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The Structure of MESSI Biological Systems∗

Mercedes Pérez Millán† and Alicia Dickenstein†

Abstract. We introduce a general framework for biological systems, called MESSI systems, that describe Mod-
ifications of type Enzyme-Substrate or Swap with Intermediates, and we prove general results based
on the network structure. Many posttranslational modification networks are MESSI systems. Exam-
ples are the motifs in [E. Feliu and C. Wiuf, J. R. Soc. Interface, 9 (2012), pp. 1224–1232], sequential
distributive and processive multisite phosphorylation networks, most of the examples in [D. Angeli,
P. De Leenher, and E. Sontag, Math. Biosci., 210 (2007), pp. 598–618], phosphorylation cascades,
two component systems as in [V. B. Kothamachu et al., J. R. Soc. Interface, 12 (2015), 20150234], the
bacterial EnvZ/OmpR network in [G. Shinar and M. Feinberg, Science, 327 (2010), pp. 1389–1391],
and all linear networks. We show that, under mass-action kinetics, MESSI systems are conserva-
tive. We simplify the study of steady states of these systems by explicit elimination of intermediate
complexes, and we give conditions to ensure an explicit rational parametrization of the variety of
steady states (inspired by [E. Feliu and C. Wiuf, J. R. Soc. Interface, 10 (2013), 20130484, J. Math.
Biol., 66 (2013), pp. 281–310; M. Thomson and J. Gunawardena, J. Theoret. Biol., 261 (2009), pp.
626–636]). We define an important subclass of MESSI systems with toric steady states [M. Pérez
Millán et al., Bull. Math. Biol., 74 (2012), pp. 1027–1065], and we give for MESSI systems with
toric steady states an easy algorithm to determine the capacity for multistationarity. In this case,
the algorithm provides rate constants for which multistationarity takes place, based on the theory
of oriented matroids.
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1. Introduction. Many processes within cells involve some kind of posttranslational mod-
ification of proteins. We introduce a general framework for biological systems that describe
Modifications of type Enzyme-Substrate or Swap with Intermediates, which we call MESSI
systems, and which allows us to prove general results on their dynamics from the structure of
the network, under mass-action kinetics. This subclass of mechanisms has attracted consid-
erable theoretical attention due to its abundance in nature and the special characteristics in
the topologies of the networks.

The basic idea in the definition of MESSI systems (see Definitions 2.3 and 2.10) is that
the mathematical modeling reflects the different chemical behaviors. The chemical species
can be grouped into different subsets according to the way they participate in the reactions,
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Figure 1. Examples of MESSI systems: Sequential n-site phosphorylation/dephosphorylation (A) dis-
tributive case [34, 49]; (B) processive case [5, 29]; (C) phosphorylation cascade; (D) schematic diagram of an
EnvZ-OmpR bacterial model [42].

very much akin to the intuitive partition of the species according to their function. We show
that MESSI systems are conservative (and thus all trajectories are defined for any positive
time), and we study the important questions of persistence and multistationarity. Informally,
persistence means that no species which is present can tend to be eliminated in the course
of the reaction [1]. Multistationarity (see Definition 2.2) is also a crucial property, since its
occurrence can be thought of as a mechanism for switching between different response states
in cell signaling systems and enables multiple outcomes for cellular decision making, with the
same stoichiometric content.

Examples of MESSI systems of major biological importance are phosporylation cascades,
such as the mitogen-activated protein kinases (MAPKs) cascades [3, 22, 24]. MAPKs are
serine/threonine kinases that play an essential role in signal transduction by modulating gene
transcription in the nucleus in response to changes in the cellular environment and participate
in a number of disease states including chronic inflammation and cancer [6, 26, 33, 39, 51]
as they control key cellular functions [20, 33, 40, 46, 50]. Also, the multisite phosphorylation
system is a MESSI system. This network describes the phosphorylation of a protein in multiple
sites by a kinase/phosphatase pair in a sequential and distributive mechanism [7, 18, 19, 22,
27, 41]. In prokaryotic cells, an example of a MESSI system can be found in [42], representing
the Escherichia coli EnvZ-OmpR system which consists of the sensor kinase EnvZ, and the
response-regulator OmpR (see also [21, 23, 35, 43, 52]). This signaling system is a prototypical
two-component signaling system [35, 43]. All linear systems are also MESSI.
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Figure 2. Same and different phosphatases in two different MESSI cascades.

We depict in Figures 1 and 2 some examples of important biochemical networks which
are MESSI networks.1 Figure 1(A) features the n-site phosphorylation-dephosphorylation of
a protein by a kinase-phosphatase pair in a sequential and distributive mechanism. The total
of n phosphate groups is allowed to be added to the unphosphorylated substrate S0 by an
enzyme E. The substrate Si is the phosphoform obtained from S0 by attaching i phosphate
groups to it. Each phosphoform can accept (via an enzymatic reaction involving E) or lose
(via a reaction involving the phosphatase F ) at most one phosphate; this means that the mech-
anism is “distributive.” In addition, the phosphorylation is said to be “sequential” because
multiple phosphate groups must be added in a specific order and removed in a specific order
as well. The sequential and processive phosphorylation/dephosphorylation of a substrate at
n sites [29, 5] is depicted in Figure 1(B). The substrate undergoes n ≥ 1 phosphorylations
after binding to the kinase and forming the enzyme-substrate complex; only the fully phos-
phorylated substrate is released, and hence only two phosphoforms have to be considered:
the unphosphorylated substrate S0 and the fully phosphorylated substrate Sn. Processive
dephosphorylation proceeds similarly. All the motifs in [13] are MESSI networks, as are the
phosphorylation cascades shown in Figure 2. The cascade in Figure 1(C) features the sequen-
tial activation of a specific MAPK kinase kinase (MAPKKK, denoted S) and a MAPK kinase
(MAPKK, denoted P ), which in turn phosphorylates and activates the downstream MAPK
(denoted R). The activated forms are S1, P2, and R2, respectively. Figure 2 features two
cascade motifs with two layers, which are a combination of two one-site modification cycles
with either a specific or the same phosphatase acting in each layer. It is already known [13]
that the cascade in (A) exhibits multistationarity while the cascade in (B) is monostationary.
We will recover these results under the framework of MESSI systems (they will both prove
to be s-toric MESSI systems; see Definition 4.3). We will moreover consider the cascade in
Figure 2(A) as one of our running examples in this article, and sometimes we will also include
a drug D acting by a sequestration mechanism such as P1 +D � P1D. Figure 1(D) depicts
a schematic diagram of an EnvZ-OmpR bacterial model [42], which is a MESSI network. The
sensor EnvZ (X) phosphorylates itself by binding and breaking down ATP (T). The phospho-
rylated form Xp catalyzes the transfer of a phosphoryl group to the response-regulator OmpR

1As usual, in the figures we summarize with the scheme
S0 S1

E

a sequence of reactions with interme-

diates such as S0 + E
κ1

�
κ2

ES0
κ3→ S1 + E.
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(Y). X, together with ATP, dephosphorylates Yp, a transcription factor that regulates the
expression of various protein pores.

Our work continues the ideas in chemical reaction network theory (CNRT), which connects
qualitative properties of ordinary differential equations corresponding to a reaction network to
the network structure. CNRT has been developed over the last 40 years, initially through the
work of Horn and Jackson and subsequently by Feinberg and his students and collaborators
(for example, see [9, 10]) and Vol’pert [48]. Biochemical reaction networks, that is, chemical
reaction networks in biochemistry, are the principal current application of these developments.
In particular, our work is inspired by previous articles by Thomson and Gunawardena [45],
who set the posttranslational modification (PTM) framework; Mirzaev and Gunawardena [30],
who detailed the Laplacian dynamics; Feliu and Wiuf [14, 15], who clarified the elimination of
intermediate complexes; and Müller et al. [32], who collected and clarified the role of signs in
the determination of multistationarity. Also related to our work are the papers by Gnacadja
on constructive chemical reaction networks [16, 17], who gave an alternative approach to the
PTM setting. The MESSI structure we propose simplifies and unifies most of these approaches.

The precise conditions are given in Definitions 2.3 and 2.10. In particular, complexes in a
MESSI network are mono or bimolecular. As remarked in [45], one main assumption for this
modeling is that donor molecules that provide modifiers are kept at constant concentration
on the time scaling of the reactions we are modeling, and their effects can be absorbed into
the rate constants. The main difference between our approach and theirs is that they do not
allow a species to act as a substrate in one reaction and then as an enzyme in another (neither
does [30]), which in particular excludes all enzymatic cascades. This is considered in [16, 17].
However, none of these previous settings allow swaps and monomolecular reactions between
core species that our framework incorporates. Regarding [14, 15, 32], we pay special attention
to networks with toric steady states [34].

Theorem 3.2 explicitly describes conservation relations that imply that any MESSI system
is conservative. Theorem 3.15 gives conditions that ensure that a MESSI system is persistent.
We give necessary conditions for the existence of a rational parametrization of the variety of
positive steady states in Theorem 4.1, which is the generalization of the main theorem in [45]
to our setting. Proposition 4.7 expresses the role of intermediates in the steady states of the
system. Theorem 4.8 shows a frequent class of MESSI systems with special steady states,
cut out by binomial equations and termed as toric steady states [34], that allow for an easier
determination of multistationarity.

We give for MESSI systems with toric steady states an algorithm to determine the capacity
for multistationarity based on Theorems 5.4 and 5.8. If this is the case, the algorithm provides
rate constants for which multistationarity takes place, based on the theory of oriented matroids
[2]. This is a specialized procedure, easy to tune to produce different choices of rate constants,
besides the general algorithms for injectivity implemented, for instance, by Feinberg and his
group in the Chemical Reaction Network Toolbox [11]. Links to other algorithms can be found
at https://reaction-networks.net/wiki/Mathematics of Reaction Networks. The proofs of our
statements are concentrated in Appendix A.

2. MESSI systems. In this section we review the notion of a chemical reaction network in
order to introduce the definition of MESSI networks and MESSI systems (when these networks

https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks
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are endowed with mass-action kinetics). The conditions in the definition might seem to be
very restrictive (mathematically), but indeed we show many examples of popular networks in
systems biology that lie in this framework.

Chemical reaction systems. We briefly recall the basic setup of chemical reaction net-
works and how they give rise to autonomous dynamical systems under mass-action kinetics
(see Example 2.1). Given a set of s chemical species, a chemical reaction network on this
set of species is a finite directed graph whose vertices are indicated by complexes and whose
edges are labeled by parameters (reaction rate constants). The labeled digraph is denoted

G = (V, E ,κ), with vertex set V, edge set E , and edge labels κ ∈ R#E
>0 . If (y, y′) ∈ E , we

denote y → y′. Complexes determine vectors in Zs≥0 according to the stoichiometry of the
species they consist of. We identify a complex with its corresponding vector and also with the
formal linear combination of species specified by its coordinates.

Example 2.1 (basic example of an enzymatic network). We present a basic example that
illustrates how a chemical reaction network gives rise to a dynamical system. This example
represents a classical mechanism of enzymatic reactions, usually known as the futile cycle
[22, 24, 49]:

(1) S0 + E
κ1
�
κ2
U1

κ3→ S1 + E, S1 + F
κ4
�
κ5
U2

κ6→ S0 + F,

where U1 and U2 are intermediate species, S0 and S1 are substrates, and E and F are enzymes.
The source and the product of each reaction are called complexes. The concentrations of the
six species change in time as the reactions occur. We order the s = 6 species as follows:
U1, U2, S0, S1, E, F , and we denote the concentrations by [U1] = u1, [U2] = u2, [S0] = x1,
[S1] = x2, [E] = x3, [F ] = x4. The first three complexes in the network (1) give rise to
the vectors (0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 0, 0), and (0, 0, 0, 1, 1, 0). Under the assumption of mass-
action kinetics, we obtain then the following polynomial dynamical system:

du1
dt = κ1x1.x3 − (κ2 + κ3)u1,

du2
dt = κ4x2.x4 − (κ5 + κ6)u2,

dx1
dt = −κ1x1.x3 + κ2u1 + κ6u2,

dx2
dt = −κ4x2.x4 + κ5u2 + κ3u1,

dx3
dt = −κ1x1.x3 + (κ2 + κ3)u1,

dx4
dt = −κ4x2.x4 + (κ4 + κ5)u2.

The unknowns x1, x2, . . . , xs represent the concentrations of the species in the network,
and we regard them as functions of time t. Under mass-action kinetics, the chemical reaction
network G defines the following chemical reaction dynamical system:

(2) ẋ =

(
dx1
dt

,
dx2
dt

, . . . ,
dxs
dt

)
=

∑
y→y′

κyy′ x
y (y′ − y),

where x = (x1, . . . , xs) and xy = xy11 · · ·x
ys
s . The right-hand side of each differential equation

dx`/dt is a polynomial f`(x,κ), in the variables x1, . . . , xs with real coefficients κ. The asso-
ciated steady state variety Vf is defined as the common nonnegative zeros of the polynomials
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f`, that is,

(3) Vf := {x ∈ Rs≥0 : f`(x,κ) = 0, ` = 1, . . . , s}.

The linear subspace spanned by the reaction vectors S = {y′ − y : y → y′} is called
the stoichiometric subspace. Notice from (2) that the vector ẋ(t) lies in S for all time t. In
fact, a trajectory x(t) beginning at a vector x(0) = x0 ∈ Rs≥0 remains in the stoichiometric

compatibility class (x0 + S) ∩ Rs≥0 for all positive time. The equations of x0 + S give rise to
linear conservation relations of the system.

Definition 2.2. We say that the system has the capacity for multistationarity if there exists
a choice of rate constants κ such that there are two or more steady states in one stoichiometric
compatibility class. On the other hand, if for any choice of rate constants there is at most one
steady state in each stoichiometric compatibility class, the system is said to be monostationary.

It may happen that the vectors ẋ(t) lie in a smaller subspace S′ ⊆ S, called the kinetic
subspace [12]. In this case, the trajectories live in (x0 + S′) ∩ Rs≥0 for some initial state

x0 ∈ Rs≥0, and the concepts of mono- and multistationarity might be defined with respect to
this smaller affine subspace. In this article, we focus on the classical Definition 2.2.

Definition of MESSI systems. A MESSI network is a particular type of chemical reaction
network, which includes all monomolecular (linear) ones. As we mentioned in the introduction,
the main ingredient in the definition is the existence of a partition of the set of species, that
is, a decomposition into disjoint subsets, with the following properties.

Definition 2.3. A chemical reaction network is called a MESSI network if there is a parti-
tion of the set of species S

(4) S = S (0)
⊔

S (1)
⊔

S (2)
⊔
· · ·
⊔

S (m),

where m ≥ 1 and
⊔

denotes disjoint union, such that the complexes and reactions satisfy the
conditions below.

We call the cardinalities #S (0) = p, #S (α) = nα for any α > 0 and
∑

α>0 nα = n. We

allow p to be 0, but we assume that all nα are positive. Species in S (0) are called interme-
diate, and species in S1 := S \S (0) are termed core. When convenient, we will distinguish
intermediate and core species in the notation in the following way: S (0) = {U1, . . . , Up},
S1 = {X1, . . . , Xn}. Thus, the vectors determined by the complexes (λ1, . . . , λp, ν1, . . . , νn)
live in Zp+n≥0 and define the formal linear combination of species

∑p
i=1 λiUi +

∑n
j=1 νjXj.

Complexes are also partitioned into two disjoint sets, and the following conditions hold:
(N1) Intermediate complexes are complexes that consist of a unique intermediate species that

only appears in that complex. The vector corresponding to the unimolecular complex
Ui is denoted by yi.

(N2) Core complexes [14] are mono or bimolecular and consist of either one or two core
species. If the core complex consists of only the species Xi, the corresponding vector
will be denoted by yi0.
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(N3) When a core complex consists of two species Xi, Xj, they must belong to different sets
S (α),S (β) with α 6= β, α, β ≥ 1. We also denote the complex Xi +Xj = Xj +Xi by
yij = yji.

We say that complex y reacts to complex y′ via intermediates if either y → y′ or there
exists a path of reactions from y to y′ only through intermediate complexes. This is denoted
by y →◦ y′. The intermediate complexes of a MESSI network satisfy, moreover, the following
condition:

(C) For every intermediate complex yk, there exist core complexes yij and y`m such that
yij →◦ yk and yk →◦ y`m.

Finally, reactions are constrained by the following rules:
(R1) If three species are related by Xi + Xj →◦ Xk or Xk →◦ Xi + Xj, then Xk is an

intermediate species.
(R2) If two core species Xi, Xj are related by Xi →◦ Xj, then there exists α ≥ 1 such that

both belong to S (α).
(R3) If Xi+Xj →◦ Xk+X`, then there exist α 6= β such that Xi, Xk ∈ S (α), Xj , X` ∈ S (β)

or Xi, X` ∈ S (α), Xj , Xk ∈ S (β).
We will say that the partition (4) defines a MESSI structure on the network.

Example 2.4. We present a toy example that shows which kinds of reactions are allowed
and which are not. Consider the following digraph, where we assume Y1 and Y2 to be
monomolecular complexes:

X1 +X2 → Y1 � Y2 → Y3.

Then, Y1 and Y2 must consist of an intermediate species by rule (R1). For Condition (C)
to hold, necessarily Y3 must be a core complex since there are no arrows leaving from Y3.
Moreover, rule (R1) imposes that Y3 is of the form X` +Xm, and by rule (R3), if X1 ∈ S (α)

and X2 ∈ S (β), then α 6= β and either X` ∈ S (α), Xm ∈ S (β) or Xm ∈ S (α), X` ∈ S (β).

Notice that a MESSI network is defined once the partition of S is given and all conditions
and rules in Definition 2.3 are verified. It is important to point out that even if in the chemical
setting there are natural partitions of the set of species given by the different types of molecules,
there can be many ways to define a partition which defines a MESSI structure. We can define
a partial order in the set of all possible partitions of the species of a given biochemical network.

Definition 2.5. Given two partitions S = S (0) t S (1) t S (2) t · · ·
⊔

S (m) and S =

S ′(0) tS ′(1) tS ′(2) t · · ·
⊔

S ′(m′), we say that the first partition refines the second one if

and only if S (0) ⊇ S ′(0) and for any α ≥ 1, there exists α′ ≥ 1 such that S (α) ⊆ S ′(α′).
With this partial order we have the notion of a minimal partition.

Before presenting our two running examples, we define enzyme behavior and swaps.

Definition 2.6. A species Xj that satisfies Xi +Xj →◦ X` +Xj for some Xi, X` is said to
act as an enzyme. In this case, we call Xi the substrate and X` the product. A reaction via
intermediates is called a swap if Xi +Xj →◦ X` +Xm, and i, j /∈ {`,m} (so, neither Xi nor
Xj acts as an enzyme in Xi +Xj →◦ X` +Xm).
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Notice that if a species Xj in a MESSI network only acts as an enzyme, we can consider
a singleton subset S (α) = {Xj}.

Example 2.7 (first running example). Consider the network in Figure 2 (A), with digraph

S0 + E
κ1

�
κ2

ES0
κ3→ S1 + E, S1 + F

κ4

�
κ5

FS1
κ6→ S0 + F,

P0 + S1

κ7

�
κ8

S1P0
κ9→ P1 + S1, P1 + F

κ10

�
κ11

FP1
κ12→ P0 + F.

We can consider the partition S (0) = {ES0, FS1, S1P0, FP1} (intermediate species), and
S (1) = {S0, S1}, S (2) = {P0, P1}, S (3) = {E}, S (4) = {F} (partition of the core species).
The intermediate complexes correspond to the intermediate species, and the remaining com-
plexes are core complexes. This partition defines a MESSI structure in the network. In fact,
there is another possible choice of partition which also gives a MESSI structure to the network,
considering S (0), S (1), and S (2) as before, but S (3) and S (4) are replaced by their union
{E,F}. We can see in this example that species E and F only act as enzymes, while species
S1 acts as an enzyme in the second layer but in the first one it plays the role of a substrate of
F and of a product of E.

Example 2.8 (second running example). An example of swap can be the seen in the transfer
of a modifier molecule, such as a phosphate group in a two-component system, from one
molecule to another. We consider as our second running example the EnvZ/OmpR system.
The corresponding digraph G is featured in Figure 1(D). The only possible partition for this
network to be a MESSI network is S (0) = {XpY,XTYp}, S (1) = {X,XT,Xp}, S (2) =
{Y, Yp}. The reaction via intermediates in the second connected component of the graph of
reactions is a swap. On the other hand, XT acts as an enzyme in the last component of G.

In Example 2.7, there are two different partitions, but the first one is a refinement of the
second one. However, there might be noncomparable partitions, as we show in the following
example.

Example 2.9 (noncomparable partitions). Consider the following network:

X1 +X2 → X3 +X4, X4 +X5 → X6 +X1.

Set S (0) = ∅, S (1) = {X1, X4}, and S (2) = {X2, X3, X5, X6}. We can refine S (2) into
S ′(2) = {X2, X3} and S ′(3) = {X5, X6}. In both cases, we get the structure of a MESSI
network. If we instead consider S ′′(0) = ∅, S ′′(1) = {X1, X3, X5}, and S ′′(2) = {X2, X4, X6},
there is no possible way of refining S ′′(2) without violating (R3). The second and third
partitions are not comparable, and both are minimal in the poset of partitions of the species
set which yield a MESSI structure on the given network.

The main focus of this work is the properties of MESSI networks endowed with kinetics.
Throughout this text we will always assume mass-action kinetics.

Definition 2.10. We call a MESSI system the mass-action kinetics dynamical system as
in (2) associated with a MESSI network.
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3. Conservation relations and persistence in MESSI systems. We first describe the
equations of the stoichiometric subspace of a MESSI system, which give linear conservation
relations along the trajectories. We then focus on the steady states of MESSI systems. We
give sufficient conditions for MESSI systems to be persistent.

Conservation relations. A chemical reaction system is said to be conservative if there
exists a linear combination of the species in the network with all positive coefficients which is
constant along each trajectory (i.e., for all time t). Clearly, for any trajectory starting at a
positive point, this constant is a positive real number. In this case, all stoichiometric compat-
ibility classes are compact. In this section we show that MESSI systems are conservative, by
exhibiting natural conservation relations. This implies that all trajectories are bounded and
defined for any positive time.

Notation 3.1. We denote the concentration of the species with small letters. For example,
ui denotes the concentration of Ui and xj denotes the concentration of Xj.

Given a MESSI network and a partition of the species set as in Definition 2.3, we define
for any α ≥ 1 the set of indices

(5) Int(α) = {k : there exists yij with either Xi ∈ S (α) or Xj ∈ S (α) such that yij →◦ yk}.

We also denote by S Int(α) the set of species with indices in Int(α). Note that the subsets
Int(α) are in general not disjoint, but condition (C) implies that ∪α≥1S Int(α) = S (0). It is
straightforward to see that the conditions imposed on a MESSI network ensure that for any
α ≥ 1 the set of variables S (α) ∪S Int(α) is a siphon [1]. We will show in Theorem 3.2 below
that the following explicit linear conservation relations with {0, 1} coefficients hold:

(6) `α(u, x) = Cα, where `α(u, x) =
∑

Xi∈S (α)

xi +
∑

k∈Int(α)

uk,

for some constant Cα, which is positive if the trajectory intersects the positive orthant. This
is a direct consequence of Theorem 2.1 in [14] and of Theorem 5.3 in [17]. The second part
of Theorem 3.2 gives sufficient conditions for these relations to generate all the equations
defining a stoichiometric compatibility class. We show in Example 3.4 that if we relax any of
these conditions, the result is not true. See also Proposition 3.6 on the conditions to ensure
that the kinetic and the stoichiometric subspaces coincide.

Theorem 3.2. Given a chemical reaction network G and a partition of the set of species
S as in (4) that defines a MESSI structure, for each subset of species S (α), 1 ≤ α ≤ m, the
linear form `α in (6) defines a conservation relation of the system. In particular, all MESSI
systems are conservative.

Furthermore, if there are no swaps in G, and the partition is minimal in the poset of
partitions defining a MESSI system structure on G, then dim(S⊥) = m.

If, moreover, the stoichiometric subspace coincides with the kinetic subspace, then the only
possible conservation relations in the system are linearly generated by the conservations (6)
for 1 ≤ α ≤ m.
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Example 3.3 (Examples 2.7 and 2.8, continued). For the cascade with one phosphatase in
Example 2.7, the hypotheses in Theorem 3.2 are satisfied and the conservation relations are
the following:

s0 + s1 + u1 + u2 + u3 = Stot, p0 + p1 + u3 + u4 = Ptot,

e+ u1 = Etot, f + u2 + u4 = Ftot,

where we use small letters for the concentration of the corresponding species. The concentra-
tions of the intermediates species es0, fs1, s1p0, fp1 are denoted by u1, u2, u3, u4, respectively.
In Example 2.8, the conservation relations are

x+ xt + xp + xpy + xtyp = Xtot, y + yp + xpy + xtyp = Ytot.

Example 3.4 (necessity of the hypotheses in Theorem 3.2). The following is Example 22
from [38]. It satisfies the hypotheses in Theorem 3.2 except for the absence of swaps:

X1 +X5 → X2 +X6,
X3 +X6 → X4 +X5,
X4 +X6 → X3 +X7.

It is straightforward to see that the only possible minimal partition is S (1) = {X1, X2},
S (2) = {X3, X4}, S (3) = {X5, X6, X7}, which gives three linearly independent conservation
relations `1, `2, `3. However, there is a fourth independent conservation relation:

x1 + x4 + x6 + 2x7 = C.

Before stating the sufficient conditions to ensure that the kinetic and the stoichiometric
subspaces coincide, we recall some concepts from graph theory that will be useful in the rest
of the article.

Given a directed graph G = (V, E), define the following equivalence relation between the
vertices: two vertices i, j ∈ V are related if and only if there is a directed path from i to
j, and a directed path from j to i. Equivalence classes of vertices define the vertices of the
strongly connected components of G. Thus, a directed graph is strongly connected when for
each ordered pair of vertices there is a directed path from the first vertex to the second one.
Note that the underlying undirected graph of a strongly connected graph is connected. If one
strongly connected component has no edges from any node in the component to a node in a
different strongly connected component, it is called a terminal strongly connected component.

A directed graph G is said to be weakly reversible if each connected component is strongly
connected. This means that if there is a directed path from a vertex i to another vertex j,
there is also a directed path from j to i, but it could happen that no path exists in any of
the two directions. Thus G is strongly connected if and only if it is weakly reversible and
connected, and the connected components of a weakly reversible graph are strongly connected.

Example 3.5. The underlying directed graph of the chemical reaction network

X3
κ1← X1

κ2
�
κ3
X2

κ4→ X4
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is connected but not weakly reversible. It has three strongly connected components: the
node X3 (with no arrows), the node X4 (again, with no arrows), which are terminal strongly
connected components, and the subgraph X1�X2, which is not terminal.

The following result is from [12].

Proposition 3.6. If G has only one terminal strongly connected component in each con-
nected component, the number of generators of the conservation relations is s−dim(S), where
s is the total number of species and S is the stoichiometric subspace. In this case, the stoi-
chiometric and the kinetic subspaces coincide.

When there is more than one terminal strongly connected component in one connected
component, even if there are no swaps, we can find other conservation relations. For instance,
consider the chemical reaction network in Example 3.5 and the partition of the set of species:
S (0) = ∅ and S (1) = {X1, X2, X3, X4}. Besides the linear relation x1 + x2 + x3 + x4 = C1,
we get another independent relation: κ4κ1x2 − κ4κ2x3 + κ1(κ3 + κ4)x4 = C2.

The associated digraphs. Consider a directed graph G = (V, E ,κ) with a partition of the
set of species which defines a MESSI structure in the network. We associate to G three other
digraphs, denoted by G1, G2, GE .

Definition 3.7. Given a chemical reaction network with directed graph G = (V, E ,κ), to-
gether with a partition of the set of species S which defines a MESSI structure in the network
with p intermediate species and n core species as in (4), we associate a digraph G1 = (V1, E1)
with a set of n species consisting of the core species in G and with the inherited partition:

(7) S1 = S (1)
⊔

S (2)
⊔
· · ·
⊔

S (m) = S \S (0).

The vertex set V1 consists of all the core complexes yij and the edge set is equal to E1 = {yij →
y`m : yij , y`m ∈ V1 and yij →◦ y`m in G}.

Note that G1 might have loops. It is easy to check that partition (7) defines a MESSI

structure on G1 for any choice of positive labels in R#E1
>0 .

We now define a chemical reaction network on G1 by decorating the edges E1 with labels
τ (κ), which are rational functions of the original rate constants κ, following [14, Theorem 3.1].

Definition 3.8. The map τ : R#E
>0 → R#E1

>0 is defined as follows. For each Xi + Xj →◦
X` +Xm in G the reaction constant τ in G1 which gives the label Xi +Xj

τ−→ X` +Xm has
the form

(8) τ = κ+

p∑
k=1

κkµk,

where κ ≥ 0 is positive when Xi +Xj
κ−→ X` +Xm in G (and κ = 0 otherwise), and κk ≥ 0

is positive if Uk
κk−→ X` +Xm and Xi +Xj →◦ Uk in G (and κk = 0 otherwise). The explicit

expression of the coefficients µk is given in display (15) in the proof of Theorem 3.1 in the
electronic supplementary material (ESM) of [14]; we will describe them for particular cases of
interest to us in section 4.
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It is straightforward to see that τ defines a rational map (that is, Q(τ) ⊂ Q(κ)). The
main property of this assignment is the following.

Remark 3.9. When we label the edges in G1 with the real constants τ (κ) ∈ R#E1
>0 , the

steady states of the mass-action chemical reaction systems defined by G and G1 are in one-
to-one correspondence. We refer the reader to the proof of Theorem 3 in the ESM of [14] and
to the more recent article [28].

We now introduce a new associated labeled digraph G2.

Definition 3.10. Consider a chemical reaction network with directed graph G = (V, E ,κ),
together with a partition of the set of species S which defines a MESSI structure in the
network, and its associated labeled digraph G1 = (V1, E1, τ ) from Definition 3.7. We first
define a labeled multidigraph where we “hide” the concentrations of some of the species in the
labels. The species set V2 of G2 = (V2, E2, τ x) is again equal to the set of core species S1, with
the induced partition.

The edge set E2 is defined as follows. We keep all monomolecular reactions Xi → Xj in

E1 and for each reaction Xi + X`
τ−→ Xj + Xm in E1, with Xi, Xj ∈ S (α), X`, Xm ∈ S (β),

we consider two reactions Xi
τx`−→ Xj and X`

τxi−→ Xm. We obtain in principle a multidigraph
MG2 that might contain loops or parallel edges between any pair of nodes (i.e., directed edges
with the same source and target nodes). We define the digraph G2 by collapsing into one edge
all parallel edges in MG2, and we define the labels τ x of the edges in E2 as the sum of the
labels of the corresponding collapsed edges in MG2.

We will moreover denote by G◦2 the digraph obtained from the deletion of loops and isolated
nodes of G2.

By rules (R1), (R2), and (R3), G2 is a linear graph (its vertices are labeled by a single
species). The labels on the edges of MG2 (and of G2) depend on the rate constants but might
also depend on the concentrations x1, . . . , xn.

Example 3.11 (Examples 2.7 and 2.8, continued). The graphs G1 and G◦2 associated to the
networks in Examples 2.7 and 2.8 are depicted in Figure 3.

Remark 3.12. We get the following important fact from the definition of the associated
digraphs and networks for any MESSI network with digraph G: the networks of the associated
digraphs G1 and G2 determine the same polynomial equations. They moreover define, together
with the corresponding equations of the intermediate species, the steady states of G. We have
already observed in Remark 3.9 that this is the case for G1. Indeed, if we consider G2 in a
mass-action fashion, we can see that the same terms are added and substracted, obtaining the
same equations associated to G1. However, we cannot recover the dynamical properties of G1

(nor G) from G2 since we admit species (concentrations) as both vertices and edge labels.

Note that for each α ≥ 1, if one species of S (α) appears on a vertex of G2, by (R2) and
(R3) and the construction of G2, all the species in the vertices of the corresponding connected
component of G2 belong to the same subset S (α) in the original partition (4). In fact, the
same partition (7) defines a MESSI structure on G2. Moreover, we have the following.

Lemma 3.13. The partition of the set of species S of G in (4) is minimal in the poset of
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G1: G◦2: GE :

S0 + E
τ1→ S1 + E

S1 + F
τ2→ S0 + F

P0 + S1
τ3→ P1 + S1

P1 + F
τ4→ P0 + F

⇒
S0

τ1e
�
τ2f

S1

P0

τ3s1
�
τ4f

P1

S (3) S (1) S (2)

S (4)

G1: G◦2: GE :

X
τ1
�
τ2
XT

τ3→ Xp

Xp + Y
τ4→ X + Yp

XT + Yp
τ5→ XT + Y

⇒

X
τ1
�
τ2

XT
τ3→ Xp

τ4y

Y
τ4xp
�
τ5xt

Yp

S (1) � S (2)

Figure 3. The graphs G1, G◦2, and GE for the running examples. The corresponding sets S (α) can be
found in Example 3.17.

partitions defining a MESSI structure on the network if and only if the set of intermediate
species is maximal, the connected components of G2 are in bijection with the subsets S (α),
and the set of nodes of the corresponding component equals S (α). Thus, by considering the
connected components in G2 we can refine any partition of the species set S to a minimal
one defining a MESSI structure on G.

We finally define the associated digraph GE .

Definition 3.14. Consider a MESSI network with directed graph G, together with a minimal
partition of the set of species as in (4). Let G2 and G0

2 be as in Definition 3.10. We define
a new digraph GE = (VE , EE). The set of vertices equals VE = {S (α), α ≥ 1}. The pair
(S (α),S (β)) lies in EE when there is a species in S (α) in a label of an edge in G0

2 between
(different) species of S (β).

Example 3.17 below shows the corresponding digraphs GE for our two running examples.

Persistence. As MESSI systems are conservative by Theorem 3.2, we know by Theorem 2
in [1] that a MESSI system is persistent when there are no relevant boundary steady states.
This means that there are no steady states in the intersection of the boundary ∂(Rs≥0) of
the nonnegative orthant with a stoichiometric compatibility class through a point in Rs>0.
Persistence means that any trajectory starting from a point with positive coordinates stays
at a positive distance from any point in the boundary.

Note that a necessary condition for system (2) to have a positive steady state is the
existence of a positive relation among the vectors y′− y, that is, a positive vector λ such that∑

y→y′ λyy′(y
′ − y) = 0. If this is satisfied, we will say that the system is consistent.

We give in Theorem 3.15 combinatorial conditions which ensure the persistence and con-
sistency of MESSI systems. This result rules out relevant boundary steady states in many
enzymatic examples—for instance, in those in [1].
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Recall that a digraph is weakly reversible if any connected component is strongly con-
nected, that is, when for any pair of nodes in the same connected component there is a
directed path joining them. We have the following persistence result.

Theorem 3.15. Let G be the underlying digraph of a MESSI system. Assume that the
associated digraph G2 is weakly reversible and the associated digraph GE has no directed cycles.
Then G has no relevant boundary steady states and so the system is persistent. Moreover, the
system is consistent.

Remark 3.16. The absence of directed cycles in GE precludes the existence of swaps. On
the other side, note that if G2 is weakly reversible, then the stoichiometric and the kinetic
subspaces coincide by Proposition 3.6.

Example 3.17 (Examples 2.7 and 2.8, continued). The MESSI network in Example 2.7 from
Figure 2(A) (with partition S (1) = {S0, S1}, S (2) = {P0, P1}, S (3) = {E}, S (4) = {F}) is
persistent since there are no directed cycles in GE (depicted at the upper right in Figure 3).
However, this is not the case in Example 2.8 from Figure 1(D); xp = Xtot, yp = Ytot, x = xt =
xpy = xtyp = y = 0 is a boundary steady state in the stoichiometric compatibility class defined
by Xtot, Ytot. Recall that we are considering the (minimal) partition S (1) = {X,XT,Xp},
S (2) = {Y, Yp}. The associated graph GE has a cycle (depicted at the lower right in Figure 3).

4. Parametrizing the steady states. A wide class of MESSI systems admits a rational
parametrization. As we recalled in Remark 3.12, it is shown in [14] that the values of the
intermediate species at steady state can be rationally written in terms of the core species in an
algorithmic way. The following result (with the same assumptions as Theorem 3.15) extends
Theorem 4 in [45].

Theorem 4.1. Let G be the underlying digraph of a MESSI system. Assume that the asso-
ciated digraph G2 is weakly reversible and the associated digraph GE has no directed cycles.
Then, Vf ∩ Rs>0 admits a rational parametrization, which can be algorithmically computed.
More explicitly, it is possible to define levels for the subsets S (α), α ≥ 1, according to inde-
gree. Then, given any choice of one index iα in each S (α), the concentration of any core
species xi in a subset S (β) can be rationally expressed in an effective way in terms of xiβ and

the variables xiα for which the indegree of S (α) is strictly smaller than the indegree of S (β).
Moreover, if the partition is minimal with m subsets of core species, the dimension of

Vf ∩ Rs>0 equals m and m = dim(S⊥).

Recall that a binomial is a polynomial with two terms and that a Laurent monomial is a
monomial with integer exponents, which can be negative.

Definition 4.2. A toric MESSI system is a MESSI system whose positive steady states
Vf ∩ Rs>0 can be described with binomials.

It is well known that the real positive points of a nonempty algebraic variety described by
binomials can always be parametrized by Laurent monomials. This implies that if the MESSI
system is toric, there exists a rational parametrization even if GE has directed cycles, as long
as the system is consistent.

We now show that many common MESSI systems are toric in an explicit way coming from
the structure of the network, which we call s-toric.
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In order to define s-toric MESSI systems, we need to use some concepts from graph theory.
A spanning tree of a digraph is a subgraph that contains all the vertices and is connected and
acyclic as an undirected graph. An i-tree of a graph is a spanning tree where the ith vertex
is its unique sink (equivalently, it is the only vertex of the tree with no edges leaving from
it). For an i-tree T , call cT the product of the labels of all the edges of T . For the associated
graph G2 of a MESSI network G, the products cT are monomials depending in principle on
both the rate constants τ and the x-variables.

Definition 4.3. A structurally toric, or s-toric MESSI system, is a MESSI system whose
digraph G satisfies the following conditions:
(C′) Condition (C) holds, and moreover, for every intermediate complex yk there exists a

unique core complex yij such that yij →◦ yk in G.
(C′′) The associated multidigraph MG2 does not have parallel edges, and the digraph G2 is

weakly reversible.
(C′′′) For each i ∈ {1, . . . , n} and any choice of i-trees T, T ′ of G◦2, the quotient cT /cT

′
only

depends on the rate constants τ .

Examples of networks satisfying condition (C′′′) are the phosphorylation cascades, as there
is a unique i-tree for each i. Our second running Example 2.8 also has this property (see Exam-
ple 4.4). Moreover, phosphorylation cascades, the multisite sequential distributive phosphory-
lation system, the multisite processive phosphorylation system, and the bacterial EnvZ/OmpR
network depicted in Figure 1 are s-toric MESSI systems.

Example 4.4 (running Example 2.8, continued). For the system in Example 2.8, the graph
G◦2 is

X
τ1
�
τ2

XT
τ3→ Xp

τ4y

Y
τ4xp
�
τ5xT

Yp.

In this case, there are two X-trees:

T1 : X ←
τ2

XT Xp,

τ4y

T2 : X XT
τ3→ Xp.

τ4y

However, cT1 = τ2τ4y, cT2 = τ3τ4y, and cT1/cT2 = τ2/τ3, which only depends on the rate
constants τi. For the other vertices, the corresponding tree is unique, and therefore this
MESSI network is s-toric.

We now clarify the meaning of condition (C′).
Example 4.5. Network (A) on the left of Figure 4 satisfies condition (C′), while network

(B) on the right does not since both core complexes X1 and X2 react via intermediates to the
intermediate complex U2.

We will use the following notation.

Notation 4.6. Given an intermediate complex yk of an s-toric MESSI system, denote by yij
the unique core complex reacting through intermediates to yk and denote by xϕ(k) the monomial

(9) xϕ(k) =

{
xixj if yij = Xi +Xj ,
xi if j = 0 and yij = Xi.
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U1 X3

X1 X2

U2

(A) (B) X1 � U1 → U2 � X2.

Figure 4. Validity of condition (C′).

As we recalled in Remark 3.9, the rational map τ : R#E
>0 → R#E1

>0 in Definition 3.8 verifies
that the steady states of the mass-action chemical reaction systems defined by G with rate
constants κ and G1 with rate constants τ (κ) are in one-to-one correspondence via the projec-
tion π(u, x) = x. We now give conditions for the inverse of this projection to be a monomial
map in the concentrations of the core species.

Proposition 4.7. Given a MESSI network G that satisfies condition (C′) in Definition 4.3,
there are (explicit) rational functions µk ∈ Q(κ), 1 ≤ k ≤ p, such that for any steady state
x ∈ Rn>0 of the associated MESSI network G1, the steady state π−1(x) = (u(x), x) of G is
given by the monomial map:

(10) uk(x) = µk x
ϕ(k), k = 1, . . . , p.

The rational functions µk are in simple cases the usual Michaelis–Menten constants associated
with the original rate constants κ.

It holds that an s-toric MESSI system is toric, and, moreover, its positive steady states
can be described by explicit binomials.

Theorem 4.8. Any s-toric MESSI system is toric. Moreover, we can choose s−m′ explicit
binomials with coefficients in Q(κ) which describe the positive steady states, where m′ is the
number of connected components of G2.

In particular, given a MESSI network G with a partition of the set of species as in (4),
assume that for each α ≥ 1 and Xi 6= Xj ∈ S (α) in the same connected component of G2

there exists a unique simple path Pji in G◦2 from Xj to Xi.
2 Then, the associated dynamical

system is s-toric and there exist explicit µk and ηij in Q(κ) such that the s −m′ binomials
describing the positive steady states can be chosen from the following:

uk − µkxϕ(k) = 0(11)

for each intermediate Uk (1 ≤ k ≤ p),
xhxi − ηijxmxj = 0(12)

if Xi
τxh−→ Xj is in G◦2 and Xj

τ ′xm−→ X` is in Pji.

Xi
τxh−→ Xj

X`

τ ′xm

Example 4.9 (running Example 2.7, continued). Recall that the graph G◦2 for the cascade
in Example 2.7 is

S0
τ1e
�
τ2f

S1, P0

τ3s1
�
τ4f

P1,

2A simple path is a path that visits each vertex exactly once.
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and the graph G2 has two extra connected components, corresponding to the isolated nodes
E and F . Clearly, for each vertex in G◦2 there is only one simple directed path from the other

vertex in the same connected component. For example, the only S1-tree, T , is S0
τ1e→ S1 and

cT = τ1e.
We denote the concentration of the intermediate species es0, fs1, s1p0, fp1 by u1, u2, u3, u4,

respectively. The corresponding rational functions µ1, . . . , µ4 in the statement of Proposi-
tion 4.7 equal

µ1 =
κ1

κ2 + κ3
, µ2 =

κ4
κ5 + κ6

, µ3 =
κ7

κ8 + κ9
, µ4 =

κ10
κ11 + κ12

.

We further denote η1 = τ2
τ1
, η2 = τ4

τ3
. According to Theorem 4.8, the following 6 = 10 − 4

binomials describe the positive steady states of the associated MESSI system:

u1−µ1e.s0 = u2−µ2f.s1 = u3−µ3s1.p0 = u4−µ4f.p1 = e.s0−η1f.s1 = s1.p0−η2f.p1 = 0.

The first four binomials correspond to (11), and the last two occur in (12).

5. Toric MESSI systems and multistationarity. We present in this section a necessary
and sufficient criterion to decide whether a system is multistationary, which holds for toric
MESSI systems (see Definitions 4.2 and 4.3). Again, the assumptions we make seem to be
very restrictive. Nevertheless, it can be easily seen that all standard phosphorylation cascades,
multisite sequential phosphorylation networks, and many two component bacterial networks
are of this form, so there is a wide range of applications. This is summarized in Theorems 5.4
and 5.8. We implemented this result by means of Algorithm 1, which certifies mono- or
multistationarity and in this last case provides different choices of rate constants for which
multistationarity occurs.

Necessary and sufficient conditions. Theorem 5.4 below gives a necessary and sufficient
criterion to detect the capacity for multistationarity of a toric MESSI system. It is deduced
from results in [32] and [34]. Then, we give in Proposition 5.6 checkable conditions that ensure
the validity of the hypotheses of Theorem 5.4. When the system is not monostationary,
we finally show in Theorem 5.8 how to choose rate constants for which the system shows
multistationarity (see also [4, 10]).

Notation 5.1. Let G be a MESSI network. Assume the positive steady states of the asso-
ciated dynamical system are described by binomials xv

′ − ηxv. We call T the subspace of Rn
generated by all these vectors v′ − v. Choose any matrix B whose columns form a basis of T .
For a positive vector x write (xB)j = xBj , where Bj denotes the jth column of B. Then, there
exists a constant vector η such that x is a positive steady state of the associated system if and
only if xB = η. Considering the orthogonal complement of T in Rs, we construct another
matrix B⊥ whose rows form a basis of the orthogonal subspace T⊥. We can choose both B
and B⊥ with integer entries. We consider also a matrix M whose columns form a basis of the
stoichiometric subspace S. Again, we construct a matrix M⊥ whose rows form a basis of the
orthogonal complement S⊥. Thus, when the stoichiometric and the kinetic spaces coincide,
the row vectors of M⊥ are the coefficients of a basis of linear conservation relations. For
any natural number s we denote [s] = {1, . . . , s}. Given a matrix A ∈ Rd×s with s ≥ d and a
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subset J ⊆ [s], we denote by AJ the submatrix of A with column indices in J . We furthermore
denote Jc the complement of J in [s] and ν(J) =

∑
j∈J j. An orthant O ⊂ Rs is defined by

the signs of the coordinates of its points and it will be identified with a vector in {−1, 0, 1}s.

Definition 5.2. Given matrices M⊥ and B⊥ as above, with d = rank(M⊥) = rank(B⊥),
we define the following sets of signed products:

Σ = {sign(det(M t
I) det(Bt

I)) : I ⊆ [s], #I = s− d},
Σ⊥ = {sign((−1)ν(J) det(M⊥J ) det(Bt

Jc)) : J ⊆ [s], #J = d},
Σ⊥ = {sign((−1)ν(J) det(M t

Jc) det(B⊥J )) : J ⊆ [s], #J = d},
Σ⊥⊥ = {sign(det(M⊥J ) det(B⊥J )) : J ⊆ [s], #J = d}.

We say that a set σ 6= {0} of signs is mixed if {−,+} ⊂ σ and unmixed otherwise.

The following lemma is a consequence of Lemma 2.10 in [32] (and the references therein).

Lemma 5.3. With the notation of Definition 5.2, if any of the four signs sets Σ,Σ⊥,Σ⊥,Σ
⊥
⊥

is different from {0}, the four of them are, and if so, if any of the four is mixed, all of them
are mixed.

The following theorem gives a necessary and sufficient criterion to determine if the toric
MESSI system is monostationary, based on [32] and [34].

Theorem 5.4. Let G be a toric MESSI network with matrices M and B as above, which
verifies that rank(M) = rank(B) = d and the signs sets Σ,Σ⊥,Σ⊥,Σ

⊥
⊥ are different from {0}.

Then, the following statements are equivalent:
1. The associated MESSI system is monostationary.
2. The signs sets Σ,Σ⊥,Σ⊥,Σ

⊥
⊥ are unmixed.

3. For all orthants O ∈ {−1, 0, 1}s,O 6= 0, either S ∩ O = ∅ or T⊥ ∩ O = ∅.

Example 5.5 (Example 2.7, continued). Consider the two phosphorylation cascades in Fig-
ure 2. Both cascades differ in the phosphatases: the cascade in Figure 2(B) has different
phosphatases for each layer, while the cascade (A) does not. The set Σ corresponding to
the cascade in (B) is unmixed, which according to Theorem 5.4 implies that the system is
monostationary. In contrast, the set Σ for the cascade in (A) is mixed, and the system has
the capacity for multistationarity. For instance, if we consider J the set of indices correspond-
ing to S0, P0, ES0, and FP1, and J̃ the set of indices corresponding to S0, P1, ES0, and FP1

(where 4 = rank(M⊥) = rank(B⊥)), sign(det(M⊥J ) det(B⊥J )) 6= sign(det(M⊥
J̃

) det(B⊥
J̃

)), and
they are both nonzero.

If we add the reactions P1 + D � P1D, which represent a drug interacting with the
phosphorylated form P1, we can check that this new system remains multistationary for the
cascade (A). The new matrices M̂ and B̂ can be obtained in the following way:

P1 D P1D

M̂ t =


∗ 0 0

M t
...

...
...

∗ 0 0
0 . . . 0 1 1 −1

 ,

P1 D P1D

B̂t =


∗ 0 0

Bt
...

...
...

∗ 0 0
0 . . . 0 1 1 −1

 .
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Both sets of indices J and J̃ witnessing multistationarity do not contain P1. Then, from the
structure of the matrix sign(det(M̂ t

J∪{P1}) det(B̂t
J∪{P1})) 6= sign(det(M̂ t

J̃∪{P1}
) det(B̂t

J̃∪{P1}
)),

which by Theorem 5.4 ensures that the cascade with the drug is multistationary.

For s-toric MESSI systems we give in Proposition 5.6 below sufficient conditions for the
hypothesis in Theorem 5.4 that the ranks of M and B coincide. These conditions are not
necessary, but if any of them is not satisfied, the ranks might be different.

Proposition 5.6. Let G be an s-toric MESSI network G. Assume that the partition is
minimal with m subsets of core species and the associated digraph GE has no directed cycles.
Then, rank(B⊥) = rank(M⊥) = m.

Example 5.7 (necessity of the hypothesis about GE in Proposition 5.6). If there are directed
cycles inGE , we cannot assert that rank(M⊥) = rank(B). Consider, for instance, the following
MESSI network without intermediate complexes:

S0 +R1
κ1→ S1 +R1, S1 +R0

κ2→ S0 +R0,

P0 + S0
κ3→ P1 + S0, P1 + S1

κ4→ P0 + S1,

R0 + P0
κ5→ R1 + P0, R1 + P1

κ6→ R0 + P1,

where S is the disjoint union of S (1) = {S0, S1}, S (2) = {P0, P1}, and S (3) = {R0, R1}.
The corresponding digraph G2 equals

S0
κ1r1
�
κ2r0

S1, P0

κ3s0
�
κ4s1

P1, R0

κ5p0
�
κ6p1

R1,

and the digraph GE is a cycle: S (1) → S (2) → S (3).

We call s0, s1 the concentrations of S0, S1 (respectively), p0, p1 the concentrations of P0, P1,
and r0, r1 the concentrations of R0, R1. There are three linearly independent conservation
relations:

s0 + s1 = C1, p0 + p1 = C2, r0 + r1 = C3.

We expect the rank of B to be 3. But the system equals

ds0/dt = −κ1s0r1 + κ2s1r0, dp0/dt = −κ3s0p0 + κ4s1p1, dr0/dt = −κ5p0r0 + κ6p1r1,

and so we can choose B to be the matrix −1 1 0 0 1 −1
−1 1 −1 1 0 0

0 0 −1 1 −1 1

 ,

which has rank 2.
Assume there exists a positive steady state. Then, we deduce that

(13) κ1κ4κ5 = κ2κ3κ6.

So, when (13) is not satisfied, there are no positive steady states, and when it is satisfied, any
of the three steady state equations is a consequence of the other two, and when we intersect
with the linear variety defined by the conservation relations, we get a variety of dimension 1,
with an infinite number of positive steady states (there are 5 equations in 6 variables).
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If a consistent toric MESSI system is not monostationary, we can effectively construct
two different steady states x1 and x2 and a reaction rate constant vector κ that witness
multistationarity based on item (3) in the statement of Theorem 5.4, following the arguments
in [34] (see also [4, 10]).

Theorem 5.8. Let G be a consistent MESSI network which satisfies the hypotheses of The-
orem 5.4, such that the associated system is toric and it is not monostationary. Then, for any
choice of w ∈ S,v ∈ T⊥ in the same orthant, the positive vectors x1 and x2 defined as

(
x1i
)
i=1,...,s

=

{ wi
evi−1 if vi 6= 0,

any x̄i > 0 otherwise,

x2 = diag(ev)x1

are two different steady states of the given toric MESSI system for any vector of rate constants
κ which is a positive solution of the linear system f(x1,κ) = 0, with f(x1,κ) as in (2).

An algorithm to find different steady states in multistationary toric MESSI systems.
We present here an algorithm based on Theorems 5.4 and 5.8 which checks whether a con-
sistent toric MESSI system has the capacity for multistationarity. In this case, it looks for
orthants where S and T⊥ meet and finds two different steady states in the same stoichio-
metric compatibility class, together with a corresponding set of reaction constants (based on
[4, 10, 34]).

The algorithm to find these orthants relies on the theory of oriented matroids [2, 36, 37].
Recall that the support of a vector is defined as the set of its nonzero coordinates. A circuit
of a real matrix A is a nonzero element r ∈ rowspan(A) with minimal support (with respect
to inclusion). Given an orthant O (resp., a vector v), a circuit r is said to be conformal to
O (resp., v) if for any index i in its support, sign(ri) = Oi (resp., sign(ri) = sign(vi)). A
key result is that every vector v ∈ rowspan(A) is a nonnegative sum of circuits conformal to
v [37]. All the circuits of A can be described in terms of vectors of maximal minors of A
(see Lemma A.5 in Appendix A), and one can thus compute all orthants containing vectors
in rowspan(A) as those orthants O whose support equals the union of the supports of the
circuits conformal to O. These arguments also allow us to check the consistency of a given
network, that is, whether there is a positive element in the kernel of a matrix with columns
given by the reaction vectors y′ → y.

Efficiency can certainly be improved at any step of the algorithm, mainly to avoid unnec-
essary computations. The rows of M⊥ usually present some nice structure that minimizes the
search for orthants containing a circuit, because in the conditions of Theorem 3.2 all columns
corresponding to the same set in the partition of the species are equal, which produces many
zero minors that can be predicted. In Step 5, infinitely many different choices of v and w can
be obtained by considering positive linear combinations of all circuits which are conformal to
the orthant O (one circuit per support).

We implemented this algorithm in Octave [8] for the cascades in Figure 2. In the multi-
stationary case of only one phosphatase F , we obtained two different orthants O1,O2 where S
and T⊥ meet. In both cases, we computed for i = 1, 2 a choice of corresponding rate constants
κ(i) and two steady states x1(i) and x2(i) in the same stoichiometric compatibility class. We
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Algorithm 1 Test for multistationarity.

Given a consistent toric MESSI system with network G, the following procedure finds, if they
exist, multistationarity parameters κ or decides that the system is monostationary.
Input: A toric MESSI network G.

Step 0: Compute matrices M⊥ (or M) and B (or B⊥) for G.
Step 1: Compute Σ⊥ (or any of the sets Σ,Σ⊥,Σ

⊥
⊥). Check if Σ⊥ is mixed. If it is unmixed,

stop and assert that the system is monostationary.
Step 2: Compute the circuits for B⊥ and find an orthant whose support equals the union of

the circuits conformal to it.
Step 3: For the orthant computed in Step 2, check if there is a conformal circuit of M contained

in this orthant. In this case, check whether its support equals the union of the circuits
of M conformal to it. Otherwise, ignore it, and go back to Step 2.

Step 4: For each orthant O with S ∩ O 6= ∅ and T⊥ ∩ O 6= ∅, keep the conformal circuits.
Step 5: Build vectors v ∈ T⊥ and w ∈ S, for example, as the sum of the corresponding

conformal circuits.
Step 6: Output x1, x2 and κ that witness multistationarity, as in Theorem 5.8.

ordered the species S0, S1, P0, P1, ES0, FS1, S1P0, FP1, E, F . We considered in both cases
two sets of initial conditions (on the same stoichiometric compatibility class); first we set ini-
tial states S0 = Stot, P0 = Ptot, E = Etot, F = Ftot and then initial states S0 = Stot, P1 = Ptot,
E = Etot, F = Ftot, and all the other species equal to zero. We simulated the system and
we depicted the output in Figure 5, which confirms the occurrence of two stoichiometrically
compatible steady states for κ(1) and κ(2). Approximate values are as follows:

κ(1) ∼= (25.46, 0.86, 0.86, 11, 0.86, 0.86, 0.14, 0.21, 0.21, 37.47, 0.21, 0.21),

x1(1) ∼= (0.037, 3.47, 4.07, 1.02, 1.16, 1.16, 4.75, 4.75, 2.1, 0.052),

x2(1) ∼= (2.04, 0.47, 11.07, 0.019, 3.16, 3.16, 1.7, 1.75, 0.1, 1.05),

and

κ(2) ∼= (101.86, 1.72, 1.72, 33, 0.86, 0.86, 37.47, 0.13, 0.13, 0.42, 0.63, 0.63),

x1(2) ∼= (0.019, 0.052, 1.02, 4.07, 0.58, 1.16, 7.91, 1.58, 1.05, 1.16),

x2(2) ∼= (1.02, 1.05, 0.019, 11.07, 1.58, 3.16, 2.9, 0.58, 0.052, 0.16).

6. Discussion. Our contribution to the study of many different important biological sys-
tems modeled with mass-action kinetics is the identification of a common underlying structure
in quite diverse networks. We call this a MESSI structure, since it describes Modifications
of type Enzyme-Substrate or Swap with Intermediates. The mathematical formulation of
the distinguished properties of MESSI biological systems allows us to prove general results
on their dynamics from the structure of the network. We give very precise hypotheses that
ensure the validity of our statements and which can be easily verified in common networks of
biological interest.
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Figure 5. Witnesses for multistationarity of the phosphorylation cascade with one phosphatase F , with
reaction constants and total amounts obtained from two orthants O1,O2 given by Algorithm 1. Upper plots
depict the two different steady states constructed from O1 (dashed lines) along with the simulated trajectories
of S0, S1, P0, P1, E, and F . The initial state on the left is S0 = Stot, P0 = Ptot, E = Etot, F = Ftot, and
the initial state on the right is S0 = Stot, P1 = Ptot, E = Etot, F = Ftot. The lower plots correspond to
O2, with the same initial conditions. We used the function ode23s from the package odepkg version 0.8.5 in
Octave [8].

It is important to observe that all the conditions and hypotheses in our paper can be
algorithmically checked. In particular, it is possible to devise an algorithm to check whether
a given network has a MESSI structure, to prove that a given partition is minimal, to con-
struct the associated digraphs and networks, including the corresponding labels, and to check
the hypotheses of all our statements. The construction of the rational parametrization in
Theorem 4.1 is also algorithmic. Note also that the sufficient conditions which ensure per-
sistence in Theorem 3.15 are independent of the conditions to have a toric MESSI system
or even an s-toric MESSI system, including the criterion for multistationarity given in Theo-
rem 5.4. However, the hypotheses in Proposition 5.6 to ensure the validity of the hypotheses
in Theorem 5.4 also imply persistence. This does not mean that multistationarity is related to
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persistence, but when there are boundary steady states the hypotheses of Theorem 5.4 should
be verified in an ad hoc manner.

Appendix A. Proofs. We assume the reader is familiar with the notion of the Laplacian
L(G) of a digraph G and its main properties. One key observation is that mass-action kinetics
associated with a linear digraph G with variables x = (x1, . . . , xs) equals ẋ = L(G)x. A
second key observation is that the fact that the rows of L(G) add up to zero translates into∑s

i=1 ẋi = 0, and so
∑s

i=1 xi is a conserved quantity. The last key observation is that when G
is strongly connected, the kernel of L(G) has dimension one and there is a known generator
ρ(G) with positive entries described as follows. Recall that an i-tree T of a graph is a spanning
tree where the ith vertex is its unique sink (equivalently, the ith is the only vertex of the tree
with no edges leaving from it), and we call cT the product of the labels of all the edges of T .
Then, the ith coordinate of ρ(G) equals

(14) ρ(G)i =
∑

T an i−tree
cT .

We refer the reader to [30, 47] for a detailed account.

Conservation relations and persistence. In order to prove Theorem 3.2, we need to first
introduce a remark. We call S1 the stoichiometric subspace of the biochemical network defined
by the associated digraph G1 of a MESSI reaction network G (with stoichiometric subspace
S). We denote by S̃1 = {(0, . . . , 0, w) ∈ Rp+n : w ∈ S1 ⊆ Rn} the lifting of S1 to Rp+n.

Remark A.1. With the previous notation, the following equality of dimensions is an im-
mediate consequence of Lemma 1 in the ESM of [14]:

(15) dim(S) = dim(S1) + p.

We will also need Lemma 3.13 in the main text.

Proof of Lemma 3.13. Each vertex in the associated digraphG2 to the digraphG is labeled
by only one species. If one species of S (α) appears on a vertex of G2, by (R2) and (R3) and the
construction of G2, all the species in the vertices of the corresponding connected component
of G2 belong to the same S (α). Moreover, if two core species Xi, Xh in the same subset S (α)

correspond to different connected components of G2, then for any complex yij containing Xi

and any complex yh` containing Xh, the relation yij →◦ yh` does not hold. It follows that we
can refine each subset S (α) as the disjoint union of the subsets of species in each connected
component of G2 which consists of species in S (α), and no further refinement is possible if
the set of intermediate species is maximal.

We are ready to prove Theorem 3.2. We will mainly adapt the results in [14] (Theorem 2.1)
to our setting.

Proof of Theorem 3.2. Given a chemical reaction network G and a partition of the set of
species S that leads to a MESSI system with the given complexes and reactions, consider
the mass-action system defined by G1, with species X1, . . . , Xn. By Theorem 2.1 in [14], the
conservation relations in G are in one-to-one correspondence with the conservation relations of
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G1 in an explicit way that we detail below after our hypotheses. Recall that by Remark 3.12,
the associated graph G2 determines the same equations.

Fix α ≥ 1. As we remarked in the proof of Lemma 3.13, each subset S (α) coincides with
the variables in the vertices of some of the connected components of the associated digraph

G2. Given such a connected component H, let S
(α)
H be its set of vertex labels. As G2 is

a linear digraph, H is also linear, and so the matrix of the associated (linear) system is
given by its Laplacian L(H). Therefore, the sum of its rows equals zero, which means that∑

Xi∈S
(α)
H

ẋi = 0 and a fortiori
∑

Xi∈S(α) ẋi = 0 for the mass-action system defined by G1.

We find now the corresponding linear combination which includes the concentrations of the
intermediate species by adapting Lemma 1 in the ESM of [14].

Let ωα ∈ {0, 1}n be the characteristic vector of S (α), so that 〈ωα, ẋ〉 =
∑

Xi∈S(α) ẋi. For

any complex yj of G1, we know from (R2) and (R3) that it has at most one species in S (α).
Then,

ωα · yj =

{
1 if there is a species of S (α) in yj ,
0 otherwise.

Define the (p+ n)-vector:

ω̃αi =


ωαi for i = p+ 1, . . . , p+ n,
1 if i ∈ Int(α),
0 otherwise,

where Int(α) is as in (5). Lemma 1 in the ESM of [14] asserts precisely that the linear form
defined by ω̃α leads to the conservation of the whole network associated with the linear form
defined by ωα on the variables in S1 = S \S (0). But this linear form is precisely `α, as we
wanted to prove. Since we are assuming that all species participate in at least one reaction
and intermediate species satisfy condition (C), we have that S (0) = ∪mα=1S Int(α). Therefore,
all coefficients of the conservation relation

∑m
α=1 `α are positive, and we get that any MESSI

system is conservative.
To see the second part of the statement, note that `1, . . . , `m are linearly independent

conservation relations and so dim(S⊥) = s − dim(S) ≥ m. It only remains to prove that, if
G has no swaps, then s − dim(S) ≤ m. By Remark A.1 it holds that dim(S) = dim(S̃1) + p
because clearly dim(S1) = dim(S̃1). It is then enough to show that dim(S̃1) ≥ n − m. If
Xi + Xj → X` + Xk in G1, and there are no swaps in G, either i ∈ {`, k} or j ∈ {`, k}.
Assume, without loss of generality, that j = k. Then e` − ei ∈ S1, for ei is the ith canonical
vector of Rn. As S is minimal, if Xi, X` ∈ S (α), necessarily Xi and X` belong to the same
connected component of G2. Then there is an undirected path between Xi and X` in G2. By
a telescopic sum, as in the proof of Lemma A.4 below, we have that each vector e` − ei ∈ S1
for each Xi, X` ∈ S (α). Fix Xi ∈ S (α); then for all ` 6= i, e` − ei ∈ S1. This gives us nα − 1
linearly independent vectors for each α ≥ 1, which are in turn linearly independent from the
corresponding vectors obtained from each β, β 6= α, 1 ≤ β ≤ m (when nα > 1). Adding over
α ≥ 1, we obtain n−m linearly independent vectors in S. (Notice that if S (α) is a singleton,
nα− 1 = 0.) Therefore, dim(S) ≥ p+n−m = s−m, which is what we wanted to prove. The
total number of conservation relations in a system is equal to the codimension of the kinetic
subspace. If, moreover, the kinetic subspace equals S, then dim(S⊥) = m, as claimed.
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We now focus on the occurrence of boundary steady states. Both Theorem 3.15 and
Proposition 4.7 below are based on the proof of Theorem 3.1 in [14] (Theorem 2 in their
ESM).

Proof of Theorem 3.15. Assume there is a boundary steady state in some stoichiometric
compatibility class that intersects the positive orthant.

Following the proof of Theorem 2 in the ESM of [14], it can be seen that at steady state the
concentration of an intermediate species uk is a nonnegative linear combination of monomials
in the concentrations of the core species in the complexes that react via intermediates to it.
Then, if there is an intermediate species Uk such that uk = 0 at steady state, there is at
least one core species (in a core complex that reacts via intermediates to Uk) that vanishes at
steady state. Therefore, if there is a boundary steady state, there is a core species Xi such
that xi = 0 at steady state.

By Lemma 3.13, we can refine the given MESSI structure in such a way that subsets of core
species are in bijection with the connected components of G2. In order to avoid unnecessary
notation, we will assume in what follows that the partition is minimal. Recall that a vertex
in a directed graph has indegree zero if it is not the head of any directed edge. Let us define
the subsets of indices

L0 ={β ≥ 1 : indegree of S (β) is 0},

Lk ={β ≥ 1 : for any edge S (γ) → S (β) in GE it holds that γ ∈ Lt, with t < k}\
k−1⋃
t=0

Lt, k ≥ 1.

The main observation that makes the following inductive argument work is that as S is finite
and there are no directed cycles in GE , there must exist a subset S (β) with 1 ≤ β ≤ m such
that its indegree in GE is zero. This means that L0 6= ∅.

Let ` ≥ 0 be minimal with the property that there exist α ∈ L` and a core species
Xi ∈ S (α) such that xi = 0 at steady state. Denote by Hα the connected component of G2

with vertices the species in S (α). Let ρ(Hα) be the generator of the kernel of L(Hα) as in (14).
Its entries are nonnegative sums of terms involving the rate constants τ and concentrations of
species in Lj with j < `. Then, ρ(Hα) has nonzero coordinates since Hα is strongly connected
because G2 is weakly reversible and ` is minimal. Moreover, the following equation is satisfied
at steady state for any Xj ∈ S (α):

(16) ρ(Hα)j xi − ρ(Hα)i xj = 0.

Then the corresponding concentrations xj vanish at steady state for any Xj ∈ S (α). Take k ∈
Int(α). The concentration of the intermediate species uk is a nonnegative linear combination
of monomials in the concentrations of the core species that react via intermediates to it. By
condition (C) and rule (R3), any such monomial contains one variable indexed by a species in
S (α). As xj = 0 for all j ∈ S (α), we get that uk = 0. This gives a contradiction by (6) in
Theorem 3.2 since Cα is a nonzero constant.

As MESSI systems are conservative, the existence of nonnegative steady states is guaran-
teed by fixed-point arguments. Indeed, a version of the Brouwer fixed-point theorem ensures
that a nonnegative steady state exists in each compatibility class. As the system has no
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boundary steady states, we deduce the existence of a positive steady state in each compati-
bility class, and, in particular, the consistency of the system.

Parametrizing the steady states. We first prove the existence of rational parametrizations
under the hypotheses of Theorem 4.1.

Proof of Theorem 4.1. The arguments of the proof are similar to those in the proof of
Theorem 3.15. Again, we will assume that the partition is minimal to ease the notation.
Recall the sets Lk in that proof and the crucial remark that L0 6= ∅ because the graph GE
has no directed cycles.

For each α ≥ 1, fix Xiα ∈ S (α). Because of the minimality of the partition, any other
Xi ∈ S (α) lies in the connected component Hα of G2 containing Xiα . We can then parametrize
all the species in S (α) for α ∈ Lk in terms of xiα and the species in Lj for j < k, recursively
using (16) to write

xi =
ρ(Hα)i
ρ(Hα)iα

xiα

at steady state. Moreover, the concentrations of intermediate species can be rationally written
in terms of all xiα , α = 1, . . . ,m (see Definition 3.8 and Remark 3.9). Thus, dim(Vf∩Rs>0) = m.
The last equality dimS⊥ = m in the statement follows from Theorem 3.2 using Remark 3.16.

We show now that the positive steady states of s-toric MESSI systems can be described
by binomials, and we postpone the proof of the choice of very explicit binomials when any
pair of nodes in the same component are connected by a single simple path.

Proof of Proposition 4.7. Following the arguments in [14], we first build a new labeled
directed graph Ĝ with node set S (0) ∪ {∗}, which consists of collapsing all core complexes
into the vertex ∗, and label directed edges that are obtained from hiding the core complexes

in the labels. For example, Xi + Xj
κ→ Uk becomes ∗

κxixj−→ Uk and Uk
κ′→ Xi + Xj becomes

Uk
κ′−→ ∗. This new graph is linear and satisfies that u̇ = 0 is equivalent to L(Ĝ) ũ = 0, where

ũ = (u1, . . . , up, 1)t (this last coordinate stands for “the concentration” of the node ∗). It is

important to notice that the graph Ĝ is strongly connected by condition (C).
Then, at steady state we obtain that ũ is proportional to the vector ρ

G̃
= (ρ1, . . . , ρp, ρ)

defined in (14), so that uk = ρk/ρ for any k = 1, . . . , p. It is straightforward to check that
every ∗-tree involves labels in Q[κ]. On the other hand, for every Uk, as by condition (C′)
there is a unique core complex yikjk such that yikjk →◦ yk, every k-tree involves labels in
Q[κ, xikxjk ]. Moreover, as there must be a path from ∗ to Uk in each k-tree, xikxjk necessarily
appears as a label on those trees. Then,

(17) uk = µk xikxjk , k = 1, . . . , p,

where

µk =
ρk

xikxjk

1

ρ
∈ Q(κ).

Proof of the first part of Theorem 4.8. Let x be a positive steady state and Xi 6= Xj in
S (α) in the same connected component H of G2. Let ρ(H) be the explicit generator of the
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kernel of L(H) as in (14). Then, as in (16), ρ(H)jxi − ρ(H)ixj = 0. Fix a j-tree T0. The
product of the labels cT0 of all the edges in T0 is equal to a monomial xγj times a polynomial
in the rate constants τ . For any other j-tree T , condition (C′′′) ensures that cT = µT (τ) cT0 ,
with µT ∈ Q(τ). It follows that the quotient of the sum ρ(H)j by xγj lies in Q(τ) (and also
there exists a monomial xγi such that ρ(H)i/x

γi ∈ Q(τ)). Call

(18) ηij = ρ(H)ix
γj/ρ(H)jx

γi ∈ Q(τ) ⊂ Q(κ).

Then, xγjxi − ηijx
γixj = 0. Combining this with (17), the positive steady states can be

described by the binomials:

uk − µkxϕ(k) for each intermediate species Uk,(19)

xγjxi − ηijxγixj if Xi, Xj lie in the same connected component of G2.(20)

We can fix one species Xih in each connected component H of G2 and consider the binomial
equations of the form in (20) where i = ih. There are p further binomial equations in (19).
These p+ n−m′ = s−m′ binomial equations cut out the positive steady states.

To prove the second part of Theorem 4.8, we first need a combinatorial lemma.

Lemma A.2. Assume H is a digraph with the property that there is a unique simple path
Pij from any node Xi to any node Xj in the same connected component of H. Then the
following hold:

(i) For each vertex Xi of H there is only one i-tree, denoted by Ti.

(ii) Let Xi
τxh−→ Xj be an edge in H. Then, Ti is obtained from Tj by deleting the edge

Xi
τxh−→ Xj and adding the edge Xj

τ ′xm−→ X`, where X` is such that Xj
τ ′xm−→ X` is in

Pji.

Proof. Proof of (i): Let Xj (j 6= i) be in the same connected component of H as Xi. In
any i-tree there is an edge leaving from Xj ; otherwise Xj would be another sink different from
Xi. Moreover, there must be a path from Xj to Xi in any such i-tree. If the path visits some
vertex two (or more) times, there would be a cycle in the underlying undirected graph of the
tree, which is not possible. Hence, the path is simple. By hypothesis, there is only one choice
for this path, and so there is only one i-tree in H.

Proof of (ii): Call T ′ the new digraph obtained from Tj by deleting the edge Xi
τxh−→ Xj

and adding the edge Xj
τ ′xm−→ X`. T

′ still visits every vertex of the corresponding connected
component of H, and the only vertex from which no arrows leave is Xi. We claim that there
are no cycles in T ′. In fact, the only possible cycle in T ′ must involve the new edge from Xj

to X`. Then, there is a directed path in T ′ (and therefore in H) from X` to Xj . Moreover, as
the paths in Tj are simple, this path from X` to Xj in T ′ is simple. But in H there is another
simple path P`i ∪ {Xi → Xj} from X` to Xj , which is different from the one obtained in T ′

since the edge Xi → Xj does not exist in T ′. This is a contradiction since by assumption
there is only one simple path in H from X` to Xj . Then, T ′ = Ti.

Proof of the second part of Theorem 4.8. If there is a unique simple path Pij from each

Xi to each Xj in the same connected component of G2, and Xi
τxh−→ Xj is in G2, the binomial
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in (19) involves the edges on Ti and the edges on Tj . But, from Lemma A.2, Ti and Tj only

differ in the edges Xi
τxh−→ Xj and Xj

τ ′xm−→ X`, where X` is such that Xj
τ ′xm−→ X` is in Pji.

Then, after taking out a monomial, the following binomials define the positive steady states:

uk − µkxϕ(k) for each intermediate species Uk,

τxhxi − τ ′xmxj if Xi
τxh−→ Xj in G◦2 and Xj

τ ′xm−→ X` is in Pji.

Xi
τxh−→ Xj

X`

τ ′xm

This completes the proof.

Toric MESSI systems and multistationarity. We will prove Theorem 5.4 by adapting
Proposition 3.9 and Corollary 2.15 in [32] and Theorem 5.5 in [34] to our setting. We recall
that a chemical reaction system has the capacity for multistationarity if there exists a choice
of rate constants such that there are two or more positive steady states in one stoichiometric
compatibility class (x0 + S) ∩ Rs≥0 for some initial state x0 ∈ Rs≥0 (and it is monostationary
otherwise).

Remark A.3. Consider a toric MESSI system whose positive steady states can be described
by binomial equations of the form xy

′ − ηxy = 0. Equivalently, the positive steady states of
the toric MESSI system can be described by the monomial equations xy

′−y = η, where we
consider Laurent monomials. We construct now a matrix B whose columns form a basis of the
subspace T generated by these difference vectors y′− y, and also the monomial map x 7→ xB,

where (xB)j = xBj = x
B1j

1 · . . . · xBsjs , for each column Bj of B. Then x∗ is a positive steady
state of the system if and only if x∗B = η̃ for an appropriate vector η̃. Thus, the system is
monostationary for any choice of rate constants if and only if the monomial map x 7→ xB is
injective on each stoichiometric compatibility class (x0 + S) ∩ Rs>0 for every x0 ∈ Rs>0.

Proof of Theorem 5.4. Under the hypotheses in the statement, we want to prove the equiv-
alence of the assertions:

(i) The associated MESSI system is monostationary.
(ii) The signs sets Σ,Σ⊥,Σ⊥,Σ

⊥
⊥ are unmixed.

(iii) For all orthants O ∈ {−1, 0, 1}s,O 6= 0, either S ∩ O = ∅ or T⊥ ∩ O = ∅.
We first prove (i) ⇔ (ii) by adapting the results in [32]. We will see that (i) and (ii) are both
equivalent to

{sign(v) : v ∈ ker(Bt)} ∩ {sign(v) : v ∈ S} = {0},

where (sign(v))i = sign(vi) for i = 1, . . . , s. This is also equivalent by the definition of T⊥ to

(21) {sign(v) : v ∈ T⊥} ∩ {sign(v) : v ∈ S} = {0}.

By Remark A.3, (i) is equivalent to the injectivity of the map x 7→ xB on each stoichiometric
compatibility class (x0+S)∩Rs>0. We deduce from Proposition 3.9 in [32] that (i) is equivalent
to (21). Previously, in Corollary 2.15 the authors had proved that (21) is in turn equivalent to
asking that for all J ⊆ [s], #J = s− d = rank(B) = rank(M), det(BJ) det(MJ) is either zero
or has the same sign as all other nonzero products, and, moreover, at least one such product
is nonzero. In other words, (21) is equivalent to the set Σ being unmixed. By Lemma 5.3,
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this is equivalent to (ii). To finish the proof, we just need to show that (21) ⇔ (iii), but this
is straightforward.

We now prove Theorem 5.8, and we postpone the proof of Proposition 5.6, which needs
an ancillary lemma.

Proof of Theorem 5.8. By Theorem 5.4, if the system is not monostationary, we know that
there exists an orthant O ∈ {−1, 0, 1}s,O 6= 0, such that S ∩ O 6= ∅ and T⊥ ∩ O 6= ∅. Then,
there exist w ∈ S,v ∈ T⊥ such that sign(w) = sign(v). Inspired by Theorem 5.5 in [34],
for any index i not in the support of v, we choose any positive real number hi and we define
positive vectors x1 and x2 as follows:

(
x1i
)
i=1,...,s

=

{ wi
evi−1 if vi 6= 0,

hi otherwise,

x2 = diag(ev)x1,

where “ex” for a vector x ∈ Rs>0 denotes the vector (ex1 , ex2 , . . . , exs) ∈ Rs and diag(x) denotes
the diagonal matrix whose diagonal is the vector x.

As the system is consistent, there exists a positive vector λ such that
∑

y→y′ λyy′(y
′−y) =

0. For any edge y → y′, take the (positive) rate constant

kyy′ = λyy′(x
1)−y,

which defines a positive vector κ satisfying

f(x1,κ) =
∑
y→y′

κyy′ (x
1)y (y′ − y) = 0.

Then, x1 is a positive steady state of the system for these reaction rate constants κ. As the
system is a toric MESSI system, x1 is a solution of the binomial equations that describe the
positive steady states. Call η := (x1)B. Then, x is a positive steady state of the system if
and only if xB = η. It can be checked that ((x2)B)j = e〈v,Bj〉(x1)Bj , and, as v ∈ T⊥, we have
(x1)B = (x2)B = η. Therefore, x2 is also a positive steady state of the system. Moreover,
x2 − x1 = w ∈ S, and so x1 and x2 belong to the same stoichiometric compatibility class.

Recall the definitions of S1 and S̃1 before Remark A.1.

Lemma A.4. Assume that condition (C′) in Definition 4.3 holds, and consider the vectors

(22) vk = yk − yikjk .

Then, S = S̃1 ⊕ 〈v1, . . . , vp〉.
Proof. It is clear, from the definitions of S̃1 and the vectors vk, that S̃1∩〈v1, . . . , vp〉 = {0}

(as no intermediate complex appears in the reactions of G1). Moreover, the vectors vk are
linearly independent, and therefore dim(〈v1, . . . , vp〉) = p. By Remark A.1, we know that
dim(S) = dim(S1) + p = dim(S̃1) + p. Thus, we only need to show now that S ⊇ S̃1 ⊕
〈v1, . . . , vp〉.
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For simplicity, we will assume that all core complexes consist of two species, but it is easy
to adapt the proof for the case where the core complexes consist of only one species. We first
notice that vk ∈ S for all k. In fact, if Xik +Xjk →◦ Uk, there exist Uk1 , . . . , Ukt intermediates
such that the chain of reactions Xik +Xjk → Uk1 → · · · → Ukt → Uk is in G. Therefore, from
the telescopic sum yk−yikjk = (yk−ykt)+(ykt−ykt−1)+ · · ·+(yk2−yk1)+(yk1−yikjk), we see
that vk ∈ S, as we wanted to prove. Given Xi+Xj → X`+Xm in G1, there exist intermediates
Uk1 , . . . , Ukt such that the chain of reactions Xi + Xj → Uk1 → · · · → Ukt → X` + Xm is in
G. As above, from a telescopic sum we deduce that y`m − yij ∈ S. Hence, S̃1 ⊆ S and
S̃1 ⊕ 〈v1, . . . , vp〉 ⊆ S.

Proof of Proposition 5.6. By Theorem 4.1, we know that rank(M⊥) = m. We show now
that rank(B) = s − m, or equivalently that dim(T ) = s − m = p + n − m. From (17) we
see that the vectors vk defined in (22) live in T for all 1 ≤ k ≤ p (recall that yk denotes the
vector corresponding to the monomolecular complex Uk). This implies that 〈v1, . . . , vp〉 ⊆ T .
As none of the exponents determined by (19) involves any variable ui, it is enough to find
n−m linearly independent vectors in T that have support in the last n coordinates.

Call Tx the projection πx(T ) of T onto the last n coordinates corresponding to x1, . . . , xn.
We need to prove then that dim(Tx) = n − m. For each α ≥ 1, fix iα ∈ S (α) and for
each Xj ∈ S (α), j 6= iα, call ziαj = (γj + eiα) − (γiα + ej), the vector in Rn deduced from
the exponents of the binomials in (19). Denote by Tα the linear subspace with generators
{ziαj}j 6=iα . We claim that dim(Tα) = nα − 1 for any α ≥ 1 and that Tx = T1 ⊕ T2 ⊕ · · · ⊕ Tm.

To prove these claims, we need to recall the proof of Theorem 3.15. We consider again
the subsets L0, L1, . . . , and we assume that α ∈ Lk. Then, as remarked in the last paragraph
of that proof, it holds that the connected component Gα2 with vertices in S (α) (ensured by
Lemma 3.13 by our hypothesis of minimality of the partition) has labels in Q[τ, xβ : β ∈ Lt, t <
k]. This implies that the jth coordinate of the vector ziαh equals −1 if h = j and 0 otherwise.
So the vectors {ziαj}j 6=iα are linearly independent, that is, dim(Tα) = nα−1, and by a similar
argument we deduce that the sum is direct. Therefore, dim(Tx) =

∑m
α=1(nα− 1) = n−m, as

wanted.

Algorithm. Step 1 in the algorithm follows directly from Theorem 5.4. Step 7 follows from
[4, 10, 34] and Theorem 5.8. Theorem 4.8 explains how to find a matrix B for an s-toric MESSI
system. The intermediate steps follow from the following considerations. Given a matrix A,
every vector in rowspan(A) is a conformal sum of circuits. (We refer the reader to [31, 37, 44].)
Moreover, the circuits of a matrix A ∈ Rd×s of rank d are found in the following way. For
J ⊆ [s] with #J = d− 1, define rJ ∈ rowspan(A) as the vector rJ,` = (−1)µ(`,J) det(AJ∪{`}),
where µ(`, J) is the sign of the permutation of J ∪ {`} which takes ` followed by the ordered
elements of J to the ordered elements of J ∪ {`} for all ` ∈ {0, . . . , s}. The following lemma
is straightforward and well known.

Lemma A.5. Let A ∈ Rd×s be a matrix of rank d and J ⊆ [s] such that #J = d − 1 and
rank(AJ) = d− 1. Then rJ is a circuit of A. Moreover, up to a multiplicative constant, these
are all the circuits of A (possibly repeated).
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