is induced by a nondegenerate
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spatial representation. Put
(7.4) p-ssn(Q) ={h : Ly — Ry spatial p-seminormj},

(1.5) llall = supth(a) : h € p-ssn(Q)}.

By Proposition 4.23, || || is a norm. Write O7(Q) = Lo for the completion of Ly with

respect to the norm (7.5); O(Q) is a Banach algebra, and the canonical map Ly — O”(Q)
is injective, again by Proposition 4.23. Since Q is countable, there is a countable family
{on} of o-finite nondegenerate spatial representations such that || || is the norm associated
to the LP-direct sum

(7.6) p=pn: Lo — Lar [ X

which is a nondegenerate spatial representation. Hence O”(Q) is isometrically isomorphic
to the closure of p(Lyp).

Proposition 7.7. Let Q be a countable graph. Then OP(Q) has a canonical structure of
LP-operator algebra such that there is an isometric isomorphism M,0OF(Q) = O(M,Q)
(co>n>1).

Proof. By Remark 5.1, the canonical map M,Ly = Ly, — O(M,Q) is universal for
LP- spatial representations. By Lemma 5.4 and the discussion above, for each n there is a
spatial representation p,, : Ly — L(L”(X,)) such that || ||, := |[M,0,( )|l is the supremum of
all p-spatial norms on Ly, o). Let X =[], X,, and let p = @n Pn i Lo — L(LP(X)) be the
LP-direct sum. Then ||M,o( )|| = | ||, for all n > 1, and we have isometric isomorphisms

0" (M, Q) = Mup(M,(Lo)) = My(p(Lo)) = My(p(Lo)) = M,O°(Q).

O

Theorem 7.8. Let X be o-finite measure space with nonzero measure, p € [1,00), p #2, Q
a countable graph, p : OP(Q) — L(LP(X)) a nondegenerate representation and p : Ly —
L(LP (X)) the restriction of p. Then the following conditions are equivalent:

i) p is spatial.

ii) pis contractive.

Proof. If p is spatial then it induces a contractive homomorphism p’ : OP(Q) — L(LP(X))
which agrees with p on Ly; since p does the same, we must have p = p’. This proves that
i)=ii). Conversely if ii) holds, then p is spatial by Theorem 6.4. O

Theorem 7.9. Let X be o-finite measure space with nonzero measure, p as in Theorem 7.8,
Q a countable graph, p : OP(Q) — L(LP(X)) a representation and p : Ly — L(L" (X)) the
restriction of p. Further assume either that p # 1 or that Q° is finite. Then the following
conditions are equivalent:

i) There exist a o-finite measure space Y, an isometry ¢ : LP(Y) — LP(X), a norm 1 operator
o LP(X) — LP(Y) such that m. = 1, and a spatial representation p’ : Lo — L(LP(Y)),
such that for f : L(LP(Y)) = L(LP (X)), f(T) = (Tn, the following diagram commutes

Lo - L(LP(X))

LLP(Y))

ii) p is contractive.
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Proof. If i) is satisfied, then p’ factors through a contractive representation o’ : OP(Q) —
L(LP(Y)). Thus fﬁ’ = p is contractive. Assume conversely that ii) holds. Let E C
L(LP(X)) be the closure of p(Lg)L(LP(X)). If 0 is finite then O”(Q) is unital with unit
1 = 3 ep0 v which has norm 1; thus E is the image of the contractive idempotent p(1). For
general Q, the family {3, v} indexed by the finite subsets of Q° is a contractive approxi-
mate unit of O”(Q); hence if p # 1, then again E is the image of a contractive idempotent,
by [10, Corollary 3.13]. Hence under either hypothesis, by [5, Theorem 4] there are a con-
tractive projection 7’ : L”(X) — E and an isometric isomorphism & : E — LP(Y) for some
standard Borel space Y. If p = 1 but Put 7 = hn’, let ¢ be h~! followed by the inclusion
E c LP(X), and set p’(a) = hp(a)h~'. It is clear that the diagram commutes; moreover, o’

is spatial by Theorem 6.4. O
Remark 7.10. Let S(Q) be the semigroup of (3.1) and let 1 < p < co. Let F fi’ghl(S(Q)) be
the standard L”-operator algebra of [8, Definition 6.7]; F fi'gh[(S(Q)) is universal for tight

LP-representations of S(Q) which are spatial in the sense of [8, Definition 4.6] and take
values in LP-spaces of standard Borel spaces. As pointed out above, the spatiality notion of
[8] agrees with ours for p # 2. Hence by Lemma 3.3 and the universal property of O”(Q),
for p € (1, 00), p # 2, we have a canonical contractive homomorphism

(7.11) 0"(Q) = Fi (S(Q)  (pe(l ), p#2).
Moreover, since the p-operator space structure on F I’i’ghl(S (Q)) is defined in [8] so that
My (F (S(Q)) = Fiy, (S (M,Q)), the induced map M,(O7(Q)) — M,(Fi,(S(Q))) is

also contractive, by Proposition 7.7. In other words (7.11) is p-completely contractive.
Proposition 7.12. The map (7.11) is a p-completely isometric isomorphism.

Proof. Tt suffices to show that F gght(S(Q)) is universal for all o-finite representations. Let
X be a o-finite measure space and let p : Lo — L(L”(X)) be a spatial representation;
we have to show that p factors through Ly — F ggm(S(Q)). An argument similar to that
of the proof of Theorem 7.9 shows that p factors through a nondegenerate representation
p’ Lo — L(LP(Y)) with Y standard Borel. Thus p factors through Ly — F ggm(S(Q)), as
required. O

8. SpaTIAL SEMINORMS, DESINGULARIZATION, AND SOURCE REMOVAL

Let Q be a countable, singular graph. Recall from [2, Section 5] that the desingulariza-
tion of Q is a nonsingular graph Q, obtained from Q as follows. For each sink v, add an
infinite tail
8.1) P QL
For each infinite emitter v, number the elements of s~ (v) = {e}, e, ...} and add a tail (8.1)
and an arrow g; : v; — r(e;) (1 <i). There is a canonical s-monomorphism [2, Proposition
5.5]

(82) ¢b N LQ — LQn’

e s(e) € reg(Q)
fi-figi e=e;
If Qis a graph such that sour(Q) # 0, we may embed it in the source-free graph Q, obtained
by adding an infinite head

(V) = v, d(e) = {

/i / f
(8.3) wewo L L, &
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at each w € sour(Q). The obvious inclusion Q C Q, induces an algebra monomorphism
(8.4) ¢ : Lo — Lo,

Observe that for # € {d, 1}, composition with ¢4 sends spatial representations of Ly, to
spatial representations of Ly. Hence we have an induced map

(8.5) p-ssn(Qy) — p-ssn(Q),  h = ho .

Proposition 8.6. Let Q be a countable graph, 1 < p < oo, and # € {v,d}. Then the map
(8.5) is surjective.

Proof. It suffices to show that for every nonzero spatial representation p : Ly — L(L”(X))
there exist a spatial representation pg : Lo, — L(LP(Y)) and a spatial isometry s : L”(X) —
LP(Y) with reverse ¢, with both Y and s depending on p and #, such that for the map
o L(LP(X)) —» L(LP(Y)), 0(A) = sAt, the following diagram commutes:

(8.7) Lo —5 £ (x))

@l l

Lo, —= L(LP(Y))

#

We begin by the case # = 1. If @ € P(Q), we write X, for the support of the spatial
projection p(aa™). Regard N as a measure space with counting measure; set ¥ := X U
[wesour(o)(Xw X N). Let s and ¢ be the inverse isometries induced by the inclusion X C Y.
The canonical identification X,, — X,, X {n} induces an isometric spatial isomorphism
T, LP(X,,) = LP(X,, X {n}). Extend p along ¢, to a map p, : Ly, — L(L’(Y)) by setting
pWn) := Idppx,xinp» P () =TT, pe(f) = Tao1 T, One checks that p, is well-defined
and makes (8.7) commute. Next we consider the case # = d. The measure space Y will be

a coproduct
v=xu || w;
vesing(Q),n>1
the isometries s, ¢ will be those induced by the inclusion X c Y. For v € sink(Q), we set
Y, =X, x{n}, t, : X, — X, X {n} the obvious bijection, and put p,(f,) = T,HT;I. If
veinf(Q) and X; = X, \ [, X,, we set
v, =x;ul [x,
i>n

and let py(f,) be induced by the inclusion ¥, C Y,  and py(g,) by the composite of
plen) + LP(Xye,)) — LP(X,,) followed by the inclusion L7(X,,) C LP(Y,,). One checks
that this prescription defines a spatial representation p; : Lo, — L(L”(Y)) that makes (8.7)
commute. O

Corollary 8.8. The canonical homomorphisms (8.2) and (8.4) induce isometric homomor-
phisms OP(Q) — O7(Qy) and O (Q) — O (Qy).
9. A UNIQUENESS THEOREM
The purpose of this section is to prove the following theorem.

Theorem 9.1. Let Q be a countable graph and 1 < p < oo. If Ly is simple, then the
set p-ssn(Q) of p-spatial seminorms on Ly has only one nonzero element. In particular,
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ifp: Lo — L(LP(X)) is any nonzero spatial representation and p(Lgp) C L(LP (X)) the
operator norm closure, then the natural map is an isometric isomorphism

0”(Q) = p(Ly).

The proof of Theorem 9.1 will be given at the end of the section, after a series of
propositions, definitions, and lemmas, which adapt and extend those in [12, Section 8].

Definition 9.2. Let Q be a countable row-finite graph, p € [1, ), X = (X, B, u) a o-finite
measure space, and p : Lo — L(LP(X)) a representation.
(1) We say that p is free if there is a partition X = | |,,ez Em, Em € B, such that for all
meZ ee Q' we have

9.3) p(e) (L (Ep)) C LY (Epyr) and p(e)(LP(Ey)) € LP(Ep-1).
(2) We say that p is appr0x1mate1y free if for every N € N, there are n > N and a

partition X = |_|Em E, € B, suchthatform=0,...,n—1andall e € Q" (9.3)

holds if we set E =Eyand E_| = E,_.

Lemma 94. Let p > 1, X = (X,B,u) and Y = (Y,C,v) o-finite measure spaces, Q a
row-finite graph, p : Ly — L(LP(X)) a representation, and u € L(LP(Y)) an invertible
operator. Then, there is unique representation p* : Ly — L(LP(X X Y)) such that, for all
e € Q' we have p'(e) = p(e) ® u and p"(e*) = p(e*) @ u~"
Moreover, p* has the following properties:
(a) If @ € Ly is homogeneous of degree k with respect to the Z-grading of (2.4), then
p(@) = p(a) @ ut.
(b) If u is isometric, p # 2 and p is spatial, then p" is spatial.
(c) If there is a partition Y = UFm, F,, € C, such that u(L(F,,)) = LP(F,41) Ym €

mez

Z, then p" is free in the sense of Definition 9.2.

Proof. The proof is analogous to that of [12, Lemma 8.2] using Lemma 2.6 instead of
[12, Lemmas 2.18, 2.19 and 2.20]. m|

Proposition 9.5. Let p, X, O, and p be as in Lemma 9.4. Let u € L({P(Z)) be the shift
operator, (u(x))(m) := x(m — 1) (x € {P(Z)). Let p" be as in Lemma 9.4. Then, for all
a e Lo, we have [|p"(@)l > lp(a)l.

Proof. The proof is analogous to that of [12, Proposition 8.3], using Lemma 9.4 instead of
[12, Lemma 8.2]. m|

Lemma 9.6. Let Q be a nonsingular countable graph such that Ly is simple. Let X =

(X, B, u) be a o-finite measure space. Let {X,},cp0 C B a family of sets of nonzero measure,

{Xelecor C B a disjoint family such that X = ]_[XV and X, = U X, (Vve QO), and
veQ? {e:s(e)=v}

t Kooy, By oty ) > Xew Bl opyy,)  (e€ QY

r(e) r(e)
a bijective measurable set transformation. If @ = @) - - - @y, is a path, write Sy = S 4, ©
Sa,- Then, for eachn > 0 and each v € Q° there is a set E, € Byx, such that u(E,) # 0,
and such that the family

{Sa(Ey) : r(@) =v,lal <nj

is disjoint.
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Proof. We shall use the fact that, because Ly is simple, Q is cofinal, i.e. for every v € Q°
and each cycle c there is a path starting at v and ending at some vertex in ¢ (see [1, Theorem
2.9.7]). Letv € Q°. If v € Q° is not in any cycle, we set E, = X,; observe that u(E,) #
0 by hypothesis. Because v is not in any cycle, any two distinct paths ending in v are
incomparable, and so E, satisfies the disjointness condition of the lemma. Next assume
that v belongs to a cycle. Let @ := a, be a cycle based at v and let 8 be a closed path with
s(B8) = v that agrees with @ up to an exit, goes out following the exit, returns to ¢ (which is
possible by cofinality) and follows it till it gets back to v. Consider the infinite path

v = afaafPacafps. . .
It is long, but straightforward to check that
9.7 716 € P(Q) such that 66 > .
Letn € Nandv € E°. Fori > 1, let v, be the i-th edge of y. Put
B3E, =X, 4,

Then u(E,) # 0 because u(X,,) # 0 for all w € Q°. Let 17 and 7 be different paths such that
r(n) = r(r) = v, of lengths k and [ respectively (k < [ < n). We have to check that S ,(E,)
and S -(E,) are disjoint. If k = O this is clear from Remark 4.6, because S (E,) = X¢y,..,,
and the paths 7y ...y, and y; .. .7y, are incomparable, by (9.7). So assume that 0 < k < [;
if 7 and 7 are incomparable, we are done. Otherwise, we must have n > 7; say 7 = nd.
Hence S ,(E,)NS(E,) = S,(E,NSs(E,)) has measure zero because E, NS 5(E,) does. O

Let (X, 8B,u) be a o-finite measure space and 7y,...,7, € L(LP(X)) spatial partial
isometries with reverses oy, ...,0,. Call 1,..., 1, orthogonal if tjo; = ojt; = 0 Vi # j.

Lemma 9.8. Let X be a o-finite measure space, p € [1,0), 11,...,7, € L(LP(X)) orthog-

onal spatial partial isometries, 1 € C", and T, = Z/lm. Then ||t = ||1|co-
i=1
Proof. Straightforward. O

Proposition 9.9. Let Q be a nonsingular countable graph without sources. Let p € [1, 00),
p # 2, and let X and Y be measure spaces andp : Lo — L(LP(X))and ¢ : Lo — L(LP(Y))
spatial representations. Assume that Lg is simple and that p is approximately free. Then

llo@ll < ll¢(@)ll (a € Lo).

Proof. This proposition generalizes [12, Proposition 8.6]; we shall adapt the argument
therein using Lemma 9.6 instead of [12, Lemma 8.5]. Let X" = [],¢g0 X,; observe that the
corestriction p’ of p to L(LP(X")) is approximately free. Hence by Lemma 4.12 we may
assume that p and ¢ are both nondegenerate. For each @ € £ = P(Q), let R, and S, be
the bijective measurable set transformations X,y — Xq, Yr@e) — Y, associated to p(a)
and ¢(a), as in Remark 4.6. We have to show that if a € Ly is such that [|jp(a)|| = 1, then
ll¢(a)ll > 1. By Lemma 2.5, there are Ny > 0, a finite set Fy C # and a finitely supported
function 2° : Fy X Py, — C such that

a= Z Z /lgﬁa/ﬂ*
a€eF ,BEPNU
Because sour(Q) = 0 by hypothesis, for each v € s(F() we may choose a path 7, € Py,
with r(t,) = v. Put
X = Z T, b=xa.
ves(Fo)
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Because every path in the set 7, = {7, : v € s(Fp)} is of length Ny, any two of them
are incomparable. Hence by Remark 4.6, the elements of p(tf,) are orthogonal spatial
partial isometries. Therefore [[o(x)|| = 1, by Lemma 9.8; similarly, [|jo(x*)|| = 1. Hence
lloD)Il = lle(a)l| = 1 and by the same argument, ||¢(b)|| = ||¢(a)||. Therefore it suffices to
show that for every € > 0,

(9.10) [lpD)l| > 1 —€.

For 8 € Py, and a € Fy, let
_ 0
ATx(a)a’ﬁ - Aa,ﬁ'
Put F = {tgna : @ € Fo}; the map Fo — F, @ — 74 is clearly surjective. Moreover,

because 7, € Py, for all v € s(Fp), it is also injective. Using this in the third step, we
obtain

E OIS ONPIE S

ves(Fo) a€Fy BePy,

PIDIPIEY

ves(Fy) aeF PEPN,

s(@)=v

-5 3 Ao

a€F BePy,

Let Ny = max{la| : @ € Fy}; then Ny < |a| < Ny + N, foralla € F. If Ny = N; =0,
then b is a linear combination of vertices, b = ), 4,v, whence by Lemma 9.8 we have

lle@D)Il = [1Alleo =l = 1.

Hence (9.10) holds in this case. So we may assume Ny + N; > 0, and take > (Ny +
N1)(2/€)?. By our hypothesis on p, there are N > i(Ny + N;) and a partition

N-1
©.11) X = ]_[ D,
n=0

such that for the remainder # of n modulo N, we have p(e)(L”(D7)) C LP(D—) and

n+1
p(e")(LP(Dr)) C LP(D;=7). By the argument of [12, pages 54-55], upon cyclic permu-
tation of the D, if necessary, there exists
N-1

N-1
£=> & e PLw =1
m=0

m=0
with &, = 0 form < Ny — 1 and for m > N — Ny, and such that ||£|| < 1 and [|jp(b)&]| > 1 —€.
For each y € P, put
Dy = Ry(Xr(y) N Dy) = DM N Xy.
Because Q is nonsingular by hypothesis, and because we have assumed that p is nonde-
generate, for each / > 0 we have a decomposition (4.11). It follows from this that

9.12) D, = UDy O<m<N-1.
lyl=m

Let
w=pPyi= || 2

0<I<N-1
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It follows from (9.11) and (9.12) that
x=[[p,
yeW
Hence we can write any € L7(X) as a sum
n= > (e LP(Dy).
yeW

Next, by Lemma 9.6, for each v € Q0 there is a measurable set E, C Y of nonzero measure
such that the family {S,(E,,)) : v € W}is disjoint. Choose a norm-one element ¢, € LP(E,)
foreach v e Q°. Let

u:L’(X) - LP(XXY), un = Zp(v)ny ® G(Y)ry)-
yeWw

One checks, as in the proof of [12, Proposition 8.6], that « is an isometry. Lety = 1 ® ¢ :
Ly — L(LP(X x Y)), be as in Lemma 9.4. Observe that

(9.13) (BN = llgp(DI-
A calculation similar to that of the proof of [12, Proposition 8.6] shows that for £ as above,
9.14) up(b)¢ = y(byué.
It follows from (9.13) and (9.14) that (9.10) holds. This completes the proof. O

Proof of Theorem 9.1 Because L is simple by hypothesis, the C*-algebra C*(Q) is simple;
thus every nonzero *-representation Ly — L(L*(X)) induces the same norm. But by
Remark 4.5 every spatial representation is a #-representation, so the theorem is clear for
p = 2. Assume p # 2. By Proposition 8.6 and Corollary 8.8, we may assume that Q is
nonsingular and has no sources. By Lemma 9.4 and Propositions 9.5 and 9.9, every spatial
seminorm is associated to a free spatial representation. Applying Proposition 9.9 again,
we get that any two nonzero approximately free spatial representations lead to the same
seminorm. O

10. A SIMPLICITY THEOREM

Theorem 10.1. Let p € [1, ), p # 2. The following are equivalent for a countable graph
0.

i) Lo is simple.

ii) Every spatial nonzero LP-representation of Ly is injective.

ii’) Every spatial nonzero representation Lo — L(€P(N)) is injective.

ii”) Every nondegenerate spatial nonzero representation Lo — L(€P(N)) is injective.

iii) Every nondegenerate, contractive, nonzero LP-representation of OF(Q) is injective.

iii’) Every nondegenerate, contractive, nonzero representation OP(Q) — L({P(N)) is injec-
tive.

If in addition we assume either that p # 1 or that Q° is finite, then the above conditions

are also equivalent to the following.

iv) Every nonzero contractive homomorphism from OF(Q) to another L?-operator algebra
is injective.
Proof. If either p # 1 or QU is finite, then iii) and iv) are equivalent, by Theorem 7.9. Let
2 # p € [1,00). It follows from Theorems 7.8 and 9.1 that i)=iii). By Lemma 4.12 and
Theorem 7.8, iii)=ii). Similarly, iii”)=1ii"). It is clear that ii)=ii’)=ii"") and that iii)=iii’).
It remains to show that ii”)=1). By [1, Theorem 2.9.1], Ly, is simple if and only if 0° is
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the only nonempty hereditary and saturated subset of vertices, and every cycle in Q has an
exit. We shall show that if any of these two conditions does not hold, then ii”’) does not hold
either. So suppose there is a proper hereditary and saturated subset H ¢ Q°. Let Q/H be the
quotient graph of [1, Definition 2.4.11]. Then the natural map  : Lo — L,y is a nonzero
surjection with nonzero kernel the ideal /(H) generated by H. Hence if p is an injective
nondegenerate spatial representation Lo,z — L(£7(N)) (which exists by Proposition 4.23)
then prr is a nondegenerate nonzero spatial representation Ly — L(¢7(N)) which is not
injective. So assume that Q" is the only nonempty saturated and hereditary set of vertices,
or equivalently, by [1, Lemma 2.9.6], that Q is cofinal in the sense of [1, Definitions 2.9.4]
and that it has a cycle ¢ without exits. Cofinality implies that ¢ is the only cycle of O
modulo cycle rotation (by [1, Lemma 2.7.1 and Theorem 2.7.3]), and that sink(Q) = 0
(by [1, Lemma 2.9.5]). Moreover, Q cannot have any infinite emmitters. For suppose
v € inf(Q); then v cannot be in any cycle, since any cycle containing v would have exits.
In particular if e € Q' and s(e) = v then r(e) # v and by [1, Lemma 2.0.7] the hereditary
and saturated closure of {r(e)} does not contain v, a contradiction. Hence Q = reg(Q), and
therefore the space X of (4.14) consists of the infinite paths of Q. If s(c¢) = w, then any
such path is of the form ac™ for some finite path @ € P with r(@) = w. In particular X is
countable and X,, = X.» = {¢*} for all n > 1. Hence for the counting measure , there is a
spatial isometric isomorphism LP(X, u) = {P(N), and the nondegenerate representation p,,
of Example 4.13 maps ¢ — ¢ to zero, so it is not injective. This concludes the proof. O

Remark 10.2. By [9], an LP-operator algebra may admit Banach algebra quotients which
are not again L?-operator algebras. Thus Phillips’ theorem that the L7-Cuntz algebra OZ
is simple as a Banach algebra for 2 < d < oo ([14, Theorem 5.14]) does not follow from
Theorem 10.1 above.

11. OP(Q) vs. O (Q)

Let R, be the countable graph with exactly one vertex and n loops, 1 < n < co. We
write L, = L(R,), OF = OP(R,). In particular,

Lo = Clx;, 7 1 1 < i}/(x{x; = 6, ).

Lemma 11.1. Let Q be a countable graph and let 1 < p < co. Assume that Ly is purely
infinite simple. Then there is a homomorphism L., — Ly which induces an isometry

0L — 0"(Q).

Proof. Let @ be acycle in Q and let v = s(a). Choose a closed path 8 with s(5) = v so that
a and S are not comparable under the preorder of paths, as in the proof of Lemma 9.6. Then
Bfa = a*B = 0and, of course, " a = §°5 = v. Hence there is a *-homomorphism ¢ : L., —
Lg such that ¢(x;) = Bla. Observe that if p : Lo — L(LP(X)) is any spatial representation,
then p¢ is again spatial. Hence ¢ induces a contractive homomorphism ¢ : 0%, — OP(Q).
By Theorem 9.1, if p : Ly — L(LP(X)) is a nonzero spatial representation, then  agrees,
up to isometric isomorphism, with the isometric inclusion p¢(Le) C p(Lg). m|

Theorem 11.2. Let Q, Q" be countable graphs and let 1 < p # p’ < co . Assume that L
is purely infinite simple. If in addition, any of the following conditions holds, then there is
no nonzero continuous homomorphism O (Q) — O (Q").

i) Lo is simple.

ii) pp<2andp ¢ (p,2].

i) p' > 2 # p.



L? OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS 21

Proof. Assume there is a nonzero continuous homomorphism f : OP(Q) — o’ (Q"). Be-
cause the inclusion Ly ¢ OP(Q) is dense, f(Lg) # 0, which in view of the simplicity of
L implies that f is injective on Ly. Let ¢ : Lo — Lo be as in Lemma 11.1. Then f¢
is injective, whence f¢ : O%, — OF (Q’) is a nonzero continuous homomorphism. Hence
there exists X € {N, [0, 1]} and a spatial representation p’ : Ly — L(L” (X)) such that
P fé : OF — L(L (X)) is nonzero. By [12, Lemma 9.1] this implies that L” (X) con-
tains a subspace isomorphic to {(N). If X = N, this cannot be, as noted in the proof of
[12, Theorem 9.2], by [11, page 54]; if X = [0, 1] and either ii) or iii) holds, this cannot
happen either, by [4, Theorem 6.4.19]. Thus parts ii) and iii) of the theorem are proved.
Part i) also follows, using Proposition 4.23 and Theorem 9.1. O
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