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Abstract. A Krein space H and bounded linear operators B,C on H

are given. Then, some min and max problems about the operators
(BX − C)#(BX − C), where X runs over the space of all bounded
linear operators on H, are discussed. In each case, a complete answer
to the problem, including solvability conditions and characterization of
the solutions, is presented. Also, an adequate decomposition of B is
considered and the min-max problem is addressed. As a by-product the
Moore-Penrose inverse of B is characterized as the only solution of a
variational problem. Other generalized inverses are described in a simi-
lar fashion as well.

Mathematics Subject Classification (2010). 47A58, 47B50, 41A65.

Keywords. Operator approximation, Krein spaces, Moore-Penrose in-
verse.

1. Introduction

Several least squares problems, especially in connection with the search of
alternative H∞ algorithms in system and control theory, have been placed in
the Krein space framework. Roughly speaking, the consideration of suitable
space models for the set of observations data have brought into play indefi-
nite metric spaces and, on the basis of the given information, least squares
problems on those spaces. Some references from the nineties are [16, 17, 18].
Commonly those least squares estimations are formulated and solved in terms
of vectors in Krein spaces and more often than not the vectors are set in the
(n+m)-dimensional Minkowski space.

We discuss, instead, least-squares problems for Krein space operators.
The approach we opt for is taken from [12, 13]. Several arguments we present
are adapted from [6, 7].

http://arxiv.org/abs/1711.08787v1
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Our aim is dual: to study abstract least-squares-type problems for Krein
space operators and to do so from a geometrical viewpoint. Pseudo-regularity
plays a key role, either as a technical tool to generalize some finite-dimensional
indefinite metric space arguments to the general Krein space framework or as
the natural assumption to grant solvability. In that regard we should mention
that every closed subspace of a Pontryagin space is pseudo-regular and, on
the other hand, that every pseudo-regular subspace of a Krein space is the
range of a normal projection. We may say so that pseudo-regular subspaces
lie somewhere in between closed subspaces and regular subspaces. For more
details on the subject see [14] and [21].

Recall that, in the Hilbert space case, the Moore-Penrose inverse B† of
a given bounded linear operator B satisfies the equations BB†B = B and
B†BB† = B†, and that both BB† and B†B are selfadjoint. If B is a closed
range operator then B† is known to be the unique minimal norm solution of
a linear equation. In the Krein space framework the analysis of the existence
of a generalized inverse B† such that BB† and B†B are selfadjoint – with
respect to the indefinite inner product – was carried on by X. Mary [22]. He
found out that a bounded linear operator B admits a unique bounded Moore-
Penrose inverse if and only if both the range and null space of B are regular
subspaces. His treatment is exhaustive but it fails to include the variational
characterization of the Moore-Penrose inverse.

Under the necessary and sufficient conditions given by Mary, we do
identify B† as the unique solution of a variational problem. Furthermore,
when the projections associated to the generalized inverse are only required
to be normal – with respect to the indefinite inner products – we prove that
pseudo-regularity of the range R(B) and null space N(B) are necessary and
sufficient conditions for a closed range B to admit such a sort of generalized
inverse. Matter-of-factly, if that is the case, there exists a whole family of
generalized inverses which is in one to one correspondence with the set of
pairs (Q,P ) with Q a normal projection onto R(B) and P a normal projection
onto N(B). Besides, we characterize the generalized inverses in a variational
way just as we do it for the Moore-Penrose inverse.

The paper comprises five sections, six if this introductory section is
included. Section 2 is a brief expository introduction to Krein spaces and op-
erators on them and serves to fix the notation. It presents also some results
that are needed in the following sections. In Section 3 the notion of indefi-
nite inverse of an operator is defined, generalizing the concept of W -inverse
introduced by Mitra and Rao for matrices in [23], and extended later for op-
erators acting on Hilbert spaces in [8]. In Section 4 we deal with the problem
of determining whether the

min
X∈L(H)

(BX − C)#(BX − C)1

exists for B a given closed range bounded operator and C either the identity
operator or any given bounded operator. The solutions to these problems are

1
L(H) stands for the space of all the bounded linear operators from H to H.
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characterized as the indefinite inverses of B. The results about this indefinite
minimization problem and their counterparts for the symmetric maximization
problem are applied in Section 5 where B is factorized as B = B+ +B− and
the min-max problem

min
X∈L(H)

max
Y ∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C)

is addressed. Section 6 contains the main results about the Moore-Penrose
inverse and the generalized inverses of a given Krein space operator.

2. Preliminaries

In the following all Hilbert spaces are complex and separable. If H and K
are Hilbert spaces, L(H,K) stands for the space of all the bounded linear
operators from H to K and CR(H,K) for the subset of L(H,K) comprising
all the operators with closed ranges. When H = K we write, for short, L(H)
and CR(H). The range and null space of any given A ∈ L(H,K) are denoted
by R(A) and N(A), respectively.

The direct sum of two closed subspaces M and N of H is represented
by M+̇N . If H is decomposed as H = M+̇N , the projection onto M with
null space N is denoted PM//N and abbreviated PM when N = M⊥. In
general, Q is used to indicate the subset of all the oblique projections in
L(H), namely, Q := {Q ∈ L(H) : Q2 = Q}.

The following is a well-known result about range inclusion and factor-
izations of operators. We will refer to it along the paper.

Theorem 2.1 (Douglas’ Theorem [9]). Let Y, Z ∈ L(H). Then R(Z) ⊆ R(Y )
if and only if there exists D ∈ L(H) such that Z = Y D.

Krein Spaces

Although familiarity with operator theory on Krein spaces is presumed, we
hereafter include some basic notions. Standard references on Krein spaces
and operators on them are [1, 4, 5]. We also refer to [10, 11] as authoritative
accounts of the subject.

Consider a linear space H with an indefinite metric, i.e., a sesquilinear
Hermitian form [ , ]. A vector x ∈ H is said to be positive if [x, x ] > 0.
A subspace S of H is positive if every x ∈ S, x 6= 0, is a positive vector.
Negative, nonnegative, nonpositive and neutral vectors and subspaces are
defined likewise.

We say that two closed subspaces M and N are orthogonal, and we
write M [⊥] N , if [m,n ] = 0 for every m ∈ M and n ∈ N . We denote the
orthogonal direct sum of two closed subspaces M and N by M [∔] N .

Given any subspace S of H, the orthogonal companion of S in H, say
S [⊥], is defined as

S [⊥] := {x ∈ H : [x, s ] = 0 for every s ∈ S}.

The isotropic part So := S ∩ S [⊥] can be a non-trivial subspace.
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An indefinite metric space (H, [ , ]) is a Krein space if H admits a
decomposition into an orthogonal direct sum in the form

H = H+ [∔] H− (2.1)

where (H+, [ , ]) and (H−,−[ , ]) are Hilbert spaces. Any decomposition
with these properties is called a fundamental decomposition of H.

Given a Krein space (H, [ , ]) with a fundamental descomposition H =
H+ [∔] H−, the (orthogonal) direct sum of the Hilbert spaces (H+, [ , ]) and
(H−,−[ , ]) is a Hilbert space. It is denoted by (H, 〈 , 〉). Notice that the
inner product 〈 , 〉 and the corresponding quadratic norm ‖ ‖ depend on the
fundamental decomposition. A subspace S of H is called uniformly positive

if, for some Hilbert space inner product 〈 , 〉 on H, there exists ε > 0 such
that [ s, s ] ≥ ε‖s‖2 for every s ∈ S. Uniformly negative subspaces are defined
in a similar fashion.

Every fundamental decomposition of H has an associated signature op-

erator, to wit, J := P+ − P− where P± := PH±//H∓
. The indefinite metric

and the inner product corresponding to a fundamental decomposition of H
with signature operator J are related to each other by

〈x, y 〉 = [ Jx, y ] for every x, y ∈ H.

If H is a Krein space, L(H) stands for the vector space of all the linear
operators on H which are bounded in an associated Hilbert space (H, 〈 , 〉).
Since the norms generated by different fundamental decompositions of a
Krein space H are equivalent, see, for instance, [4, Theorem 7.19], it comes
that L(H) does not depend on the chosen underlying Hilbert space.

Given T ∈ L(H), T# is the unique operator satisfying

[Tx, y ] = [x, T#y ] for every x, y ∈ H.

An operator T ∈ L(H) is said to be selfadjoint if T = T#.

A positive operator T ∈ L(H) satisfies [Tx, x ] ≥ 0 for every x ∈ H.

The notation S ≤ T signifies that T − S is positive.
A (closed) subspace S of a Krein space H is a regular subspace if

H = S [∔] S [⊥]. Equivalently, S is a regular subspace if it is the range
of a selfadjoint projection, i.e., there exists Q ∈ Q such that Q = Q# and
R(Q) = S (see [4, Proposition 1.4.19]).

In [2, Theorem 2.3], T. Ando proved that any selfadjoint projection on
a Krein space can be decomposed as the sum of two selfadjoint projections
with uniformly definite ranges. See also [15, 20].

Theorem 2.2. Let (H, [ , ]) be a Krein space and let Q be a selfadjoint
projection. Then Q can be written as

Q = Q+ +Q−,

where Q+ and Q− are selfadjoint projections such that R(Q+) is uniformly
positive, R(Q−) is uniformly negative and Q+Q− = Q−Q+ = 0. Moreover,
each fundamental decomposition of H provides a (unique) decomposition of
Q in such a manner.
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The next lemma shows that every closed subspace of a Krein space can
be decomposed as the orthogonal direct sum of a closed positive subspace and
a closed nonpositive subspace (see [4, Theorem 6.4], [5, Chapter V, Theorem
3.1]).

Lemma 2.3. Let (H, [ , ]) be a Krein space with fundamental descomposition
H = H+ [∔] H− and corresponding Hilbert space inner product 〈 , 〉. Let
S be a closed subspace of H. Then S can be represented uniquely as the or-
thogonal direct sum of a closed positive subspace S+ and a closed nonpositive
subspace S−, i.e.,

S = S+ [∔] S−.

Furthermore, 〈S+,S−〉 = {0}.

In [12, 13] least squares problems in the indefinite metric setting were
studied. From those references we recall the definition of indefinite least
squares solution.

Definition. Let (H, [ , ]) be a Krein space and let B ∈ CR(H). We say that
u ∈ H is an indefinite least squares solution (ILSS) of Bz = x if

[x−Bu, x−Bu ] ≤ [x−Bz, x−Bz ] for every x, z ∈ H.

We conclude this section by stating necessary and sufficient conditions
for the existence of an ILSS of the equation Bz = x. We refer to [5, Chapter
I, Theorem 8.4] where a proof of the result is given.

Lemma 2.4. Let (H, [ , ]) be a Krein space and let B ∈ CR(H). Then u ∈ H
is an ILSS of the equation Bz = x if and only if R(B) is nonnegative and
x−Bu ∈ R(B)[⊥].

3. Indefinite inverses in Krein spaces

In [23] S. K. Mitra and C. R. Rao introduced the notion of the W -inverse
of a matrix for a given positive weight W. Later, in [8] and [6], the concept
was extended to Hilbert space operators, specifically, given a Hilbert space
(H, 〈 , 〉), a positive operator W ∈ L(H) and an operator B ∈ CR(H), a
W -inverse of B is defined to be an operator X0 ∈ L(H) such that, for each
x ∈ H, X0x is a weighted least squares solution of Bz = x, i.e., so that

〈W (BX0x− x), BX0x− x 〉 ≤ 〈W (Bz − x), Bz − x 〉 for every z ∈ H.

In [8] it was proved that X0 is a W-inverse of B if and only if
B∗W (BX0 − I) = 0 or, equivalently, X0 satisfies the identities W (BX0)

2 =
WBX0 = (BX0)

∗W. The first equality means that BX0 is a W -projection

while the second says that BX0 is W -selfadjoint, see [8].

We extend the definition to Krein spaces in the following way. From
now on, (H, [ , ]) stands for a Krein space.
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Definition. Let B ∈ CR(H). An operator X0 ∈ L(H) is an indefinite inverse

of B if X0 is a solution of

B#(BX − I) = 0.

Proposition 3.1. Let B ∈ CR(H). Then B admits an indefinite inverse if and
only if R(B) is regular.

Proof. Suppose that X0 is an indefinite inverse of B so that B#(BX0−I) =
0. Then, for every x ∈ H, BX0x − x ∈ N(B#) = R(B)[⊥] and, therefore,
x ∈ R(B) +R(B)[⊥]. Whence H = R(B) +R(B)[⊥]. As, also, {0} = R(B) ∩
R(B)[⊥], it comes that H = R(B) [∔] R(B)[⊥] or, accordingly, that R(B) is
regular.

Conversely, if R(B) is regular then H = R(B)[∔]R(B)[⊥]. So, by ap-
plying B#, it results that R(B#) = R(B#B). From here and by Douglas’
Theorem (Theorem 2.1), it follows that the equation B#(BX−I) = 0 admits
a solution or, equivalently, that B has an indefinite inverse. �

It results from the proof of Proposition 3.1 that, for any B ∈ CR(H),
R(B) is regular if, and only if, R(B#) = R(B#B). In this case, N(B) =
N(B#B).

The next proposition characterizes the indefinite inverses of B ∈ L(H)
when R(B) is regular.

Proposition 3.2. Let B ∈ L(H). Assume that R(B) is regular. Then the
following conditions are equivalent:

i) X0 is an indefinite inverse of B,
ii) X0 is a solution of the equation BX = Q, where Q is the selfadjoint

projection onto R(B),
iii) X0 is an inner inverse of B, i.e., BX0B = B, and (BX0)

# = BX0.

Moreover, if R(B) is also uniformly positive, conditions i), ii), iii) are also
equivalent to:

iv) For every x ∈ H, X0x is an ILSS of Bz = x.

A similar statement holds if R(B) is uniformly negative.

Proof. i) ⇒ ii) : Notice, first, that B# = B#Q, since B = QB and Q =
Q#. Whence B#(BX0 − I) = 0 implies B#(BX0 − Q) = 0. Therefore,
R(BX0 −Q) ⊆ N(B#) ∩R(Q) = N(Q) ∩R(Q) = {0}. Thus BX0 = Q.

ii) ⇒ iii) : If BX0 = Q then BX0B = QB = B and (BX0)
# = Q# =

Q = BX0.

iii) ⇒ i) : Suppose that BX0B = B and (BX0)
# = BX0. Then

B#(BX0 − I) = B#(X#
0 B# − I) = B#X

#
0 B# −B# = 0.

i) ⇔ iv) : X0 is an indefinite inverse of B if, and only if, B#(BX0−I) =
0 if, and only if, for every x ∈ H, BX0x − x ∈ R(B)[⊥]. Since R(B) is
nonnegative, Lemma 2.4 gives the equivalence. �
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We point out that, when R(B) is closed and uniformly definite, the
original definition of W -inverse for the indefinite metric is retrieved directly
from item iv) of the last proposition.

The more general concept of the indefinite inverse of B in the range of

C is given next.

Definition. Let B ∈ CR(H) and C ∈ L(H). An operator X0 ∈ L(H) is an
indefinite inverse of B in R(C) if X0 is a solution of

B#(BX − C) = 0.

Proposition 3.3. Let B ∈ CR(H) and C ∈ L(H). B has an indefinite inverse
in R(C) if and only if R(C) ⊆ R(B) +R(B)[⊥].

Proof. Suppose that X0 is an indefinite inverse of B in R(C). Then
B#(BX0 − C) = 0. So, if x ∈ H then BX0x − Cx ∈ N(B#) = R(B)[⊥]

and, therefore, Cx ∈ R(B) + R(B)[⊥]. Thus, R(C) ⊆ R(B) + R(B)[⊥] and
the result follows.

Conversely, if R(C) ⊆ R(B) +R(B)[⊥] then

R(B#C) ⊆ R(B#B).

Here, as before in the proof of Proposition 3.1, Douglas’ Theorem is applied to
grant that the equation B#(BX −C) = 0 admits a solution or, equivalently,
that B has an indefinite inverse in R(C). �

Corollary 3.4. Let B ∈ CR(H) and C ∈ L(H). If R(B) is regular then X0

is an indefinite inverse of B in R(C) if and only if X0 is a solution of the
equation BX = QC, with Q the selfadjoint projection onto R(B).

Proof. Suppose that R(B) is regular. Then R(B#) = R(B#B) or, equiva-
lently, N(B) = N(B#B).

If B#(BX0 − C) = 0 then B#(BX0 −QC) = 0, for B = QB, Q = Q#

and, consequently, B#C = B#QC. Hence R(BX0−QC) ⊆ N(B#)∩R(Q) =
N(Q) ∩R(Q) = {0}. So BX0 = QC. �

From the last corollary we have that, when R(B) is regular, the set of
indefinite inverses of B in R(C) is the affine manifold

X0 + L(H, N(B)),

with X0 any solution of the equation BX = QC.

Proposition 3.5. Let B ∈ CR(H) and C ∈ L(H) satisfy that R(B) is non-
negative and R(C) ⊆ R(B)+R(B)[⊥]. Then X0 is an indefinite inverse of B
in R(C) if and only if, for every x ∈ H, X0x is an ILSS of Bz = Cx, i.e.,

[Cx−BX0x,Cx−BX0x ] ≤ [Cx−Bz,Cx−Bz ] for every z ∈ H.

Proof. X0 is an indefinite inverse ofB in R(C) if, and only if, B#(BX0−C) =
0 if, and only if, BX0x − Cx ∈ R(B)[⊥] for every x ∈ H. Since R(B) is
supposed to be nonnegative, Lemma 2.4 can be applied to get the equivalence.

�
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4. Indefinite least squares problems

To state the next problems let us recall that the order is the one induced by
the positive operators in (H, [ , ]): given two operators S, T ∈ L(H), S ≤ T

whenever T − S is positive.

Consider the following problem: given two operators B ∈ CR(H) and
C ∈ L(H), determine the existence of

min
X∈L(H)

(BX − C)#(BX − C). (4.1)

Definition. Let B ∈ CR(H) and C ∈ L(H). We say that X0 ∈ L(H) is an
indefinite minimum solution (ImS) of BX − C = 0 if

(BX0 − C)#(BX0 − C) = min
X∈L(H)

(BX − C)#(BX − C). (4.2)

In a similar fashion, the analogous maximization problem can be con-
sidered. From now on, we only address the problem related to the existence
of (4.1). The arguments we present in dealing with problem (4.1) can be
adapted to the maximum problem. In particular, each of the “min” results
we include in this section can be easily modified to get its “max” counterpart.

Theorem 4.1. Let B ∈ CR(H) and C ∈ L(H). Then there exists an ImS of
BX−C = 0 if and only if R(C) ⊆ R(B)+R(B)[⊥] and R(B) is nonnegative.

Proof. Suppose that X0 ∈ L(H) is an ImS of BX − C = 0, so that

[ (BX0 − C)x, (BX0 − C)x ] ≤ [ (BX − C)x, (BX − C)x ]

for every x ∈ H and every X ∈ L(H). Let z ∈ H be arbitrary. Then, for
every x ∈ H \ {0}, there exists X ∈ L(H) such that z = Xx. Therefore

[ (BX0 − C)x, (BX0 − C)x ] ≤ [Bz − Cx,Bz − Cx ] for every x, z ∈ H.

So, for every x ∈ H, X0x is an ILSS of Bz = Cx. By Lemma 2.4, we get
that R(C) ⊆ R(B) + R(B)[⊥] and R(B) is nonnegative. Furthemore, by
Proposition 3.5, we have that X0 is an indefinite inverse of B in R(C).

Conversely, if R(C) ⊆ R(B) + R(B)[⊥] and R(B) is nonnegative then,
by Proposition 3.3, B admits an indefinite inverse in R(C). Now, if X0 is an
indefinite inverse of B in R(C) then, by Proposition 3.5,

[ (BX0 − C)x, (BX0 − C)x ] ≤ [Bz − Cx,Bz − Cx ] for every x, z ∈ H.

Given x ∈ H and X ∈ L(H), set z = Xx, so that

[ (BX0 − C)x, (BX0 − C)x ] ≤ [ (BX − C)x, (BX − C)x ]

for every x ∈ H and every X ∈ L(H). Now it becomes clear that X0 is an
ImS of the equation BX − C = 0, as required to complete the proof. �

In the proof of Theorem 4.1 the X0’s in (4.2), that is, the solutions of
the problem related to (4.1), were characterized. Indeed:
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Corollary 4.2. Let B ∈ CR(H) and C ∈ L(H) satisfy that R(B) is nonnega-
tive and R(C) ⊆ R(B)+R(B)[⊥]. Then X0 is an ImS of BX −C = 0 if and
only if X0 is an indefinite inverse of B in R(C), i.e., X0 is solution of the
normal equation

B#(BX − C) = 0.

From the last result we have that the set of indefinite inverses of ImS
of BX − C = 0 is the affine manifold

X0 + L(H, N(B#B)),

with X0 any indefinite inverse of B in R(C).
The next two corollaries follow from Theorem 4.1 as well.

Corollary 4.3. Let B ∈ CR(H). Then there exists an ImS of BX−C = 0 for
every C ∈ L(H) if and only if R(B) is uniformly positive.

In this case,

min
X∈L(H)

(BX − C)#(BX − C) = C#(I −Q)C

where Q is the selfadjoint projection onto R(B).

Proof. Assume that, for every C ∈ L(H), there exists an ImS of BX−C = 0.
In particular, there exists an ImS of BX − I = 0. Then, by Theorem 4.1,
R(B) is regular and nonnegative. Whence R(B) is uniformly positive.

Conversely, if R(B) is uniformly positive then, for every C ∈ L(H), we
have that R(C) ⊆ H = R(B) + R(B)[⊥]. Hence, by Theorem 4.1, for every
C ∈ L(H), there exists an ImS X0 ∈ L(H) of BX − C = 0 or, equivalently,
X0 is a solution of the normal equation B#(BX − C) = 0 (see Corollary
4.2). In this case, since R(B) is regular, Corollary 3.4 gives that BX0 = QC.

Therefore,

min
X∈L(H)

(BX − C)#(BX − C) = (BX0 − C)#(BX0 − C) = C#(I −Q)C.

�

Corollary 4.4. Let B ∈ CR(H). Then there exists an ImS of BX − I = 0 if
and only if R(B) is uniformly positive.

In this case, the ImS of BX−I = 0 are the indefinite inverses of B and

min
X∈L(H)

(BX − I)#(BX − I) = I −Q

where Q is the selfadjoint projection onto R(B).

Remark. By mimicking the arguments in the proof of Theorem 4.1, a similar
result can be proved for operators acting between different Krein spaces. More
precisely, let (H, [ , ]H), (K, [ , ]K) and (F , [ , ]F ) be Krein spaces. Let
B ∈ CR(H,K) and C ∈ L(F ,K). Then there exists X0 ∈ L(F ,H) such that

min
X∈L(F ,H)

(BX − C)#(BX − C) = (BX0 − C)#(BX0 − C)

if and only if R(C) ⊆ R(B) +R(B)[⊥]K and R(B) is nonnegative.
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4.1. Indefinite least squares problems: the pseudo-regular case

A (closed) subspace S of a Krein space H is called a pseudo-regular subspace

if the algebraic sum S +S [⊥] is closed. Observe that, this is equivalent to the
equality (S0)[⊥] = S + S [⊥], see [14]. Also, S is a pseudo-regular subspace if
and only if S is the range of a normal projection, i.e., there exists Q ∈ Q
such that QQ# = Q#Q and R(Q) = S (see [21, Theorem 4.3]). Unlike normal
projections in Hilbert spaces, a normal projection in a Krein space need not
be selfadjoint. In what follows QS stands for the set of normal projections
onto the pseudo-regular subspace S, i.e.,

QS := {Q ∈ L(H) : Q2 = Q, QQ# = Q#Q, R(Q) = S}.

The set QS has infinite elements, unless S is regular. See [21] for further
details on the subject.

Let B ∈ CR(H), the next results relate the pseudo-regularity of R(B)
to the indefinite inverse of B in R(C) and the ImS of BX − C = 0.

The next lemma, stated in [12, Remark 2.1], will be useful when dealing
with pseudo-regular ranges.

Lemma 4.5. Let S be a pseudo-regular subspace of H. If Q ∈ QS then

Q#(I −Q)y = 0 if and only if y ∈ S + S [⊥].

Proof. Let Q ∈ QS . If y ∈ S + S [⊥], by [12, Remark 2.1], we have that
Q#(I −Q)y = 0.

Conversely, if Q#(I − Q)y = 0, since Q#(I − Q) ∈ Q, y ∈ N(Q#(I −
Q)) = S + S [⊥]. �

Proposition 4.6. Let B ∈ CR(H) and C ∈ L(H). If R(B) is pseudo-regular
and R(C) ⊆ R(B) +R(B)[⊥], then X0 is an indefinite inverse of B in R(C)
if and only if R(BX0 −QC) ⊆ R(B)o, for any Q ∈ QR(B).

Proof. Suppose that R(B) is pseudo-regular and pick any Q ∈ QR(B). By

Lemma 4.5, (I −Q)y ∈ N(Q#) = N(B#) for every y ∈ R(B) +R(B)[⊥].

Since R(C) ⊆ R(B) + R(B)[⊥], we have that B#(I −Q)C = 0. So X0

is a solution of B#(BX − C) = 0 if and only if B#(BX0 − QC) = 0 or
R(BX0 −QC) ⊆ R(B)o. �

Corollary 4.7. Let B ∈ CR(H). Then there exists an ImS of BX − C = 0
for every C ∈ L(H) such that R(C) ⊆ (R(B)o)[⊥] if and only if R(B) is a
pseudo-regular, nonnegative subspace of H.

In this case,

min
X∈L(H)

(BX − C)#(BX − C) = C#(I −Q)C,

for any Q ∈ QR(B).

Proof. Let C ∈ L(H). Note that there exists an ImS of the equation BX −
C = 0 if and only if R(C) ⊆ R(B) + R(B)[⊥] and R(B) is nonnegative (see
Theorem 4.1).
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Suppose that R(B) is pseudo-regular and nonnegative. Then

(R(B)o)[⊥] = R(B) +R(B)[⊥],

and, therefore, there exists an ImS of the equation BX − C = 0 for every
C ∈ L(H) such that R(C) ⊆ (R(B)o)[⊥].

Conversely, suppose that there exists an ImS of the equationBX−C = 0
for every C ∈ L(H) such that R(C) ⊆ (R(B)o)[⊥]. Then pick a C such

that R(C) = (R(B)o)[⊥] = R(B) +R(B)[⊥]. It must happen that R(C) ⊆
R(B) + R(B)[⊥] and R(B) is nonnegative. That is, R(B) is to be pseudo-
regular and nonnegative. In this case, let X0 be an indefinite inverse of B in
R(C). By Corollary 4.2, X0 is an ImS of BX − C = 0. By Proposition 4.6,
R(BX0 −QC) ⊆ R(B)o. Then Lemma 4.5 with S = R(B) and the fact that
R(BX0 −QC) ⊆ R(B)o yield the result. �

5. Min-Max least squares problems

In this section a min-max problem is studied for operators with not necessarly
definite range. In order to pose the problem, choose a fundamental decom-
position H = H+ [∔] H− and fix the corresponding Hilbert space (H, 〈 , 〉),
so that, for all x, y ∈ H, 〈x, y 〉 = [ Jx, y ] with J the signature operator
associated with the decomposition.

Let B ∈ CR(H). By Lemma 2.3, R(B) can be represented uniquely as

R(B) = S+ [∔] S− (5.1)

with S+ a positive closed subspace of H, S− a nonpositive closed subspace
of H and 〈S+,S−〉 = {0}.

Consider P+ = PS+
and P− = PS− , the orthogonal projections from

the Hilbert space (H, 〈 , 〉) onto S+ and S−, respectively. It readily follows
that P+ + P− = PR(B). Therefore, if B+ := P+B and B− := P−B then

B = B+ +B−, R(B+) = S+ and R(B−) = S−. (5.2)

Since N(P#
± ) = S

[⊥]
± , it holds that B

#
+B− = B#P

#
+ B− = 0 and

B
#
−B+ = 0.

Observe that if R(B) is regular then P+ and P− are the projections
given by Theorem 2.2.

Definition. Let C ∈ L(H). Let B in CR(H) be represented as in (5.2). An
operator Z0 ∈ L(H) is said to be an indefinite min-max solution (ImMS) of
BX − C = 0 (corresponding to the decomposition given by J) if

(BZ0 − C)#(BZ0 − C) =

= max
Y ∈L(H)

min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C). (5.3)

The following result shows that an ImMS of BX − C = 0 is indepen-
dent of the selected fundamental decomposition of H. Along the following
paragraphs, C denotes the cone of neutral vectors in H.
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Theorem 5.1. Let C ∈ L(H) and B ∈ CR(H). An operator Z0 ∈ L(H) is an
ImMS of BX−C = 0, for some (and, hence, any) fundamental decomposition
of H, if and only if

Z0 = Z1 + Z2

where Z1 is an indefinite inverse of B in R(C) and R(BZ2) ⊆ C.

Proof. Fix a fundamental decomposition H = H+ [∔] H−, and consider
B = B++B− as in (5.2). Suppose that Z0 ∈ L(H) is an ImMS of BX−C = 0
for that decomposition. Then Z0 verifies (5.3). So, for every fixed Y ∈ L(H),
there exists min

X∈L(H)
(B+X +B−Y − C)#(B+X +B−Y − C).

From Corollary 4.2 and by using that B
#
+B− = 0, we get that the

minimum is attained at X0(= X0(Y )) if and only if

0 = B
#
+ (B+X0 − (C −B−Y )) = B

#
+ (B+X0 − C).

The above says that X0 is an indefinite inverse of B+ in R(C) and, in par-
ticular, that X0 does not depend on Y . Hence, for every Y ∈ L(H),

(B+X0 +B−Y − C)#(B+X0 +B−Y − C) =

= min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C)

and, since Z0 satisfies (5.3),

(BZ0 −C)#(BZ0 −C) = max
Y ∈L(H)

(B+X0 +B−Y −C)#(B+X0 +B−Y −C).

By the suitable version of Corollary 4.2 and using that B#
−B+ = 0, we

get that the maximum is attained at Y0 ∈ L(H) if and only if

0 = B
#
− (B−Y0 − (C −B+X0)) = B

#
− (B−Y0 − C).

Consequently,

(BZ0 −C)#(BZ0 −C) = (B+X0 +B−Y0 −C)#(B+X0 +B−Y0 −C). (5.4)

Let Z1 ∈ L(H) satisfy BZ1 = B+X0 + B−Y0 as in Douglas’ Theorem,
so that, according with (5.4),

(BZ0 − C)#(BZ0 − C) = (BZ1 − C)#(BZ1 − C). (5.5)

A straightforward computation gives that B#(BZ1 − C) = 0 and, in con-
sequence, that Z1 is an indefinite inverse of B in R(C). Now, as Z1 is an
indefinite inverse of B in R(C), it comes that

(BZ0−C)#(BZ0−C) = (BZ1−C+BZ0−BZ1)
#(BZ1−C+BZ0−BZ1) =

= (BZ1 − C)#(BZ1 − C) + (B(Z0 − Z1))
#B(Z0 − Z1).

Set Z2 := Z0 −Z1. By combining the above equation with (5.5) we conclude
that it must hold that (BZ2)

#BZ2 = 0 or, equivalently, that R(BZ2) ⊆ C.
Clearly, Z0 = Z1 + Z2, with Z1 and Z2 as required.
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Conversely, let Z1 ∈ L(H) be an indefinite inverse of B in R(C), and
R(BZ2) ⊆ C. If Z0 = Z1 + Z2 then

(BZ0 − C)#(BZ0 − C) = (BZ1 − C)#(BZ1 − C).

Write B = B+ + B− as in (5.2). Since B#(BZ1 − C) = 0, we have

that R(BZ1 − C) ⊆ N(B#) = (R(B+) [∔] R(B−))
[⊥] = N(B#

+ ) ∩ N(B#
− ).

Therefore,B#
+ (BZ1−C) = B

#
− (BZ1−C) = 0. Then, as B#

−B+ = B
#
+B− = 0,

it readily follows that, for every X,Y ∈ L(H),

B
#
+ (B+Z1 − (C −B−Y )) = B

#
+ (BZ1 − C) = 0

and

B
#
− (B−Z1 − (C −B+X)) = B

#
− (BZ1 − C) = 0.

So, by Corollary 4.2, we obtain that

(BZ0 − C)#(BZ0 − C) = (BZ1 − C)#(BZ1 − C) =

= (B+Z1 +B−Z1 − C)#(B+Z1 +B−Z1 − C)

= max
Y ∈L(H)

(B−Y − (C −B+Z1))
#(B−Y − (C −B+Z1))

= max
Y ∈L(H)

min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C).

Therefore, Z0 is an ImMS of BX − C = 0. �

The next remark follows from the proof of the last theorem.

Remark. Let C ∈ L(H) and B ∈ CR(H) such that B is represented as in
(5.2). Then

max
Y ∈L(H)

min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C) =

= min
X∈L(H)

max
Y ∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C).

Indeed, if Z0 is an ImMS of BX − C = 0 then, as the last theorem
asserts, Z0 = Z1 + Z2 where Z1 is an indefinite inverse of B in R(C) and
R(BZ2) ⊆ C. In the proof of the theorem, on the other hand, we found out
that, for every X,Y ∈ L(H),

B
#
+ (B+Z1 − (C −B−Y )) = B

#
+ (BZ1 − C) = 0

and

B
#
− (B−Z1 − (C −B+X)) = B

#
− (BZ1 − C) = 0.

A direct application of both the Corollary 4.2 and its modified version gives

(BZ0 − C)#(BZ0 − C) = (BZ1 − C)#(BZ1 − C) =

= (B+Z1 +B−Z1 − C)#(B+Z1 +B−Z1 − C)

= min
X∈L(H)

(B+X − (C −B−Z1))
#(B+X − (C −B−Z1))

= min
X∈L(H)

max
Y ∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C).
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Corollary 5.2. Let B ∈ CR(H) and C ∈ L(H). Then, there exists an ImMS
of BX − C = 0 if and only if R(C) ⊆ R(B) +R(B)[⊥].

Proof. Suppose that Z0 is an ImMS of BX −C = 0. Then, by Theorem 5.1,
Z0 = Z1 + Z2 where B#(BZ1 − C) = 0 and R(BZ2) ⊆ C. Therefore

R(C) ⊆ R(B) +R(B)[⊥].

Conversely, if R(C) ⊆ R(B) + R(B)[⊥] then, by Proposition 3.3, there
exists a solution of the normal equation B#(BX−C) = 0, say Z1 ∈ L(H). It
suffices to put Z2 = 0 and to apply Theorem 5.1 to get that Z1 is an ImMS
of BX − C = 0. �

Corollary 5.3. Let B ∈ CR(H). There exists an ImMS of BX − C = 0 for
every C ∈ L(H) if and only if R(B) is regular.

In this case, if B is represented with respect to a fixed (but arbitrary)
fundamental decomposition of H as in (5.2), then

max
Y ∈L(H)

min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C) =

= C# [ max
Y ∈L(H)

(B−Y − I)#(B−Y − I)] [ min
X∈L(H)

(B+X − I)#(B+X − I)] C =

= C#(I −Q)C,

where Q is the selfadjoint projection onto R(B).

Proof. If R(B) is regular then, for every C ∈ L(H), R(C) ⊆ R(B)[∔]R(B)[⊥]

and, by Corollary 5.2, there exists an ImMS of BX − C = 0.
Conversely, assume that, for every C ∈ L(H), there exists an ImMS of

BX − C = 0. Set C = I and apply the corollary once again to get H =
R(I) ⊆ R(B) +R(B)[⊥] and R(B) regular.

In the case that R(B) is regular, given a fundamental decomposition
of H, Ando’s Theorem (Theorem 2.2) provides unique selfadjoint projections
Q+, Q− ∈ L(H) such that Q = Q++Q− with R(Q+) uniformly positive and
R(Q−) uniformly negative. Then, as we already mentioned it, the subspaces
S± in the decomposition (5.1) of R(B) and the operators B± in (5.2) are
given by S± = R(Q±) and B± = Q±B.

Let Z0 ∈ L(H) be an ImMS of the equation BX − C = 0, so that, due
to Theorem 5.1, Z0 = Z1 +Z2 where Z1 is an indefinite inverse in R(C) and
R(BZ2) ⊆ C. On one hand, it holds that

max
Y ∈L(H)

min
X∈L(H)

(B+X +B−Y − C)#(B+X +B−Y − C)

= (BZ0 − C)#(BZ0 − C) = (BZ1 − C)#(BZ1 − C) = C#(I −Q)C,

for R(BZ2) ⊆ C and, by Corollary 3.4, BZ1 = QC. On the other hand,
Corollary 4.4 yields

C#(I −Q)C = C#(I −Q−)(I −Q+)C =

= C# [ max
Y ∈L(H)

(B−Y − I)#(B−Y − I)] [ min
X∈L(H)

(B+X − I)#(B+X − I)] C.
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By merging the above equations, the required identities are obtained and the
proof is complete. �

6. The Moore-Penrose inverse in Krein spaces

In [22, Theorem 2.16] X. Mary proved that, given B ∈ L(H), the range and
nullspace of B are regular subspaces of H if and only if B admits a (unique)
“Moore-Penrose inverse”, in the sense that, there exists an operator B† ∈
L(H) such that BB†B = B, B†BB† = B†, (BB†)# = BB†, (B†B)# =
B†B.

Moreover, it was proven in [22, Corollary 2.13] that if Q is the selfadjoint
projection onto R(B) and P is the selfadjoint projection onto N(B)[⊥], then
BB† = Q and B†B = P.

In this section, we are interested in characterizing the Moore-Penrose
inverse in a variational way. To this end, we consider B ∈ CR(H) and C ∈
L(H) and analyze the following problem: find conditions for the existence of

an ImS X0 of BX − C = 0 such that X
#
0 X0 ≤ Y #Y, for every ImS Y of

BX − C = 0.

By Theorem 4.1, the equation BX − C = 0 admits an ImS if and only
if R(C) ⊆ R(B) + R(B)[⊥] and R(B) is nonnegative. In this case, if MC is
the set of ImS of BX − C = 0, then the above problem becomes: determine
whether there exists

min
X∈MC

X#X (6.1)

when MC 6= ∅.
We only address this problem. Alternatively, symmetric problems de-

pending on the signature of the involved subspaces can be adapted to solve
them.

Theorem 6.1. Let B ∈ CR(H) and C ∈ L(H). Then there exists a solution
of problem (6.1) if and only if R(B) and N(B#B) are nonnegative and

R(C) ⊆ B(N(B#B)[⊥]) +R(B)[⊥].

Proof. Suppose that there exists a solution of problem (6.1). By Corollary
4.2, the set MC can be described as

MC = {X = X0 + Y : Y ∈ L(H), R(Y ) ⊆ N(B#B)},

where X0 is any solution of the equation B#(BX − C) = 0.

Therefore, problem (6.1) can be rephrased as: analyze the existence of

min
Z∈L(H)

(RZ +X0)
#(RZ +X0), (6.2)

where R ∈ L(H) is such that R(R) = N(B#B).
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By Theorem 4.1, problem (6.2) has a solution if and only if N(B#B) is
nonnegative and R(X0) ⊆ N(B#B) + N(B#B)[⊥]. Applying B#B to both
sides of the inclusion, we have that

R(B#C) = R(B#BX0) ⊆ B#B(N(B#B)[⊥]).

Finally, applying (B#)−1 to both sides of the inclusion, we get

R(C) ⊆ B(N(B#B)[⊥]) +N(B#).

Conversely, suppose that R(B) and N(B#B) are nonnegative and
R(C) ⊆ B(N(B#B)[⊥]) + R(B)[⊥]. Clearly, R(C) ⊆ R(B) + R(B)[⊥], so,
by Theorem 4.1, there exists an ImS X0 of BX − C = 0, or equivalently,
B#(BX0 − C) = 0. On the other hand, since N(B#B) is nonnegative and
R(C) ⊆ B(N(B#B)[⊥]) +R(B)[⊥], it holds that

R(B#BX0) = R(B#C) ⊆ B#B(N(B#B)[⊥]).

Applying (B#B)−1 to both sides of the inclusion, it comes that

R(X0) ⊆ N(B#B) +N(B#B)[⊥].

Therefore, by Theorem 4.1, there exists a solution of (6.2) and hence, there
exists a solution of problem (6.1). �

It follows from the last theorem that, if B ∈ CR(H) and C ∈ L(H) are
such that R(B) and N(B#B) are nonnegative, then there exists a solution
of problem (6.1) if and only if MC 6= ∅, and for every X0 ∈ MC , R(X0) ⊆
N(B#B) +N(B#B)[⊥]. Moreover:

Lemma 6.2. Let B ∈ CR(H) and C ∈ L(H) such that R(B) and N(B#B) are
nonnegative and R(C) ⊆ B(N(B#B)[⊥]) + R(B)[⊥]. Then X1 is a solution
of (6.1) if and only if B#(BX1 − C) = 0 and R(X1) ⊆ N(B#B)[⊥].

Proof. Recall that X1 is a solution of problem (6.1) if and only if X1 =
RZ1 + X0, with R ∈ L(H) such that R(R) = N(B#B), X0 a solution of
B#(BX − C) = 0 and Z1 a solution of (6.2).

Since N(B#B) is nonnegative, by Theorem 4.1 and Corollary 4.3, Z1 ∈
L(H) is a solution of (6.2) if and only if Z1 is such that

R#(RZ1 +X0) = 0

that is,
R#X1 = 0

or, equivalently,

R(X1) ⊆ N(R#) = R(R)[⊥] = N(B#B)[⊥].

�

As a corollary of Theorem 6.1, we have the following result.

Proposition 6.3. Let B ∈ CR(H). Then the following assertions are equiva-
lent:

i) There exists a solution of problem (6.1) for C = I,
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ii) R(B) and N(B) are uniformly positive,
iii) there exists the Moore-Penrose inverse of B, B†, and R(B) and N(B)

are nonnegative.

Proof. i) ⇔ ii) : If there exists a solution of problem (6.1) for C = I, by
Theorem 6.1, R(B) and N(B#B) are nonnegative, and

H ⊆ B(N(B#B)[⊥]) +R(B)[⊥]. (6.3)

Then, clearly, R(B) is regular and nonnegative, i.e., R(B) is uniformly posi-
tive. Since R(B) is regular then R(B#) = R(B#B) or, equivalently, N(B) =
N(B#B). Applying B# to both sides of (6.3), we have that R(B#) ⊆
B#B(N(B#B)[⊥]). Then,

R(B#B) = R(B#) ⊆ B#B(N(B#B)[⊥]) ⊆ R(B#B).

Therefore

R(B#B) = B#B(N(B#B)[⊥]),

and so,

H = N(B#B) +N(B#B)[⊥] = N(B) +N(B)[⊥].

Thus, N(B) is regular and nonnegative and therefore uniformly positive.
Conversely, if R(B) and N(B) are uniformly positive, then

H = R(B) +R(B)[⊥] = N(B#B) +N(B#B)[⊥],

where we used the fact that N(B) = N(B#B) since R(B) is regular. Ap-
plying B#B to both sides of the second equality, we get that R(B#B) =
B#B(N(B#B)[⊥]). Then, applying (B#)−1 to the left and right sides of the
last equality, the inclusion R(B)+R(B)[⊥] ⊆ B(N(B#B)[⊥])+R(B)[⊥] holds.
Therefore we get

H = B(N(B#B)[⊥]) +R(B)[⊥],

and, by Theorem 6.1, there exists a solution of problem (6.1) for C = I.

ii) ⇔ iii) : See [22, Theorem 2.6]. �

Theorem 6.4. Let B ∈ CR(H) and suppose that N(B) and R(B) are uni-
formly positive. Then, the Moore-Penrose inverse of B, B†, is the unique ImS

X0 of BX− I = 0 such that X#
0 X0 ≤ Y #Y, for every ImS Y of BX− I = 0.

Proof. Since N(B) and R(B) are regular, the Moore-Penrose inverse of B,

B†, exists. Consider Q the selfadjoint projection onto R(B) and P the self-
adjoint projection onto N(B)[⊥], then

B#(BB† − I) = B#(Q− I) = 0.

On the other hand,

R(B†) = R(B†BB†) ⊆ R(B†B) = R(P ) = N(B)[⊥].

Hence, by Lemma 6.2, B† is a solution of problem (6.1), with C = I.
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Let X1 ∈ L(H) be any other solution of problem (6.1), with C = I. By
Lemma 6.2, X1 is an ImS of BX − I = 0 and R(X1) ⊆ N(B)[⊥]. Then, by
Corollary 3.4, BX1 = Q = BB†. Therefore,

X1 = PX1 = B†BX1 = B†BB† = B†.

�

The next remark follows from the proofs of Proposition 6.3 and Theorem
6.4.

Remark. Let B ∈ CR(H) and C ∈ L(H), and suppose that N(B) and R(B)
are uniformly positive. Then problem (6.1) admits a unique solution, namely,
B†C.

6.1. The Moore-Penrose inverse: the pseudo-regular case

In [12, Proposition 5.1], a family of generalized inverses of a closed range
operator with pseudo-regular range and nullspace was given. In this case, the
associated projections turn out to be normal. In this section, we prove the
equivalence between the existence of this family of generalized inverses and
the pseudo-regularity of the range and nullspace of an operator B ∈ CR(H).
We also give a more general expression for these generalized inverses and we
characterize them in a variational way as we did in the last section with the
Moore-Penrose inverse.

Given B ∈ CR(H), recall that B̃ is a {1, 2}-inverse of B if B̃ is a solution
of the system

BXB = B, XBX = X.

If (H, 〈 ·, · 〉) is a Hilbert space, every B ∈ CR(H) admits a {1, 2}-inverse, see
[3, Theorem 3.1]. Then, using any of the underlying Hilbert structures, the

same is true in the Krein space H. Observe that, if B̃ is a {1, 2}-inverse of B,

then BB̃ is a projection onto R(B) and B̃B is a projection with N(B̃B) =
N(B).

Proposition 6.5. Let B ∈ CR(H). Then, there exists a solution of the system






BXB = B, XBX = X,

(BX)#(BX) = (BX)(BX)#,
(XB)#(XB) = (XB)(XB)#,

(6.4)

if and only if R(B) and N(B) are pseudo-regular subspaces of H.

In this case, D ∈ L(H) is a solution of (6.4) if and only if there exist
Q ∈ QR(B) and P ∈ QN(B) such that

D = (I − P )B̃Q, (6.5)

where B̃ is any {1, 2}-inverse of B.

Proof. Suppose that R(B) and N(B) are pseudo-regular subspaces. Let Q ∈
QR(B) and P ∈ QN(B). Let B̃ be any {1, 2}-inverse of B. Let D be defined
as in (6.5). From BP = 0 it follows immediately that

BD = Q, and DB = I − P.
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So the last two equations of the system are satisfied. Also,

BDB = QB = B and DBD = (I − P )D = D.

Conversely, suppose that (6.4) admits a solution D. Let Q = BD and
P = I − DB, then P and Q are normal projections in L(H). Moreover,
R(Q) = R(BD) ⊆ R(B). On the other hand, R(Q) = R(BD) ⊇ R(BDB) =
R(B). Therefore, R(Q) = R(B) and R(B) is pseudo-regular. Also, N(B) ⊆
N(DB) = N(P ) ⊆ N(BDB) = N(B). So that N(B) = N(P ) and then
N(B) is pseudo-regular.

In this case, we have already proven that if D is as in (6.5), then D is
a solution of (6.4). Conversely, suppose that D ∈ L(H) is a solution of (6.4).

Note that Q := BD ∈ QR(B) and P := I − DB ∈ QN(B). Let B̃ be any
{1, 2}-inverse of B. It is straightforward to check that D satisfies

(I − P )B̃Q = D.

�

Proposition 6.6. Let B ∈ CR(H), such that R(B) is pseudo-regular. Then
there exists a solution of problem (6.1) for every C ∈ L(H) such that R(C) ⊆

B(N(B#B)[⊥]) +R(B)[⊥] if and only if N(B#B) is pseudo-regular and
N(B#B) and R(B) are nonnegative.

Proof. Suppose that R(B) and N(B#B) are nonnegative and pseudoregular.
Then, by [12, Lemma 3.4], R(B#B) is closed. Since N(B#B) is pseudo-
regular, [19, Corollary 2.5] gives that R(B#BB#B) is closed too.

Suppose that R(C) ⊆ B(N(B#B)[⊥]) +R(B)[⊥]. Then

R(B#C) ⊆ B#[(B(R(B#B)) +R(B)[⊥])]

⊆ B#[(R(B) ∩R(BB#B)[⊥])[⊥]] ⊆ [B−1(R(B) ∩R(BB#B)[⊥])][⊥] =

= [B−1(R(BB#B)[⊥])][⊥] = [B#R(BB#B)][⊥] [⊥] = R(B#BB#B),

where we used the fact that B#(S [⊥]) ⊆ (B−1(S))[⊥], for any closed subspace
S ⊆ H and that R(B#BB#B) is closed. Then, applying (B#)−1 to both sides
of the inclusion, we have that

R(C) ⊆ (B#)−1(R(B#BB#B)) = N(B#) +B(N(B#B)[⊥]).

Whence, by Theorem 6.1, problem (6.1) admits a solution.
Conversely, suppose that there exists a solution of problem (6.1) for

every C ∈ L(H) such that R(C) ⊆ B(N(B#B)[⊥]) +R(B)[⊥]. Then pick C

such that
R(C) = B(N(B#B)[⊥]) +R(B)[⊥].

By Theorem 6.1, we have that N(B#B) and R(B) are nonnegative and

R(C) = B(N(B#B)[⊥]) +R(B)[⊥] ⊆ B(N(B#B)[⊥]) + R(B)[⊥]. Then the
subspace B(N(B#B)[⊥]) +R(B)[⊥] is closed. Hence,

B−1(B(N(B#B)[⊥]) +R(B)[⊥]) = N(B) +N(B#B)[⊥] +N(B#B) =

= N(B#B)[⊥] +N(B#B)
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is closed, so that N(B#B) is pseudo-regular. �

The next result is a corollary of Proposition 6.5. We will use it in the
proof of Theorem 6.8 in order to characterized the solutions of (6.1) in term
of pseudo-inverses when R(B) and N(B#B) are pseudo-regular.

Lemma 6.7. Let B ∈ CR(H) such that R(B) is a pseudo-regular subspace
of H. Given Q ∈ QR(B), let B

′ = Q#B. Then there exists a solution of the
system







B′XB′ = B′, XB′X = X,

B′X = Q#Q,

(XB′)#(XB′) = (XB′)(XB′)#,
(6.6)

if and only if N(B#B) is a pseudo-regular subspace of H.

In this case, D ∈ L(H) is a solution of (6.6) if and only if there exists
P ∈ QN(B#B) such that

D = (I − P )B̃′Q#Q,

where B̃′ is any {1, 2}-inverse of B′.

Proof. Note that

R(B′) = R(Q#Q) and N(B′) = N(B#B).

Then apply Proposition 6.5 to B′. �

Theorem 6.8. Let B ∈ CR(H) and C ∈ L(H). If R(B) and N(B#B) are non-

negative pseudo-regular subspaces and R(C) ⊆ B(N(B#B)[⊥]) +R(B)[⊥], set
X1 = DC, where D ∈ L(H) is a solution of (6.6), then X1 is a solution of
problem (6.1).

Proof. By the proof of Proposition 6.6, the set B(N(B#B)[⊥]) +R(B)[⊥] is
closed.

Given a solution D of (6.6), consider P ∈ QN(B#B), Q ∈ QR(B) and

any {1, 2}-inverse B̃′ of B′ such that

D = (I − P )B̃′Q#Q.

Observe that
Q#BDC = B′DC = Q#QC = Q#C,

where we used the fact that R(C) ⊆ R(B) +R(B)[⊥] and Lemma 4.5. Then
R(BDC − C) ⊆ N(Q#) = N(B#) or, equivalently,

B#(BDC − C) = 0.

Then, by Proposition 4.6, DC is an ImS of BX − C = 0.
On the other hand,

R(B#BDC) = R(B#C) ⊆ B#(B(N(B#B)[⊥])),

so, by applying (B#B)−1 to both sides of the inclusion, we have that

R(DC) ⊆ N(B#B) +N(B#B)[⊥] = N(P#(I − P )).
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Then

P#(I − P )DC = P#DC = 0.

Thus R(DC) ⊆ N(B#B)[⊥] and, by Lemma 6.2, X1 = DC is a solution of
problem (6.1). �

Remark. Under the same assumptions of the last theorem, by Proposition
6.6, there exists a solution of problem (6.1). Furthermore, if R(C) 6⊆ R(B)[⊥],

a converse of Theorem 6.8 holds: if X1 is a solution of problem (6.1) then
X1 = DC, where D ∈ L(H) is a solution of (6.6).

In fact, let X1 be a solution of problem (6.1), then by similar arguments
as those in [12, Theorem 3.5], there exists P ′ ∈ QN(B#B) such that

X1 = (I − P ′)X0,

where X0 is an ImS of BX − C = 0.
Let Q ∈ QR(B) and B̃′ be any {1, 2}-inverse of B′. Set

D = (I − P ′)B̃′Q#Q.

Then, by Lemma 6.7, we have that D is a solution of (6.6). Then, proceeding
as in the proof of the last theorem, we get that DC is an ImS of BX−C = 0.
Then, by Corollary 4.2, X0 = DC + Y, with R(Y ) ⊆ N(B#B). Hence,

X1 = (I − P ′)X0 = (I − P ′)DC = DC.

Acknowledgements

Maximiliano Contino was supported by CONICET PIP 0168. Alejandra
Maestripieri was partially supported by CONICET PIP 0168. The work of
Stefania Marcantognini was done during her stay at the Instituto Argentino
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Departamento de Matemática – Instituto Venezolano de Investigaciones Cient́ıficas
Km 11 Carretera Panamericana Caracas, Venezuela
and
Instituto Argentino de Matemática “Alberto P. Calderón”
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