Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

A polymorphic form of 4,4-Dimethyl-8-methylene-3-azabicyclo(3.3.1)non-2-en-2-yl 3-indolyl ketone, an indole alkaloid extracted from Aristotelia Chilensis (Maqui).

Cristian Paz*, José Becerra, Mario Silva, Eleonora Freire and Ricardo Baggio

CONFIDENTIAL – NOT TO BE REPRODUCED, QUOTED NOR SHOWN TO OTHERS SCIENTIFIC MANUSCRIPT

For review only.

Friday 09 August 2013

Category: communications (organic compounds)

Co-editor:

Telephone:

Fax: Email:

Contact author:

Cristian Paz

Chile

Telephone: ?

Fax: ?

Email: cpaz@udec.cl

- A polymorphic form of 4,4-Dimethyl-8-methylene-3-azabicyclo(3.3.1)non-2-
- en-2-yl 3-indolyl ketone, an indole alkaloid extracted from Aristotelia Chilensis
- ³ (Maqui).
- 4 Cristian Paz, a José Becerra, a Mario Silva, a Eleonora Freire t and Ricardo Baggio C
- ^aLab. de Química de Productos Naturales, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160,
- Concepción, Chile, bGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and,
- Escuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina, and Gerencia de Investigación y
- 8 Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
- Correspondence email: cpaz@udec.cl
- † Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Conicet.

Abstract

12

13

14

15

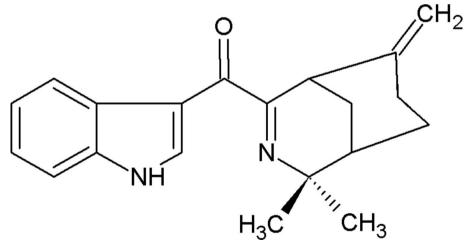
16

17

18

20

21


Maqui), a native chilean tree. The compound is a polymorphic form of the one obtained from the same source and reported in Watson, Nagl, Silva, Cespedes & Jakupovic (1989). *Acta Cryst.* C45, 1322–1324 (Ia). The molecule consists of an indole fragment and a nested three-ring system, both groups linked by a C-(CO)—C bridge. Comparison of both forms show that they do not differ in their gross features but in a couple of torsion angles in the central bridge. The resulting slight conformational differences reflect in a number of intramolecular contacts in II but unobserved in Ia. Regarding intermolecular interactions, both forms share a similar N—H···O synthon, but with diverse H-bonding

The title compound (II) was obtained from mother liquors extracted from Aristotelia Chilensis (Commonly known as

strength, leading in both cases to C(6) catemers with different chain motives. There are some subtle differences between both forms regarding colour and the (de)location of a double bond, which allows to speculate about the possible existence

of different variants of these type of molecules.

55scheme1.tif

5scheme2.tif

1. Introduction

Aristotelia Chilensis (Commonly known as Maqui) is a native chilean tree, which liquors show a variety of therapeutic properties known from ancient times by the original araucanian inhabitants. Studies during the '70s and '80s gave strong scientific support to this ancient knowledge: the tree has shown to produce an amazing quantity of molecular species of proved (or potential) pharmaceutical power; among others, a number of different indole alkaloids have been identified, some of them already known from other botanical species (viz., aristoteline, aristotelone (Bhakuni et al., 1976), aristotelinine, aristone (Bittner et al., 1978), and some other originally described from Aristotelia Chilensis extracts. One of this latter alkaloids was 4,4-Dimethyl-8-methylene-3-azabicyclo(3.3.1)non-2-en-2-yl 3-indolyl ketone, structurally characterized in Watson et al., 1989, where two isomers of this molecule were mentioned as isolated from Aristotelia Chilensis. Both forms (Hereafter Ia and Ib) were characterized by NMR, and the results showed that the main difference resided in a double bond being either exo or endo-cyclic (Scheme2, encircled regions). The structure of only one of the two isomers was elucidated by single-crystal methods with an exocyclic double bond and an endocylic single one, and thus assigned to form Ia.

- A recrystallization of a harvest of maqui liquors recently made in our laboratory provided a second crystallographic
- 36 form of the same compound (hereafter II), and the crystal structural analysis herein reported primarily suggested the
- molecule to be a polymorph of **Ia** (Brief crystal data: both forms orthorhombic, P2₁2₁2₁, z=4, but: (**Ia**): ligh yellow
- 38 crystals, a = 6.480 (1), b = 12.844 (2), c = 19.960 (3)Å); (II): deep red crystals, a = 9.7841 (5), b = 12.3479 (7); c =
- 39 13.8639 (5)Å)
- We shall compare both structures in their gross features, as well as in the subtle differences telling both molecular forms
- 41 apart.

42

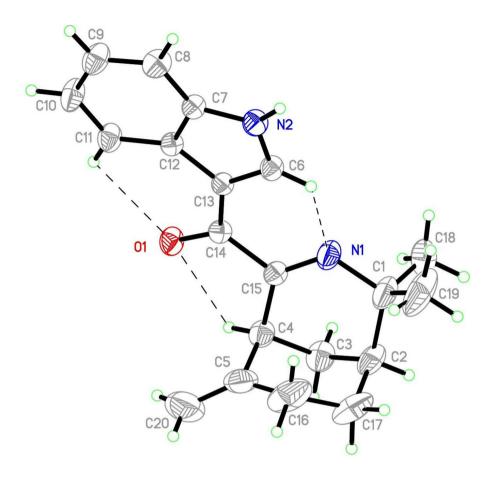
43

2. Experimental

2.1. Isolation, purification and crystallization

- 44 Aristotelia chilensis (Maqui) was collected in Concepción, VIII Region of Chile (36°50′00" S and 73°01′54" O) in
- February 2012. 20 kg of leaves were dried at 40°C, powdered and macerated for 7 days in acid water with HCl pH 3,
- after that the water layer (50 L) was separated by filtration, basified with NaOH till pH 10 and extracted with EtOAc
- 47 (3x20 L), the organic layer was concentrated in vacuo obtaining a crude alkaloid fraction. The alkaloid extract was
- chromatographed on aluminium oxide and eluted with hexane, hexane ethyl acetate 1:1, ethyl acetate, ethyl acetate
- methanol 8:2 gardient. The preparative chromatography was monitored by TLC (silica gel) and revealed with UV light
- and after Dragendorff's reagent; those fractions showing similar TLC patterns were pooled and subsequently purified by
- chromatography with the same procedure. From the hexane ethyl acetate 1:1 fraction deep red crystals were obtained (
- $[\alpha]_D^{25}$: +7.9 (c: 0.24, CHCl₃); mp= 256-257°C. ESI [M+H]⁺: 307.1748.), which were further characterized by NMR
- 53 (Table 4).

54 **2.2. Refinement**

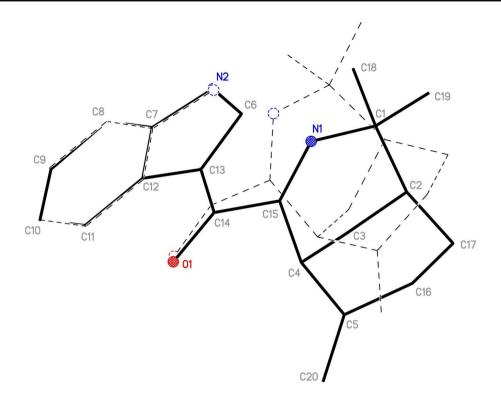

- 55 Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were found in a
- difference map, but C—H's were repositioned at their ideal values (C—H(methylene), 0.97 Å; C—H(aromatic), 0.93 Å;
- 57 C—H(methyl), 0.96 Å. The only N-attached H was freely refined (N—H: 0.8 8(3)Å). In all cases, U_{iso}(H) was taken as
- 58 U_{equiv}(Host). Due to the (expected) very small Bijvoet pair differences the absolute structure could not be reliably
- 59 determined.

60 3. Results and discussion

- Fig 1 shows an 30% probability level ellipsoid plot of **II**. Prima facie the unit does not substantially differ from **Ia** except
- in some torsion angles which determine their spatial stereochemistry, some of which are compared in Table 2. These
- 63 torsion angles force in II a slightly more "open" conformation than for Ia, as shown in Fig 2, where an overlapp of both
- moieties is shown. A rough measure of this more open character can be found in the N1..N2 distances, 5.24 (2)Å in Ia,
- 65 5.63 (2)Å in II. This conformation seems to favour the existence of clear, though weak, C—H···N, C—H···O intra-
- moleculat interactions (Table 3, structure II, three upper entries, and Fig 1). Similar interactions are almost absent in Ia,
- were the only significant intramolecular contact (Table 3, structures Ia, first entry) is much weaker than its counterpart in
- 68 **II**.
- Regarding intermolecular interactions, both compounds share the same N—H···O synthon leading in both cases to C(6)
- catemers. There are, however, disimilar characteristics both in H-bond strength (Table 3, structure II, 4th entry, and
- 71 structure Ia, 2nd entry) as in the resulting chain geometry (Fig 3): while the weak interaction in Ia leads to a
- translationally repetitive A—A—A motive along [100] (Fig 3a) the much stronger one in II, threaded along a two fold
- screw axis, leads to an alternating A—B—A—B motive along [001] (Fig 3b). Contrasting with what could be primarily

expected from a mere analysis of H-bonding strengths, the chain in **Ia** is "shorter" (a _(Ia) < 1/2 c _(II) by nearly 7%). The ultimate reason is apparent from comparison of both chains in Figs 3a,3b: the very weakness of the N—H···O bond allows for a more closed <N—H—O> angle in Ia, thus letting molecules to approach each other. On the other hand, the 76 more "straight" interaction in II sets molecules appart, with the result of a longer [001] chain. The remaining interactions holding chain motives together are sensibly weaker, and unexceptional; they seem to be, however, more effective in II, since the original "shrinkage" in chain length in Ia (\sim 7%) reduces to a mere 0.008% in cell 79 volumes, the final result being a slightly more compact structure for this latter form (calculated densities: Ia 1.225gÅ⁻³, II 80 1.215gÅ⁻³). 81 Finally we shall analyze some subtleties differentiating Ia and II at a molecular level. A rather puzzling one is their 82 striking colour difference (Ia, light yellowish; II, deep red) regardless of structural similarities. In this respect, the 83 situation resembles much what reported in Yu, 2002. In this paper the difference in crystal colour, or "color polymorphism", was attributed to conformational differences between polymorphs, which would cause varying degrees 85 of conjugation between aromatic chromophores. The commanding parameter would be in this case the torsion angle between aromatic rings, which with a drift from 104.7 (2)° to 52.6 (4)° to 21.7 (3)° (when going from one polymorph to 87 another) could be responsible of a striking yellow-to-orange-to-red shift. In the Ia—II system there is in an anlogous 88 situation, the equivalent groups being in this case the aromatic indole system and the planar portion of the heterocyclic 89 six-membered ring, with dihedral angles of 47.2 (2)Å (in the yellowish Ia) and 21.3 (2)Å (in the deep red II). The striking 90 similarity in colour shift, with an even tighter torsion angle span is apparent. 91 A perhaps related issue concerns the delocation of the terminal C—CH₃ <-> C=CH₂ bond. As previously stated, in 92 Watson et al., 1989 the authors differentiate the isomeric forms Ia and Ib by NMR results, ascribing Ia a double bond at 93 C5=C20 (1.344 (8)Å, and a single one at C5—C16 (1.419 (9)Å). Unfortunately, no crystal data for **Ib** were available to 94 confirm this difference by crystallographic means. When comparing these results with the present ones in II, the 95 equivalent values herein found, C5=C20 (1.327 (7)Å) and C5—C16 (1.496 (7)Å) present a much clearer "double" and 96 "single" character than those reported for Ia. In this sense, it is the present structure II which sems to be the one to be 97 described as a pure, non-resonant moiety, while in Ia some delocalization between both exo and endo bonds seems to take 98 place. In this context it is tempting to speculate about the possible existence of a continuous of resonant forms of the 99 molecule, spontaneously occurring in the natural synthesis of the alkaloid. Unfortunately there is no satisfactory way to 100 prove this kind of asserts regarding naturally occurring products, short of obtaining them by chance as in the present 101 report. 102

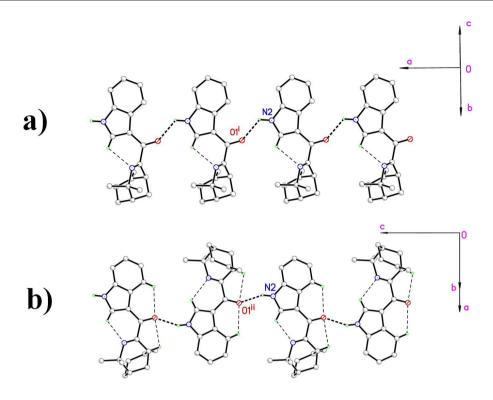
fig1.tif



3 Figure 1

Ellipsoid plot of **II**, drawn at a 30% probability level. In broken lines, some relevant intramolecular H-bonding

105 interactions.


fig2.tif

106 **Figure 2**

Comparison of the stereodisposition of the present structure **II**, in full lines and the one for **Ia**, in broken lines, after matching the almost identical indole groups.

fig3.tif

109 **Figure 3**

The chain structure in both compounds. a) Structure Ia, Symmetry code: (i) x + 1, y, z. b) Structure II, Symmetry code:

111 (ii) 3/2 - x,-y,-1/2 + z.

2 Table 1

113 Experimental details

Crystal data

115	Chemical formula	$C_{20}H_{22}N_2O$
116	$M_{ m r}$	306.40
117	Crystal system, space group	Orthorhombic, $P2_12_12_1$
118	Temperature (K)	295
119	a, b, c (Å)	9.7841 (5), 12.3479 (7), 13.8639 (5)
120	$V(Å^3)$	1674.95 (14)
121	Z	4
122	Radiation type	Μο Κα
123	$\mu \text{ (mm}^{-1}\text{)}$	0.08
124	Crystal size (mm)	$0.32 \times 0.18 \times 0.10$
125		
126	Data collection	
127	Diffractometer	Oxford Diffraction Gemini CCD S Ultra
		diffractometer
128	Absorption correction	Multi-scan
		CrysAlis PRO, Oxford Diffraction (2009)
129	$T_{ m min},T_{ m max}$	0.98, 0.99
130	No. of measured, independent and	4670, 3411, 2453
	observed $[I > 2\sigma(I)]$ reflections	
131	$R_{ m int}$	0.021

132	$(\sin \theta/\lambda)_{\max} (\mathring{A}^{-1})$	0.679
133		
134	Refinement	
135	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.140, 1.02
136	No. of reflections	3411
137	No. of parameters	214
138	No. of restraints	0
139	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
140	$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e \ \AA^{-3}})$	0.15, -0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis PRO, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL97

143 **Table 2**

Comparison of Selected Torsion Angles (°)

145	Torsion Angle	Ia	П
146	C6—C13—C14—C15	-3.6 (7)	0.2 (4)
147	C13—C14—C15—N1	-47.8 (6)	-20.2 (3)

148 **Table 3**

Comparison of hydrogen-bond geometries for **II** and **Ia** (Å, °)

Symmetry codes: (i) 3/2-x,-y,-1/2+z, (ii) x+1, y, z.

151	Structure	D—Н···A	D—Н	H···A	D···A	D—H···A
152	II	C6—H6···N1	0.93	2.31	2.851 (4)	116
153		C4—H4···O1	0.98	2.44	2.803 (3)	109
154		C11—H11···O1	0.93	2.59	3.086 (3)	114
155		N2—H2N···O1i	0.88 (3)	2.03 (3)	2.852(2)	154 (3)
156						
157	Ia	C6—H6···N1	0.93	2.52	2.966 (6)	109
158		N2—H2N···O1 ⁱⁱ	0.88	2.50	2.968 (6)	112

Table 4

Spectroscopic characterization of II by ¹H-NMR (CD₃OD, 600 MHz) and ¹³C-NMR (CD₃OD, 150 MHz). (For site-codes see Fig.1)

162	Site	H (ppm)	C (ppm)	Site	H (ppm)	C (ppm)
163	1	-	60.3	11	8.28, m	123.0
164	2	1.90, t, 1.89	37.2	12	-	127.5
165	3	2.22, m 2.08, m	29.9	13	-	115.4
166	4	3.76, s	42.5	14	-	190.3
167	5	-	147.2	15	-	169.2
168	6	8.07, s	138.3	16	1.64, m 2.08, m	29.5
169	7	-	138.4	17	1.77, m 2.20, m	30.2
170	8	7.46, m	112.8	18	1.52	27.3
171	9	7.26, m	124.6	19	1.32	31.3
172	10	7.25, m	123.6	20	4.75, d, 1.7 4.70, d, 1.7	110.5

⁽Sheldrick, 2008), SHELXL97, PLATON (Spek, 2003).

173 Acknowledgements

- Authors would like to thank financial support given by project Fondecyt 3130378 and the University of Concepción.
- ANPCyT (PME 2006–01113), providing for for the purchase of the Oxford Gemini CCD diffractometer, is also
- 176 acknowledged.

177 References

- 178 Bhakuni, D. S., Silva, M., Matlin, S. A. & Sammes, P. G. (1976). Phytochemirtry, 15, 574-575.
- Bittner, M., Silva, M., Gopalakrishna, E. M., Watson, W. H., Zabel, V., Matlin, S. A. & Sammes, P. G. (1978). J. Chem.
- 180 Soc. Chem. Commun. pp. 79–, 8O.
- Oxford Diffraction (2009). CrysAlis PRO, version 171.33.48. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- 182 Sheldrick, G. M. (2008). SHELXL-97, SHELXS-97. Acta Cryst. A64, pp. 112—122.
- 183 Spek, A. L. (2003). J. Appl. Cryst. 36, 7—13J. Appl. Cryst. 36, 7—13J. Appl. Cryst. 36, 7—13.
- 184 Watson, W. H., Nagl, A., Silva, M., Cespedes, C. & Jakupovic, J. (1989). Acta Cryst. C45, 1322–1324.
- 185 Yu, L. (2002). J. Phys. Chem. A, 106, 544-550.

checkCIF/PLATON results for paper t090855

checkCIF/PLATON results Ellipsoid plot

checkCIF/PLATON results

```
No syntax errors found. CIF dictionary Interpreting this report
Bond precision: C-C = 0.0043 A Wavelength=0.71073
Cell: a=9.7841(5) b=12.3479(7) c=13.8639(5)
     alpha=90 beta=90 gamma=90
Temperature: 295 K
                    Calculated
                                           Reported
Volume
                    1674.94(14)
                                            1674.95(14)
Space group
                   P 21 21 21
                                           P 21 21 21
Hall group
                   P 2ac 2ab
                                           P 2ac 2ab
                                         C20 H22 N2 O
C20 H22 N2 O
                  C20 H22 N2 O
C20 H22 N2 O
Moiety formula
Sum formula
                                            306.40
                    306.40
Mr
                   1.215
                                            1.215
Dx,g cm-3
                  0.075
Mu (mm-1)
                                            0.075
F000
                    656.0
                                            656.0
F000'
                    656.24
                                          13,16,18
                   13,16,18
h,k,lmax
Nref
                    4394[ 2494]
                                            3411
Tmin, Tmax
                    0.984,0.993
                                           0.980,0.990
Tmin'
                     0.976
```

Correction method= MULTI-SCAN

Data completeness= 1.37/0.78

Theta(max)= 28.850

R(reflections)= 0.0538(2453) wR2(reflections)= 0.1395(3411)

S = 1.019 Npar= 214

```
Alert level G

PLAT791_ALERT_4_G Note: The Model has Chirality at C2 (Verify) S

PLAT791_ALERT_4_G Note: The Model has Chirality at C4 (Verify) S

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 284
```

```
O ALERT level B = A potentially serious problem, consider carefully

8 ALERT level C = Check. Ensure it is not caused by an omission or oversight

3 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

5 ALERT type 2 Indicator that the structure model may be wrong or deficient

3 ALERT type 3 Indicator that the structure quality may be low

3 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check
```

database duplication summary

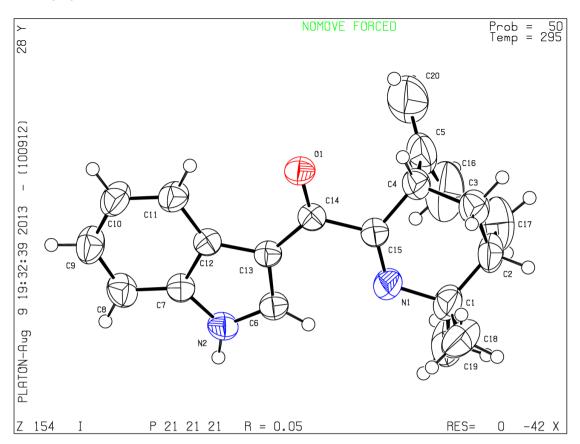
- Chemical name =
- R factor = 0.054
- Space group = P 21 21 21
- Formula = C20 H22 N2 O
- a=9.7841 b=12.3479 c=13.8639
- alpha=90 beta=90 gamma=90

No duplication found.

reference checking results

The following references were not checked in detail as they were not recognized as journal references

Bhakuni, D. S., Silva, M., Matlin, S. A. & Sammes, P. G. (1976). Phytochemirtry, 15, 574-575.


Oxford Diffraction (2009). *CrysAlis PRO*, version 171.33.48. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

The following references are cited in the _related_literature section only. If submitting to Acta C these will be flagged as **not cited** because the related_literature section is not published in Acta C

Bhakuni, D. S., Silva, M., Matlin, S. A. & Sammes, P. G. (1976). Phytochemirtry, 15, 574-575. is cited in the _related_literature **only**

Bittner, M., Silva, M., Gopalakrishna, E. M., Watson, W. H., Zabel, V., Matlin, S. A. & Sammes, P. G. (1978). *J. Chem. Soc. Chem. Commun.* pp. 79--, 80. is cited in the _related_literature **only**

Yu, L. (2002). J. Phys. Chem. A, **106**, 544--550. is cited in the _related_literature **only**

- A polymorphic form of 4,4-Dimethyl-8-methylene-3-azabicyclo(3.3.1)non-2-
- en-2-yl 3-indolyl ketone, an indole alkaloid extracted from Aristotelia Chilensis
- 4 (Maqui).
- 5 Cristian Paz, José Becerra, Mario Silva, Eleonora Freire and Ricardo Baggio
- 6 Computing details
- 7 Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO;
- g program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
- 9 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication:
- 10 SHELXL97, PLATON (Spek, 2003).
- 4,4-Dimethyl-8-methylene-3-azabicyclo(3.3.1)non-2-en-2-yl 3-indolyl ketone

```
Crystal data
12
     C20H22N2O
                                                                            F(000) = 656
13
    M_r = 306.40
                                                                            D_x = 1.215 \text{ Mg m}^{-3}
     Orthorhombic, P2_12_12_1
                                                                            Mo K\alpha radiation, \lambda = 0.71073 Å
15
     Hall symbol: P 2ac 2ab
                                                                            Cell parameters from 1161 reflections
16
     a = 9.7841 (5) Å
                                                                            \theta = 3.9 - 28.8^{\circ}
17
     b = 12.3479 (7) \text{ Å}
                                                                            \mu = 0.08 \text{ mm}^{-1}
18
     c = 13.8639 (5) Å
                                                                            T = 295 \text{ K}
     V = 1674.95 (14) \text{ Å}^3
                                                                            Prisms, red
                                                                            0.32\times0.18\times0.10~mm
     Z = 4
     Data collection
     Oxford Diffraction Gemini CCD S Ultra
                                                                            4670 measured reflections
       diffractometer
                                                                            3411 independent reflections
     Radiation source: fine-focus sealed tube
                                                                            2453 reflections with I > 2\sigma(I)
24
     Graphite monochromator
                                                                            R_{\rm int} = 0.021
25
     \omega scans, thick slices
                                                                            \theta_{\text{max}} = 28.9^{\circ}, \, \theta_{\text{min}} = 3.9^{\circ}
                                                                            h = -13 \rightarrow 12
     Absorption correction: multi-scan
       CrysAlis PRO, Oxford Diffraction (2009)
                                                                            k = -8 \rightarrow 16
     T_{\min} = 0.98, T_{\max} = 0.99
                                                                            l = -10 \rightarrow 18
28
     Refinement
     Refinement on F^2
                                                                            Secondary atom site location: difference Fourier
30
     Least-squares matrix: full
31
     R[F^2 > 2\sigma(F^2)] = 0.054
                                                                            Hydrogen site location: inferred from
32
                                                                             neighbouring sites
     wR(F^2) = 0.140
33
                                                                            H atoms treated by a mixture of independent
     S = 1.02
34
     3411 reflections
                                                                             and constrained refinement
                                                                            w = 1/[\sigma^2(F_0^2) + (0.0635P)^2 + 0.1599P]
     214 parameters
                                                                             where P = (F_0^2 + 2F_c^2)/3
     0 restraints
     Primary atom site location: structure-invariant
                                                                            (\Delta/\sigma)_{\text{max}} < 0.001
                                                                            \Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}
       direct methods
```

9 $\Delta \rho_{\min} = -0.16 \text{ e Å}^{-3}$

Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.014 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

41		x	у	z	$U_{\rm iso}^*/U_{\rm eq}$
42	O1	0.67543 (19)	0.00046 (14)	1.03376 (10)	0.0550 (5)
43	N1	0.5726 (3)	0.1765 (2)	0.85277 (16)	0.0653 (7)
44	N2	0.8665 (2)	-0.03048 (17)	0.73555 (14)	0.0515 (5)
45	H2N	0.881 (3)	-0.027(2)	0.673 (2)	0.062*
46	C1	0.4690 (4)	0.2577 (3)	0.8245 (2)	0.0769 (10)
47	C2	0.3351 (3)	0.2516 (2)	0.8838 (2)	0.0683 (8)
48	H2	0.2903	0.3224	0.8791	0.082*
49	C3	0.3731 (4)	0.2346 (2)	0.98827 (19)	0.0684 (8)
50	H3A	0.2920	0.2374	1.0285	0.082*
51	Н3В	0.4356	0.2908	1.0094	0.082*
52	C4	0.4408 (3)	0.1238 (2)	0.99661 (18)	0.0562 (7)
53	H4	0.4745	0.1136	1.0626	0.067*
54	C5	0.3393 (3)	0.0374 (3)	0.9736 (3)	0.0907 (11)
55	C6	0.7690(3)	0.0262(2)	0.78094 (14)	0.0465 (6)
56	Н6	0.7132	0.0776	0.7517	0.056*
57	C7	0.9286 (3)	-0.10058 (19)	0.79999 (15)	0.0437 (6)
58	C8	1.0318 (3)	-0.1763 (2)	0.78454 (18)	0.0595 (7)
59	H8	1.0722	-0.1846	0.7243	0.071*
60	C9	1.0712 (3)	-0.2380 (2)	0.86195 (19)	0.0672 (8)
61	H9	1.1388	-0.2901	0.8538	0.081*
62	C10	1.0123 (3)	-0.2244 (2)	0.95220 (19)	0.0676 (8)
63	H10	1.0420	-0.2670	1.0034	0.081*
64	C11	0.9104(3)	-0.1487 (2)	0.96750 (17)	0.0559 (7)
65	H11	0.8714	-0.1404	1.0282	0.067*
66	C12	0.8668 (2)	-0.08478 (18)	0.88987 (14)	0.0408 (5)
67	C13	0.7629 (2)	-0.00248(18)	0.87737 (14)	0.0396 (5)
68	C14	0.6699 (2)	0.03597 (18)	0.95035 (15)	0.0412 (5)
69	C15	0.5589 (3)	0.11876 (19)	0.92747 (15)	0.0439 (6)
70	C16	0.2784 (4)	0.0504 (4)	0.8753 (4)	0.1232 (17)
71	H16A	0.2017	0.0011	0.8686	0.148*
72	H16B	0.3461	0.0311	0.8271	0.148*
73	C17	0.2296 (4)	0.1662 (4)	0.8570 (3)	0.1085 (14)
74	H17A	0.2069	0.1739	0.7892	0.130*
75	H17B	0.1470	0.1789	0.8939	0.130*
76	C18	0.5376 (5)	0.3683 (3)	0.8374 (3)	0.1200 (16)
77	H18A	0.5517	0.3819	0.9048	0.180*
78	H18B	0.4800	0.4237	0.8108	0.180*
79	H18C	0.6240	0.3686	0.8046	0.180*
80	C19	0.4439 (6)	0.2385 (5)	0.7166 (2)	0.142 (2)
81	H19A	0.5277	0.2486	0.6817	0.213*
82	H19B	0.3768	0.2890	0.6935	0.213*
83	H19C	0.4114	0.1660	0.7069	0.213*
84	C20	0.3082 (5)	-0.0406 (4)	1.0357 (5)	0.158 (2)

H20A H20B	0.3502 0.2445		.0425	1.0959 1.0191	0.189* 0.189*			
Atomic displacement parameters (\mathring{A}^2)								
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}		
O1	0.0665 (11)	0.0655 (11)	0.0329 (7)	0.0124 (10)	0.0034 (8)	0.0052 (8)		
N1	0.0664 (15)	0.0780 (16)	0.0515 (12)	0.0245 (15)	0.0029 (11)	0.0160 (11)		
N2	0.0576 (12)	0.0651 (13)	0.0317 (9)	0.0064 (12)	0.0043 (10)	0.0005 (9)		
C1	0.082(2)	0.091(2)	0.0568 (16)	0.039(2)	0.0002 (16)	0.0165 (15)		
C2	0.0695 (18)	0.0718 (19)	0.0636 (16)	0.0343 (17)	-0.0032 (16)	-0.0085 (14)		
C3	0.079(2)	0.0678 (17)	0.0582 (16)	0.0216 (18)	0.0096 (15)	-0.0074(13)		
C4	0.0596 (16)	0.0590 (15)	0.0501 (13)	0.0141 (15)	0.0071 (13)	-0.0015 (12)		
C5	0.0481 (16)	0.071(2)	0.153 (4)	0.0041 (18)	0.017(2)	0.006(2)		
C6	0.0503 (13)	0.0525 (14)	0.0367 (11)	0.0030 (13)	-0.0024 (10)	0.0006 (10)		
C7	0.0468 (13)	0.0478 (13)	0.0365 (11)	0.0012 (12)	-0.0034(11)	-0.0040(10)		
C8	0.0652 (17)	0.0686 (17)	0.0445 (13)	0.0119 (16)	0.0029 (12)	-0.0127 (12)		
C9	0.077(2)	0.0634 (17)	0.0609 (17)	0.0259 (18)	-0.0044 (15)	-0.0082 (13)		
C10	0.086(2)	0.0669 (17)	0.0500 (14)	0.0273 (18)	-0.0066 (15)	0.0064 (13)		
C11	0.0674 (17)	0.0592 (15)	0.0412 (12)	0.0107 (14)	-0.0019 (13)	0.0023 (11)		
C12	0.0438 (12)	0.0434 (12)	0.0352 (11)	-0.0011 (11)	-0.0037 (10)	-0.0026(9)		
C13	0.0415 (11)	0.0434 (12)	0.0339 (10)	-0.0020(10)	-0.0040(10)	-0.0007(9)		
C14	0.0429 (12)	0.0466 (12)	0.0343 (10)	-0.0017(11)	-0.0034 (10)	-0.0038(9)		
C15	0.0454 (13)	0.0491 (13)	0.0373 (11)	0.0021 (12)	-0.0044 (10)	-0.0038 (10)		
C16	0.070(2)	0.097(3)	0.204 (5)	-0.007(2)	-0.049(3)	-0.039(3)		
C17	0.062(2)	0.129 (4)	0.135 (3)	0.026(2)	-0.033(2)	-0.025(3)		
C18	0.113 (3)	0.090(3)	0.157 (4)	0.021 (3)	0.010(3)	0.062(3)		
C19	0.166 (5)	0.213 (5)	0.0476 (18)	0.122 (4)	-0.002 (2)	0.018 (2)		
C20	0.090 (3)	0.096 (3)	0.288 (7)	-0.005 (3)	0.055 (4)	0.052 (4)		
Geomet	ric parameters (Å	?, °)						
O1—C	14	1.238	(3)	C8—C9	1.	372 (4)		
N1—C	15	1.265	(3)	C8—H8	0.	9300		
N1—C	1	1.479	` /	C9—C10		387 (4)		
N2—C		1.340	(3)	C9—H9	0.	9300		
N2—C		1.384	* *	C10—C11	1.384 (4)			
N2—H		0.88 (*	C10—H10		9300		
C1—C		1.532	` /	C11—C12		401 (3)		
C1—C		1.534	* *	C11—H11		9300		
C1—C2		1.549	* *	C12—C13				
C2—C3		1.509	* *	C13—C14	1.442 (3)			
C2—C1		1.522	* *	C14—C15	1.525 (3)			
C2—H2		0.9800		C16—C17		529 (6)		
C3—C4		1.525	* *	C16—H16A				
C3—H3A		0.9700		C16—H16B		9700		
	7 C3—H3B					C17—H17A		9700
C3—H3			1/11	C17—H17B 0.9700		9/00		
C3—H3 C4—C3			* *		^	0.600		
C3—H3	15	1.503 0.9800	(4)	C18—H18A C18—H18B		9600 9600		

131	C5—C20	1.327 (5)	C18—H18C	0.9600
132	C5—C16	1.496 (5)	C19—H19A	0.9600
133	C6—C13	1.384 (3)	C19—H19B	0.9600
134	C6—H6	0.9300	C19—H19C	0.9600
135	C7—C8	1.392 (3)	C20—H20A	0.9300
136	C7—C12	1.399 (3)	C20—H20B	0.9300
137		, ,		
138	C15—N1—C1	121.8 (3)	C11—C10—H10	119.4
139	C6—N2—C7	109.63 (19)	C9—C10—H10	119.4
140	C6—N2—H2N	123.4 (18)	C10—C11—C12	118.8 (2)
141	C7—N2—H2N	126.7 (18)	C10—C11—H11	120.6
142	N1—C1—C18	105.8 (3)	C12—C11—H11	120.6
143	N1—C1—C19	105.3 (3)	C7—C12—C11	118.3 (2)
144	C18—C1—C19	108.8 (4)	C7—C12—C13	107.15 (18)
145	N1—C1—C2	113.9 (2)	C11—C12—C13	134.5 (2)
146	C18—C1—C2	110.6 (3)	C6—C13—C14	128.4 (2)
147	C19—C1—C2	112.0 (3)	C6—C13—C12	105.38 (19)
148	C3—C2—C17	107.7 (3)	C14—C13—C12	126.19 (18)
149	C3—C2—C1	108.0 (3)	O1—C14—C13	120.8 (2)
150	C17—C2—C1	118.5 (3)	O1—C14—C15	117.59 (19)
151	C3—C2—H2	107.4	C13—C14—C15	121.64 (18)
152	C17—C2—H2	107.4	N1—C15—C4	125.5 (2)
153	C1—C2—H2	107.4	N1—C15—C14	118.2 (2)
154	C2—C3—C4	107.8 (2)	C4—C15—C14	116.26 (19)
155	C2—C3—H3A	110.2	C5—C16—C17	112.1 (3)
156	C4—C3—H3A	110.2	C5—C16—H16A	109.2
157	C2—C3—H3B	110.2	C17—C16—H16A	109.2
158	C4—C3—H3B	110.2	C5—C16—H16B	109.2
159	H3A—C3—H3B	108.5	C17—C16—H16B	109.2
160	C5—C4—C15	110.2 (2)	H16A—C16—H16B	107.9
161	C5—C4—C3	109.6 (3)	C2—C17—C16	113.3 (3)
162	C15—C4—C3	108.8 (2)	C2—C17—H17A	108.9
163	C5—C4—H4	109.4	C16—C17—H17A	108.9
164	C15—C4—H4	109.4	C2—C17—H17B	108.9
165	C3—C4—H4	109.4	C16—C17—H17B	108.9
166	C20—C5—C4	122.1 (4)	H17A—C17—H17B	107.7
167	C20—C5—C16	125.3 (4)	C1—C18—H18A	109.5
168	C4—C5—C16	112.5 (3)	C1—C18—H18B	109.5
169	N2—C6—C13	110.5 (2)	H18A—C18—H18B	109.5
170	N2—C6—H6	124.7	C1—C18—H18C	109.5
171	C13—C6—H6	124.7	H18A—C18—H18C	109.5
172	N2—C7—C8	129.7 (2)	H18B—C18—H18C	109.5
173	N2—C7—C12	107.3 (2)	C1—C19—H19A	109.5
174	C8—C7—C12	123.0 (2)	C1—C19—H19B	109.5
175	C9—C8—C7 C9—C8—H8	117.2 (2) 121.4	H19A—C19—H19B C1—C19—H19C	109.5 109.5
176	С9—С8—Н8	121.4	H19A—C19—H19C	109.5
177	C8—C9—C10	121.4 (3)	H19A—C19—H19C H19B—C19—H19C	109.5
178	C8—C9—C10 C8—C9—H9	121.4 (3)	C5—C20—H20A	109.3
179	C0C3113	117.5	C3C201120A	120.0

180	C10—C9—H9	119.3	C5—C20—H20B	120.0
181	C11—C10—C9	121.3 (2)	H20A—C20—H20B	120.0
182				
183	C15—N1—C1—C18	112.2 (3)	C8—C7—C12—C13	-178.5 (2)
184	C15—N1—C1—C19	-132.6 (4)	C10—C11—C12—C7	0.0 (4)
185	C15—N1—C1—C2	-9.5(4)	C10—C11—C12—C13	177.5 (3)
186	N1—C1—C2—C3	42.3 (4)	N2—C6—C13—C14	-177.6(2)
187	C18—C1—C2—C3	-76.7(3)	N2—C6—C13—C12	-0.4(3)
188	C19—C1—C2—C3	161.7 (3)	C7—C12—C13—C6	-0.1 (2)
189	N1—C1—C2—C17	-80.4 (4)	C11—C12—C13—C6	-177.8(3)
190	C18—C1—C2—C17	160.5 (3)	C7—C12—C13—C14	177.2 (2)
191	C19—C1—C2—C17	39.0 (4)	C11—C12—C13—C14	-0.5(4)
192	C17—C2—C3—C4	63.7 (3)	C6—C13—C14—O1	178.3 (2)
193	C1—C2—C3—C4	-65.4(3)	C12—C13—C14—O1	1.7 (3)
194	C2—C3—C4—C5	-65.5(3)	C6—C13—C14—C15	0.2 (4)
195	C2—C3—C4—C15	55.1 (3)	C12—C13—C14—C15	-176.5 (2)
196	C15—C4—C5—C20	118.3 (4)	C1—N1—C15—C4	-0.4(4)
197	C3—C4—C5—C20	-121.9 (4)	C1—N1—C15—C14	179.1 (2)
198	C15—C4—C5—C16	-62.3(3)	C5—C4—C15—N1	97.4 (3)
199	C3—C4—C5—C16	57.5 (4)	C3—C4—C15—N1	-22.9 (4)
200	C7—N2—C6—C13	0.7 (3)	C5—C4—C15—C14	-82.2 (3)
201	C6—N2—C7—C8	178.2 (3)	C3—C4—C15—C14	157.5 (2)
202	C6—N2—C7—C12	-0.8(3)	O1—C14—C15—N1	161.6 (2)
203	N2—C7—C8—C9	-177.9(3)	C13—C14—C15—N1	-20.2 (3)
204	C12—C7—C8—C9	0.9 (4)	O1—C14—C15—C4	-18.8(3)
205	C7—C8—C9—C10	-1.0(5)	C13—C14—C15—C4	159.5 (2)
206	C8—C9—C10—C11	0.7 (5)	C20—C5—C16—C17	131.1 (4)
207	C9—C10—C11—C12	-0.2(5)	C4—C5—C16—C17	-48.3 (4)
208	N2—C7—C12—C11	178.6 (2)	C3—C2—C17—C16	-56.1 (4)
209	C8—C7—C12—C11	-0.4(3)	C1—C2—C17—C16	66.7 (5)
210	N2—C7—C12—C13	0.5 (2)	C5—C16—C17—C2	48.2 (5)

211 Comparison of Selected Torsion Angles (°)

212	Torsion Angle	Ia	П	
213	C6—C13—C14—C15	-3.6 (7)	0.2 (4)	
214	C13—C14—C15—N1	-47.8 (6)	-20.2 (3)	

- Comparison of hydrogen-bond geometries for **II** and **Ia** $(\mathring{A}, °)$
- 216 Symmetry codes: (i) 3/2-x,-y,-1/2+z, (ii) x+1, y, z.

217	Structure	D—H···A	D—H	H···A	D···A	D—H···A
218	II	C6—H6···N1	0.93	2.31	2.851 (4)	116
219		C4—H4···O1	0.98	2.44	2.803 (3)	109
220		C11—H11···O1	0.93	2.59	3.086 (3)	114
221		N2—H2N···O1i	0.88 (3)	2.03 (3)	2.852 (2)	154 (3)
222						
223	Ia	C6—H6···N1	0.93	2.52	2.966 (6)	109
224		N2—H2N···O1 ⁱⁱ	0.88	2.50	2.968 (6)	112

Spectroscopic characterization of II by ¹H-NMR (CD₃OD, 600 MHz) and ¹³C-NMR (CD₃OD, 150 MHz). (For site-codes see Fig.1)

227	Site	H (ppm)	C (ppm)	Site	H (ppm)	C (ppm)
228	1	-	60.3	11	8.28, m	123.0
229	2	1.90, t, 1.89	37.2	12	-	127.5
230	3	2.22, m 2.08, m	29.9	13	-	115.4
231	4	3.76, s	42.5	14	-	190.3
232	5	-	147.2	15	-	169.2
233	6	8.07, s	138.3	16	1.64, m 2.08, m	29.5
234	7	-	138.4	17	1.77, m 2.20, m	30.2
235	8	7.46, m	112.8	18	1.52	27.3
236	9	7.26, m	124.6	19	1.32	31.3
237	10	7.25, m	123.6	20	4.75, d, 1.7 4.70, d, 1.7	110.5