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Abstract. Given a prime p ≥ 5 and an abstract odd representation ρn with coefficients modulo

pn (for some n ≥ 1) and big image, we prove the existence of a lift of ρn to characteristic 0
whenever local lifts exist (under minor technical conditions). Moreover, our results allow to

chose the lift’s inertial type at all primes but finitely many (where the lift is of Steinberg type).

We apply this result to the realm of modular forms, proving a level lowering theorem modulo
prime powers and providing examples of level raising. An easy application of our main result

proves that given a modular eigenform f without Complex Multiplication nor inner twists, for

all primes p but finitely many, and for all positive integers n, there exists an eigenform g 6= f ,
which is congruent to f modulo pn.

1. Introduction

The aim of the present article is to deal with congruences between modular forms (even more
generally between abstract Galois representations) modulo prime powers. For that purpose we
adapt the arguments of [Ram99] and [Ram02] with the extra care of the problems coming from
semisimplification issues. Let F be a finite field of residual characteristic p, W (F) its ring of Witt
vectors and ρn : GQ → GL2(W (F)/pn) be a continuous representation. We denote by ρn its
reduction modulo p.

Theorem A. Let F be a finite field of characteristic p ≥ 5. Let ρn : GQ → GL2(W (F)/pn) be a
continuous representation ramified at a finite set of primes S satisfying the following properties:

• The image of ρn is big, i.e. SL2(F) ⊆ Im(ρn) and Im(ρn) = GL2(F) if p = 5.
• ρn is odd.
• The restriction ρn|Gp is not twist equivalent to the trivial representation nor the indecom-

posable unramified representation given by ( 1 ∗
0 1 ).

• ρn does not ramify at 2.

Let P be a finite set of primes containing S, and for every ` ∈ P , ` 6= p, fix a deformation
ρ` : G` → W (F) of ρn|G` . At the prime p, let ρp be a deformation of ρn|Gp which is ordinary or
crystalline with Hodge-Tate weights {0, k}, with 2 ≤ k ≤ p− 1.

Then there is a finite set Q of auxiliary primes q 6≡ ±1 (mod p) and a modular representation

ρ : GP∪Q −→ GL2(W (F)),

such that:

• the reduction modulo pn of ρ is ρn,
• ρ|I` ' ρ`|I` for every ` ∈ P ,
• ρ|Gq is a ramified representation of Steinberg type for every q ∈ Q.

Although for the applications we have in mind, we focused in the case of odd representations
(which by Serre’s conjectures are modular), with some extra hypotheses as in [Ram99] one can
get a result for any abstract representation with big image.
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Remark 1. In the work [Kha04], while trying to give another proof of Taylor-Wiles theorem, they
do consider lifts of the reduction modulo pn of a global representation ρ, so their Step 1 is a weaker
version of our Theorem A. Since they only need a lift to exist, they can choose the inertia type at
all primes but the auxiliary ones which makes the computations much easier. Sections 4, 5 and 6
of the present article deal with the difficulties that arise while allowing any local deformation at
inertia.

Remark 2. Theorem A is in the same spirit as Theorem 3.2.2 of [BD14], where only residual
representations are considered. The advantage of working with the deformation ring itself (instead
of constructing the deformation) is that no auxiliary set of primes is needed (i.e. one can take
Q = ∅ in the main theorem) but one looses control on the coefficient ring (so the deformation
obtained might have coefficients in a finite extension of W (F)). This phenomena only works while
working modulo a prime ideal. For example, the elliptic curve 329a1 is unramified at 7 modulo 9,
but there are no newforms of level 47 congruent to it modulo 9 (see for example [Dum05]).

Let f ∈ Sk(Γ0(N), ε) (k ≥ 2) be a newform, with coefficient field Kf . Denote by Of the ring of
integers of Kf . If p is a prime number, let p denote a prime ideal in Of dividing p, Kp denote the

completion of Kf at p and Op its ring of integers. Finally let ρf,p : Gal(Q/Q)→ GL2(Kp) denote
its associated p-adic Galois representation. If n is a positive integer, let

ρn : GQ → GL2(Op/p
n)

be its reduction modulo pn.

Theorem B. In the above hypothesis, let n > 0 be an integer and p > max(k, 3) be a prime such
that:

• p - N or f is ordinary at p,
• SL2(Op/p) ⊆ Im(ρf,p), and Im(ρf,p) = GL2(Op/p) if p = 5.
• p does not ramify in the field of coefficients of f .
• ρn does not ramify at 2.

Let R be the set of ramified primes of ρn. If N ′ =
∏
`∈R `

v`(N), then there exist an integer r, a set
{q1, . . . , qr} of auxiliary primes prime to N satisfying qi 6≡ 1 (mod p) and a newform g, different
from f , of weight k and level N ′q1 . . . qr such that f and g are congruent modulo pn. Furthermore,
the form g can be chosen with the same restriction to inertia as that of f at the primes of R.

A direct application of Theorem B, is a lowering the level result modulo prime powers. Such
result is proven in [Kha04] (Proposition 1, while proving the main Theorem) and in [Dum05]
(Theorem 1), under the assumption that the primes loosing ramification are not congruent to ±1
modulo p.

Corollary 1.1 (Lowering the level). Let f ∈ Sk(Γ0(M), ε) be a newform, p a prime of Of above
p ∈ Q and ρn : GQ → GL2(Of/p

n) be the reduction of its p-adic representation modulo pn. Suppose
that:

• p ≥ 5.
• 2 ≤ k ≤ p− 1.
• SL2(Of/p) ⊆ Im(ρn) and Im(ρn) = GL2(Of/p) if p = 5.
• p does not ramify in Of .
• ρn does not ramify at 2.

If ` |M is such that ρn is unramified at `, then the Hecke map factors through the `-old quotient
T`-old
k (M, `).

Proof. The proofs of [Kha04] and [Dum05] give the result for primes ` where ramification is lost
and satisfy ` 6≡ 1 (mod p). Theorem B allows us to move the ramification to some auxiliary set of
controlled Steinberg primes. More concretely, if there exist some primes ` with ` ≡ ±1 (mod p)
loosing ramification, Theorem B implies the existence of a form g congruent modulo pn with f ,
with good reduction at the primes ` and bad reduction at some extra set of Steinberg primes
q 6≡ ±1 (mod p). The form g is now in the hypothesis of Dummigan’s Theorem, and the result
follows.
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Note that as explained in section 9 of [Dum05], Theorem 1 takes a Galois representation as an
input and returns a Hecke map from a subgroup with one prime ` removed from the level. Since
we need to make repeated use of it (to remove all auxiliary primes), we need a similar statement
that allows a Hecke map as an input. As was pointed out by Professor Dummigan, Theorem 1 of
[Dum05] holds in this more general situation with exactly the same proof. �

Corollary 1.2. Let k ≥ 2, N odd and f ∈ Sk(Γ0(N), ε) be a newform which has no complex
multiplication nor inner twists. Then for all but finitely many prime numbers p, and for all
positive integers n, there exists a weight k newform g (depending on p and n) different from f ,
which is congruent to f modulo pn.

Proof. Since f does not have complex multiplication nor inner twists, by Ribet’s result ([Rib85],
Theorem 3.1) the residual image of the p-adic Galois representation attached to f is big modulo
p for all but finitely many primes p. Then the set of primes p such that any of the following
propertied hold:

• p ≤ k,
• the residual image of ρf , p is not big,
• p divides N (or if it does, f is not ordinary at p),
• p is ramified in the coefficient field of f ,

is finite. All the other primes are in the hypothesis of Theorem B and the result follows. �

The proof of Theorem A follows the ideas of [Ram02] and involves solving two different problems.
One consists on constructing a finite set of auxiliary primes that converts the problem of lifting
a global representation into the one of lifting many local ones. The other consists in solving the
somewhat easier local lifting problems. Following the logical structure of [Ram02], we deal with
the local considerations first.

To solve the local lifting problems, for every prime ` ∈ P we need to find a set C` of deformations
of ρn|G` to W (F) containing ρ` and a subspace N` ⊆ H1(G`, Ad

0ρ̄) of the right codimension such
that: elements of N` preserve the reductions of C` (i.e. whenever ρm is the reduction of some
ρ ∈ C` modulo pm and u ∈ N` then (1 + pm−1u)ρm is the reduction of some other ρ′ ∈ C`)
and any deformation ρm can be modified by an element not in N` to lie in C`. Furthermore,
we also need all the deformations in C` to be isomorphic when restricted to I`. For each prime
` ∈ P the restriction of the global representation to a decomposition group at ` provide a mod pn

representation ρn and a local representation ρ` lifting ρn|G` . We proceed as follows:

(1) We classify all the possible ρ` up to Zp-isomorphism and all the possible ρn up to F-
isomorphism.

(2) For each pair of isomorphism classes for ρ` and ρn we try to construct a set C` (depending
on the class of ρ`) of deformations with coefficients in W (F) which are congruent to ρ`
mod pn and the corresponding subspace N` ⊆ H1(G`, Ad

0ρ̄) (depending on the class of
ρn|G`) preserving it.

Remark 3. Although the main theorems are on global representations modulo pn, we do not
consider the problem of classifying local representations modulo pn nor the problem of determining
which ones do lift to characteristic zero. The hypothesis that a local lift is given for each ramified
prime plays a crucial role in the construction of the sets C`.

While pursuing the second objective one flaw appears. There is one case (labeled Case 4 (1) in
Section 4) for which the pair (C`, N`) satisfies the desire properties not modulo pm for all m ≥ n
but for all m ≥ n0 > n (depending on ρn|G`). To overcome this problem, we construct a lift of ρn
to W (F)/pn0+1 (via a completely different argument explained in Section 6) and then we follow
the ideas explained earlier.

Once the right local deformations classes are chosen (and solved the potential issue appearing
in small exponents), we need to construct two auxiliary sets of primes Q1 and Q2 (together with
their respective sets Cq and subspaces Nq as for the primes in P ) with the following roles:
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• The set Q1 has two main properties (see Fact 16 [Ram02]): it kills the global obstructions,
i.e. is such that III1

S∪Q1
((Ad0ρ̄)∗) = 0 (and therefore III2

S∪Q1
(Ad0ρ̄) = 0 by global duality)

and is such that the inflation map

H2(GS , Ad
0ρ̄)→ H2(GS∪Q1

, Ad0ρ̄),

is an isomorphism.
• The set Q2 gives an isomorphism

H1(GS∪Q1∪Q2
, Ad0ρ̄)→

⊕
`∈S∪Q1∪Q2

H1(G`, Ad
0ρ̄)/N`,

without adding global obstructions, i.e. III2
S∪Q1∪Q2

= 0.

These auxiliary primes are essentially Ramakrishna’s Q and T sets (in [Ram02], with the same
sets Cq and subspace Nq). Just some extra care needs to be taking while proving that ρn|Gq is
the reduction of some ρ ∈ Cq for every q ∈ Q1 ∪Q2.

With the local conditions and the auxiliary primes, the inductive method starts to work since
each step only depends on hypotheses about the mod p reduction of our representation.

The inductive method works as follows: in virtue of III2
S∪Q1

(Ad0ρ̄) = 0, a global deformation

to W (F)/pm lifts to W (F)/pm+1 if and only if its restrictions to the primes of P ∪ Q1 ∪ Q2 lift
to W (F)/pm+1. For m = n the local condition is automatic so there exists a lift ρn+1 of ρn to
W (F)/pn+1. The problem is that ρn+1 may not lift again, as it can be locally obstructed. In
order to remove these local obstructions we use the fact that any local deformation for primes ` ∈
P ∪Q1∪Q2 can be modified by some element not in N` in order to be a reduction of some element
of C` and therefore unobstructed. We will often refer to this as adjusting a local deformation. As
we have an isomorphism between the global first cohomology group and the coproduct of the local
first cohomology groups modulo N`, we can find an element u ∈ H1(GQ, Ad

0ρ̄) that adjusts ρn+1

locally for every prime in P ∪ Q1 ∪ Q2 making (1 + pnu)ρn+1 an unobstructed lift of ρn. From
here we can repeat the process of lifting and adjusting indefinitely, obtaining a lift to W (F).

Theorem A follows from these ideas and some appropriate modularity lifting theorem (which
explain the conditions imposed at p). Theorem B is an immediate consequence of Theorem A.

Notations and conventions: throughout this work GQ denotes the Galois group Gal(Q/Q). If
` is a prime number, G` denotes a decomposition group of ` inside GQ. Inside this Galois group,
σ and τ will stand for a Frobenius element and a tame inertia generator respectively. Whenever
we need to make the dependency on q explicit, we will name a Frobenius element in Gq by Frobq.
We will denote by F a finite field of characteristic p and by W (F) its ring of Witt vectors.

Regarding representations, ρn denotes a continuous representation ρn : GQ → GL2(W (F)/pn),
ρ a continuous representation with coefficients in W (F) ramifying at finitely many primes and ρ a
representation modulo p. If ω is a character from GQ to F we denote ω̃ its Teichmuller lift.

We will denote by χ the p-adic cyclotomic character. If det ρ = ωχk, with ω unramified at p, we
will consider only deformations with fixed determinant ω̃χk. This amounts to fixing the weight of
our lifts so we consider Ad0ρ̄ instead of Adρ̄. If ρ is any continuous representation, Q(ρ) denotes
the field fixed by its kernel. Given ρ, after twisting it by a character of finite order we may, and
will, suppose that ρ and Ad0ρ̄ ramify at the same set of primes S. Finally, for a ring of integers
O of a finite extension of Qp, v will stand for the valuation that has value 1 at the uniformizer.

Acknowledgments: Special thanks go to Luis Dieulefait, for proposing us the problem of Corol-
lary 1.2 (the starting point of the present article) as well as many discussions and suggestions
he made which improved the exposition, and to Ravi Ramakrishna for many suggestions which
not only improved the exposition, but also allowed to remove some technical conditions in a first
version of this article. We thank Professor Dummigan for explaining us how to adapt his lowering
the level results needed in Corollary 1.1 and Gabor Wiese for many corrections and comments,
Panagiotis Tsaknias for pointing out the application of Theorem A to Corollary 1.1 and John
Jones and Bill Allombert for helping us with the computational part of the example.
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2. Classification of residual representations and types of reduction

Recall the classification of mod p representations of G`, when ` 6= p (see for example [CSS97],
Section 2).

Proposition 2.1. Let ` 6= 2, be a prime number, with ` 6= p. Then up to twist by a character of
finite order any representation ρ : G` → GL2(F) belongs to one of the following three types:

• Principal Series: ρ '
(
φ 0
0 1

)
or ρ '

(
1 ψ
0 1

)
.

• Steinberg: ρ ' ( χ µ0 1 ) , where µ ∈ H1(G`,F(χ)) and µ|I` 6= 0.

• Induced: ρ ' IndG`GM (ξ), where M/Q` is a quadratic extension and ξ : GM → F× is a
character not equal to its conjugate under the action of Gal(M/Q`).

Here φ : G` → F× is a multiplicative character and ψ : G` → F is an unramified additive character.

Remark 4. Any unramified representation is Principal Series, and can be of the form ρ '
(
φ 0
0 1

)
,

with φ unramified or of the form ρ '
(

1 ψ
0 1

)
, with ψ : G` → F an additive unramified character.

The same classification applies to continuous representations ρ : G` → GL2(Qp) modulo

GL2(Qp) equivalence, but to deal with reductions modulo prime powers we need a classification

of representations with integer coefficients modulo GL2(Zp) equivalence. Let L be the coefficient

field of ρ, OL its ring of integers, and π be a local uniformizer. Let also µ ∈ H1(G`,Zp(χ)) denote
a generator of such Zp-module.

Theorem 2.2. Let ρ : G` → GL2(Zp) be a continuous representation. Then up to twist (by a

finite order character times powers of the cyclotomic one) and GL2(Zp) equivalence we have:

• Principal Series: ρ '
(
φ πr(φ−1)
0 1

)
, with r ∈ Z≤0 satisfying πr(φ−1) ∈ Zp or ρ '

(
1 ψ
0 1

)
.

• Steinberg: ρ '
(
χ πrµ
0 1

)
, with r ∈ Z≥0.

• Induced: There exists a quadratic extension M/Q` and a character ξ : GM → Zp
×

not
equal to its conjugate under the action of Gal(M/Q`) such that ρ ' 〈v1, v2〉OL , where for

α a generator of Gal(M/Q`) and β ∈ GM , the action is given by

β(v1) = ξ(β)v1, β(v2) = ξα(β)v2, α(v1) = v2 and α(v2) = ξ(α2)v1,

or

ρ(β) =

(
ξ(β) ξ(β)−ξα(β)

πr

0 ξα(β)

)
and ρ(α) =

(
−a ξ(α2)−a2

πr

πr a

)
where ξα is the character of GM defined by ξα(g) = ξ(αgα−1) and a ∈ O×L . Observe that
when M/Q` is ramified we can take α and β to be a Frobenius element and a generator of
the tame inertia of G` respectively.

Proof. Suppose that ρ is irreducible, and that the image lies in GL2(OL) for L/Qp finite. There

exists a quadratic extension M/Q` and a character ξ : GM → O×L such that ρ ' Ind
GQ`
Gm

ξ (modulo
GL2(Q`) equivalence). Let {v1, v2} be a basis of the underlying 2-dimensional Q` vector space,
where v2 = α(v1) for α a generator of Gal(M/Q`). Let T be one invariant lattice for ρ. There
exists a minimum s ∈ Z such that w1 = πsv1 ∈ T . Re-scaling T we can assume that s = 0
(re-scaling the lattice does not affect the representation). Since α(T ) ⊆ T , 〈v1, v2〉OL ⊆ T . If
equality holds we get the first case.

Otherwise, we can extend v1 to a basis of T by adding a vector w ∈ T with w /∈ 〈v1, v2〉OL .
Write w = λ1v1 + λ2v2 with λ1, λ2 ∈ Qp. Notice that necessarily vπ(λ1) = vπ(λ2) < 0 (since
α(v2) = ξ(α2)v1, and ξ(α2) ∈ O×L ). Changing v1 and v2 by a unit we can assume that w =
π−r(−av1 + v2), with r < 0. The matrix giving the action of α in the basis {v1, w} is

ρ(α) =

(
−a π−r(ξ(α2)− a2)
πr a

)
.
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The computation for the action of β is similar.
If ρ is reducible (as a representation in GL2(Qp)), take an eigenvector in T , and extend it to a

basis of T . Then the representation becomes (up to twist)

ρ '
(
φ ∗
0 1

)
.

If φ is trivial, then ∗ is an additive character, and we are in the first case. Otherwise, if ρ is
principal series, it is equivalent (modulo GL2(L)) to

(
φ 0
0 1

)
, hence is of the form

(
φ u(φ−1)
0 1

)
. Since

we want our representation to have integral coefficients we get the stated result. Finally, in the
Steinberg case, our representation is GL2(L)-equivalent to ( χ µ0 1 ). An easy computation shows it
lies in our list. �

Remark 5. In the Principal Series case, if we put n = 0 we get ρ '
(
φ φ−1
0 1

)
, which is equivalent

to
(
φ 0
0 1

)
. We will consider this last class representative .

Although the possible reductions from types of GL2(Zp)-equivalent representations to types of

representations with coefficients in GL2(Fp) is well known to experts and most of the claims are
in [Car89], the change of types are not explicitly described in that article, so we just give a short
self contained description.

Recall the condition for a character to lose ramification:

Lemma 2.3. Let ξ : G` → Qp
×

a character and ξ its mod p reduction. If Ker(ξ|I`) ( Ker(ξ|I`)
then ` ≡ 1 (mod p).

Remark 6. If g ∈ I` satisfies that ξ(g) 6= 1 and ξ(g) = 1 then ξ(g)`−1 = 1.

Proposition 2.4. Let ρ be as above, then we have the following types of reduction:

• If ρ is Principal Series, then ρ is Principal Series or Steinberg, and the latter occurs only
when ` ≡ 1 (mod p).

• If ρ is Steinberg, then ρ is Steinberg or Principal Series, and the latter occurs only when
ρ is unramified.

• If ρ is Induced, then ρ is Induced, Steinberg or an unramified Principal Series. For the
last two cases we must have ` ≡ −1 (mod p).

Proof. If ρ is reducible, its reduction cannot be irreducible, which already excludes the case of a
Principal Series or a Steinberg reducing to an Induced one. Besides this trivial observation, we
study each case in detail:

• ρ Principal Series: in this case ρ '
(
φ λ(φ−1)
0 1

)
or
(

1 φ
0 1

)
. If ρ̃ '

(
φ λ(φ−1)
0 1

)
, the uniqueness

of the semisimplification of the reduction implies that ρss '
(
φ 0
0 1

)
. If the reduction is

of Steinberg type we need to have φ = χ, so a character is losing ramification and this
implies (by Lemma 2.3) that ` ≡ 1 (mod p).

If ρ '
(

1 φ
0 1

)
then it is unramified and so is its reduction, implying that it can only be

Principal Series.
• ρ Steinberg: in this case ρ '

(
χ λu
0 1

)
where u ∈ H1(G`,Zp(χ)) is the generator of the

group. Its semisimplification is
(
χ 0
0 1

)
, which implies that if ρ is Principal Series then it is

unramified.
• ρ Induced: in this case ρ = Ind

GQ`
GM

(ξ), where M/Q` is a quadratic extension and ξ is a

character of GM that does not descend to GQ` . If the character ξ does not descend, then
ρ is also irreducible hence Induced.

Suppose then that ξ does descend and, for a moment, that ρ ramifies (which implies,
by assumption, that Ad0ρ̄ ramifies). In this case the type of ρ changes when reducing.
The semisimplification of the reduction we are considering is therefore

ρss '
(
ξε 0

0 ξ

)
= ξ ⊗

(
ε 0
0 1

)
,

where ε is the quadratic character associated to M/Q`.
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If ρ is Principal Series, then ε has to be ramified, as we are assuming that Ad0ρ̄ is
ramified at `, so M/Q` is ramified. We claim (and will prove in the next Lemma) that
this case cannot happen, i.e. if M/Q` is ramified, any character ξ : GM → Z×p that does
not extend to G` satisfies that its reduction does not extend to G` either. Then the only
case left is when ρ is Steinberg. In this is case, by looking at the semisimplifications we
see that ε = χ, which only happens when M/Q` is unramified and ` = −1 (mod p).

If ρ is unramified then ε has to be unramified as well, hence M/Q` is an unramified
extension. In this case, using the same argument as in Lemma 2.3, we conclude that `2 ≡ 1
(mod p). It is easy to prove that if ` ≡ 1 (mod p) then the character ξ extends to G`,
therefore we necessarily have ` ≡ −1 (mod p).

�

Lemma 2.5. Let M/Q` be a quadratic ramified extension and ξ : GM → Zp
×

be a character and

ξ its reduction. If ξ extends to G` then ξ does as well.

Proof. Let L/Qp be a finite extension that contains the image of ξ, and π an uniformizer of this
extension. Let α ∈ G` be an element not in GM and define ξα(x) = ξ(αxα−1). We know that ξ
extends to G` if and only if ξ = ξα.

Via local class field theory, the character ξ corresponds to a character ψ defined over M× and
ξα corresponds to ψα(x) = ψ(α(x)), so ξ extends to G` if and only if ψ factors through the norm
map NM/Q` : M× → Q×` . Recall that by hypotheses ψ = ψα (mod π) and we want to prove that

ψ = ψα. Let φ be the factorization of ψ through the norm map.
If we restrict to the inertia subgroup we have the following picture:

Kerψ

N

��

ψ| //

""

1 + πOL

��
Kerφ

""

φ|
55

O×M

N

��

ψ //

ψ ##

O×L

��
Z×`

φ

// F×L

We are going to construct the dashed arrow φ| of the diagram above. Observe that ψ| factors
through Kerψ/(Kerψ ∩ (1 + `Z`)) ⊆ F×` (since 1 + πOL is a pro-p-group) so we have

Kerψ //

N

��

Kerψ

Kerψ∩(1+`Z`)
ψ| //

f

��

1 + πOL

Kerφ // Kerφ

Kerφ∩(1+`Z`)

φ|

99

where the down arrow f is f(x) = x2 (since M/Q` is ramified). So we can define the dashed arrow

φ| as φ|(x) =
√
ψ|(x) where

√
: 1 + πOL → 1 + πOL is the morphism that assigns to every

x ∈ 1 + πOL its square root in 1 + πOL (which exists and is unique by Hensel’s Lemma). This
makes the diagram commutative and proves that φ can be extended in Kerφ.

To prove that ψ factors through the norm map, define ι(x) = ψαψ−1. We know that ι :
O×M → 1 + πOL and that ι(Ker ξ) = 1. Then it factors through ι : O×M/Kerψ → 1 + πOL, but

O×M/Kerψ ⊆ F×L and the only element of order pn − 1 inside 1 + πOL is 1, so ι must be trivial

and therefore ψ = ψα when restricted to O×M . To deduce that ψ = ψα from this, we need to check

it for the uniformizer, which is
√
δ` with δ equal to 1 or to a non-square in Q`. But

ψα(
√
δ`) = ψ(α(

√
δ`)) = ψ(−

√
δ`) = ψ(−1)ψ(

√
δ`) = ψ(

√
δ`),
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where the last equality follows from ψ(−1) = φ(N(−1)) = φ(1) = 1, because −1 ∈ O×M . Then ξ
extends to G`. �

Remark 7. Since we are only considering representations with unramified coefficient field, and
p ≥ 5, this rules out most change of type cases while reducing.

Proposition 2.6. Let p ≥ 5 and ρ : G` → GL2(W (F)) be a continuous representation.

• If ρ has type a ramified Principal Series then ρss is ramified.
• If ρ has type an Induced representation then ρss is ramified.

Proof. For the first case, assume that ρss is unramified, and ρ is Principal Series with character φ.
Then φ = 1 and Remark 6 implies that ` ≡ 1 (mod p) and φ(τ) has order a power of p. Therefore
the eigenvalues of ρ(τ) generate a totally ramified extension of Qp of degree at least p− 1, which
is clearly impossible as they also have to satisfy a polynomial of degree 2 over some unramified
extension of Qp and p > 3.

For the second case, assume that ρss is unramified and ρ is induced with character ξ. Then
necessarily ξ = ξσ, implying that the character ψ = ξ/ξσ loses all of its ramification when reduced.
Again Remark 6 implies that ψ(τ) has order a power of p implying that it generates a totally
ramified extension of degree at least p−1 > 2. But ψ(τ) is the quotient of the eigenvalues of ρ(τ),
so it lies in an extension of degree 2 of some unramified extension of Qp which is absurd. �

3. Local cohomological dimensions

To apply Ramakrishna’s method in our situation we need to compute di = dim Hi(G`, Ad
0ρ̄)

for i = 1, 2. For each mod p representation type we choose a basis of the underlying space and
compute d0 and d∗0 (where d∗i = dim Hi(G`, (Ad

0ρ̄)∗)). By local Tate duality d2 = d∗0 and then we
can derive d1 from the local Euler-Poincare characteristic (which is zero).

Ramified Principal Series case: ρ =
(
φ 0
0 1

)
with φ a ramified multiplicative character. It easily

follows that Ad0ρ̄ ' F(1)⊕F(φ)⊕F(φ−1). As φ is ramified, F(φ) (resp. F(φ−1)) is not isomorphic
to F(1) nor F(χ). So we have two cases:

(1) ` ≡ 1 (mod p) then d0 = 1, d2 = 1 and therefore d1 = 2.
(2) ` 6≡ 1 (mod p) then d0 = 1, d2 = 0 and therefore d1 = 1.

The Steinberg case: taking {e01, e10, e00 − e11} as a basis for the space of trace zero matrices
and explicitly computing the action of Ad0ρ̄ on them, we obtain the following values for di:

(1) If ` ≡ 1 (mod p) then d0 = 1, d2 = 1 and therefore d1 = 2.
(2) If ` ≡ −1 (mod p) then d0 = 0, d2 = 1 and therefore d1 = 1.
(3) If ` 6≡ ±1 (mod p) then d0 = 0, d2 = 0 and therefore d1 = 0.

The Induced case: Recall the following Lemma (see [Ram02], Lemma 4).

Lemma 3.1. Let M/Q` a quadratic extension and ρ : G` −→ GL2(Fp) be twist-equivalent to

IndG`GM ξ, with ξ a character of GM which is not equal to its conjugate under the action of

Gal(M/Q`). Then Ad0ρ̄ ' A1 ⊕ A2, with Ai an absolutely irreducible G`-module of dimen-
sion i and H0(G`, Ad

0ρ̄) = 0. Moreover H2(G`, Ad
0ρ̄) = 0 unless M/Q` is not ramified and

` ≡ −1 (mod p) in which case it is one dimensional.

So for the Induced case we have two possibilities:

(1) If ` ≡ −1 (mod p) and M/Q` is unramified then d0 = 0, d2 = 1 and therefore d1 = 1.
(2) If ` 6≡ −1 (mod p) or M/Q` is ramified then d0 = 0, d2 = 0 and therefore d1 = 0.
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Unramified case: if ρ is unramified, we consider the following three cases according to the image
of Frobenius:

(1) ρ(σ) = ( 1 0
0 1 ). In this case Ad0ρ̄ ' F3 thence we have two possibilities:

• ` ≡ 1 (mod p) then d0 = 3, d2 = 3 and therefore d1 = 6.
• ` 6≡ 1 (mod p) then d0 = 3, d2 = 0 and therefore d1 = 3.

(2) ρ(σ) = ( α 0
0 1 ) with α 6≡ 1 (mod p). We have that Ad0ρ̄ ' F ⊕ F(φ) ⊕ F(φ−1), with φ 6= 1

and φ = χ only if α ≡ ` (mod p). We distinguish the cases:
• ` ≡ −1 (mod p) and ` ≡ α, α−1 (mod p) then d0 = 1, d2 = 2 and therefore d1 = 3.
• ` ≡ −1 (mod p) and ` 6≡ α, α−1 (mod p) then d0 = 1, d2 = 0 and therefore d1 = 1.
• ` 6≡ −1 (mod p) and ` ≡ α, α−1 or 1 (mod p) then d0 = 1, d2 = 1 and therefore
d1 = 2.
• ` 6≡ −1 (mod p) and ` 6≡ α, α−1 or 1 (mod p) then d0 = 1, d2 = 0 and therefore
d1 = 1.

(c) ρ(σ) = ( 1 1
0 1 ). An easy computation shows that:

• If ` ≡ 1 (mod p) then d0 = d2 = 1 and therefore d1 = 2.
• If ` 6≡ 1 (mod p) then d0 = 1, d2 = 0 and therefore d1 = 1.

4. The sets C`

In order to apply Ramakrishna’s method we need to define for each prime ` ∈ P a set C` of
deformations of ρn|G` (containing ρ`) and a subspace N` ⊆ H1(G`, Ad

0ρ̄) of dimension d1 − d2

such that ρn|G` can be successively deformed to an element of C` by deforming from W (F)/pm to
W (F)/pm+1 with adjustments at each step made only by a multiple of an element h /∈ N`. Extra
care must be taken to pick the set C` such that all its elements restricted to the inertia subgroup
agree up to isomorphism with ρ`.

As mentioned in the introduction it is enough to do this for each possible pair of GL2(Zp) and

GL2(F)-isomorphism classes for ρ` and ρ respectively and construct the set C` containing ρ` in
such a way that all its members are congruent modulo pn. Note that all the deformations of C`
must have coefficients in W (F) (and not in a bigger ramified extension). If the image of ρ` is
not irreducible (like in the Principal Series case) the classification representatives of Theorem 2.2
might live in a bigger extension than W (F). This will force us to do some extra calculations in the
Principal Series case. In the Steinberg case this is not a problem since the representatives have
coefficients in Zp and a change of basis matrix can be found with coefficients in W (F) while in
the Induced case the definition of C` and N` is trivial (so does not depend on the representative
chosen).

The main difference with [Ram02] is that in Case 4 (1) we can only construct the pair (C`, N`)
for exponents higher than a certain n0, so the inductive method of [Ram02] works from n0 on.
We take a different approach for lifting ρn between pn and pn0 (see Section 5).

Remark 8. Whenever d2 = 0 or d2 = d1 the problem is trivial. In the first case we need dim(N`) =
d1 − d2 = d1, so the only possible choice is N` = H1(G`, Ad

0ρ̄). With this subspace we cannot
adjust at all (as we have to take an element not in N`) but this is not a problem as d2 = 0 implies
that all the deformations of ρ are unobstructed and we can take C` as the set of all possible
deformations of ρn to W (F). We still have to check that these deformations agree when restricted
to inertia. In the second case, we need dim(N`) = d1 − d2 = 0, hence N` = {0}. This means that
we have the whole group H1(G`, Ad

0ρ̄) available to adjust at every step. Then we can take any
set C` and the N`-preserving-C` condition will automatically hold. We take C` = {ρ`}.
Lemma 4.1. If there exists a subspace N` ⊂ H1(G`, Ad

0ρ̄) of codimension d2 which preserves
reduction of elements in C` the second condition is automatically fulfilled, i.e. given a deformation
ρm modulo pm which is the reduction modulo pm−1 of an element in C` but is not the reduction
of an element in C` modulo pm, there exists h′ 6∈ N` such that h′ · ρm ∈ C`.
Proof. By hypothesis ρm ≡ ρ′ (mod pm−1), with ρ′ ∈ C`. Then there exits h+h′ ∈ H1(G`, Ad

0ρ̄),
with h ∈ N` and h′ 6∈ N`, such that (h + h′) · ρm ≡ ρ′ (mod pm). But then h′ · ρm ≡ −h · ρ′
(mod pm), so the claim follows from the hypothesis on N`. �
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Case 1: ρ is ramified Principal Series. When ρ is ramified Principal Series, ρ` can only be
Principal Series. Nevertheless, the cohomology groups are different depending on whether ` ≡ 1
(mod p) or not. Recall that the representatives for the equivalence classes were (up to twist)

ρ` '
(
φ πr(φ−1)
0 1

)
with r ≤ 0 such that πr(φ − 1) lies in Zp. If r 6= 0, π | (φ − 1) and therefore

its reduction is not a ramified Principal Series (the residual case ( 1 ∗
0 1 ) is unramified or Steinberg

according to our classification). Then up to twist ρ` '
(
φ 0
0 1

)
over GL2(Zp) which implies that

ρ` '
(
ψ1 0
0 ψ2

)
over GL2(Zp) and we have the following cases:

(1) If ` 6≡ 1 mod p, d0 = d1 = 1 and d2 = 0. Then as explained in Remark 8 N` =
H1(G`, Ad

0ρ̄) and C` is the full set of deformations to characteristic zero. To check that
all the elements of C` agree up to isomorphism when restricted to I`, we need to describe
the set C`. If we define a morphism η : G` → G`/I` ' Ẑ→ Z/pZ, then the element

h(g) =

(
η(g) 0

0 −η(g)

)
generates H1(G`, Ad

0ρ̄) and this implies that every lift is Principal Series, as the set λh·ψs,
where ψ is the Teichmuller lift of ρ and λ is a scalar, exhausts all the possible reductions.
In particular, the restriction to inertia is the same for all of them.

(2) If ` ≡ 1 (mod p) the picture is slightly different since d0 = 1, d1 = 2 and d2 = 1 so N` is
one dimensional. Observe that the isomorphism between ρ` and the representative of its
GL2(Zp)-equivalence class may not be realized over W (F).

If the image of ψ1 lies in W (F), then the isomorphism is realized over W (F) and
the same element h defined above lies inside H1(G`, Ad

0ρ̄). We take N` = 〈h〉, and

C` =

{(
ψ1γ 0

0 ψ2γ
−1

)
: γ unramified character

}
. Clearly ρ` ∈ C` and N` preserves

reduction of elements of C` (which is enough by Lemma 4.1). Note that all the elements
in C` have the same restriction to inertia.

If the image of ψ1 does not lie in W (F) then ρ` is not isomorphic to
(
ψ1 0
0 ψ2

)
over W (F)

and we cannot use the previous choice. Instead, we take a canonical form for ρ` over
W (F). Assume that ψ1(σ) = α and ψ2(σ) = β, then the matrix C =

(−β −α
1 1

)
conjugates(

ψ1(σ`) 0
0 ψ2(σ`)

)
into

(
0 −αβ
1 α+β

)
∈ GL2(W (F)). Therefore we can assume (applying a change

of basis) that ρ`(σ) =
(

0 −αβ
1 α+β

)
. Let N` = 〈(α−β)ChC−1〉, where h is the element defined

before, and C` be the set of deformations to W (F) of the form C
(
ψ1γ 0

0 ψ2γ
−1

)
C−1 with

γ : G` → Zp an unramified character. The factor α− β forces the element generating N`
to have coefficients in W (F). It can be easily checked that whenever ρm is the reduction of
some element in C` and u ∈ N` then (1 + pm−1u)ρm is again the reduction of an element
of C`.

Case 2: ρ is Steinberg. If ρ is of Steinberg type then Proposition 2.4 and Proposition 2.6 imply
that ρ` can only be Steinberg.

(1) If ` 6≡ ±1 (mod p), d0 = d1 = d2 = 0, so there is only one deformation at each pn. We
take C` = {ρ`}, which is the only deformation of ρ to W (F).

(2) If ` ≡ −1 (mod p), d1 = d2 = 1 and d0 = 0. As explained in Remark 8, N` = {0} and
C` = {ρ`}.

(3) If ` ≡ 1 (mod p), we take the element j ∈ H1(G`, Ad
0ρ̄) given by 0 at the wild inertia

subgroup and by

j(σ) =

(
0 1
0 0

)
, j(τ) =

(
0 0
0 0

)
.
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Let N` = 〈j〉 and C` the set of lifts ρ satisfying

ρ(σ) =

(
` ∗
0 1

)
and ρ(τ) =

(
1 ∗
0 1

)
.

This set is formed by deformations which are isomorphic when restricted to inertia, and
N` preserves its reductions.

Case 3: ρ is Induced. If ρ is Induced then the only possibility for ρ` is also being of Induced
type.

(1) If ` ≡ −1 (mod p) and M/Q` is unramified, d0 = 0, d1 = d2 = 1 so Remark 8 applies.
(2) If ` 6≡ −1 (mod p) or M/Q` is ramified, d0 = d1 = d2 = 0, so there is only one lift at

every step (the reduction of ρ`). We take C` = {ρ`}.

Case 4: ρ is unramified. If ρ` is also unramified, we simply take C` to be all the unramified
lifts of ρ and N` the unramified part of H1(G`, Ad

0ρ̄). It can be easily checked that N` has the
correct dimension.

It remains to define the sets C` for the primes at which ρ` ramifies and ρ does not. By
Proposition 2.6 this can only happen when ρ` is Steinberg, i.e. ρ` = ( χ ∗0 1 ), with ∗|I` 6= 0 (mod pn).
The sets C` depend on the image of σ. Recall that the eigenvalues of ρ(σ) are 1 and `.

(1) If ρ(σ) = ( 1 0
0 1 ), ` ≡ 1 (mod p) so d1 = 6 and d2 = 3. Therefore N` has dimension 3. In

the previous cases, we have built sets C` of deformations of ρn that depend on d2 − d1

parameters, which in this case does not seem to be possible. However, as pointed to us by
Ravi Ramakrishna, one can construct elements which are not cohomologically trivial for
the residual representation, but give isomorphic lifts modulo big powers of p that depend
on the lift ρ`, as in Section 4 of [RH08]. Let C` be the set of deformations of ρn satisfying:

ρ(σ) =

(
` ∗
0 1

)
and ρ(τ) =

(
1 ∗
0 1

)
.

This set is preserved by the elements u1, u2 ∈ H1(G`, Ad
0ρ̄) defined by

u1(σ) =

(
0 1
0 0

)
, u1(τ) =

(
0 0
0 0

)
,

and

u2(σ) =

(
0 0
0 0

)
, u2(τ) =

(
0 1
0 0

)
.

We still need one extra element of H1(G`, Ad
0ρ̄) preserving C`. Recall that ρ` satisfies

ρ`(σ) =

(
` x
0 1

)
and ρ`(τ) =

(
1 y
0 1

)
,

with y 6= 0. Let n0 = min(v(x), v(y), v(`− 1)).

Lemma 4.2. There exists an element ν ∈ H1(G`, Ad
0ρ̄) not in 〈u1, u2〉 such that whenever

ρm is the reduction modulo pm of some element in C`, with m ≥ n0+1, then (1+pm−1ν)ρm
is the same deformation as ρm.

Proof. The proof is divided into several cases, we first define g1, g2, g3 ∈ H1(G`, Ad
0ρ̄) as

g1(σ) =

(
0 0
1 0

)
, g1(τ) =

(
0 0
0 0

)
,

g2(σ) =

(
1 0
0 −1

)
, g2(τ) =

(
0 0
0 0

)
,

and

g3(σ) =

(
0 0
0 0

)
, g3(τ) =

(
1 0
0 −1

)
.
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We now enumerate a list of cases (depending on the valuations of x, y and ` − 1) and
for each of them specify an element v and a matrix C congruent to the identity modulo p

such that C−1ρmC = (1 + pm−1ν)ρm. Write C =
(

1+pα pβ
pγ 1+pδ

)
. In each case we will give

the values of α, β, γ and δ and left to the reader to check that C−1ρmC = (1 + pm−1)ρm
in each of them.
• If v(y) < v(x) and v(y) < v(` − 1): take ν = g3 and C satisfying α = δ, β = 0,
γy = pm−2 (mod pm−1) and γx = γ(`− 1) = 0 (mod pm−1).
• If v(x) < v(y) and v(x) < v(` − 1): take ν = g2 and C satisfying α = δ, β = 0,
γx = pm−2 (mod pm−1) and γy = γ(`− 1) = 0 (mod pm−1).
• If v(` − 1) < v(x) and v(` − 1) < v(x): take ν = g1 and C satisfying α = δ, β = 0,
γ(`− 1) = −pm−2 (mod pm−1) and γx = γy = 0 (mod pm−1).
• If v(y) = v(` − 1) and v(y) < v(x): then y = λ(` − 1). Take ν = g1 − λg3 and C

satisfying α = δ, β = 0, γ(`− 1) = −pm−1 (mod pm−1) and γx = 0 (mod pm−1).
• If v(y) = v(x) and v(y) < v(`− 1): then y = λx. Take ν = g2 + λg3 and C satisfying
α = δ, β = 0, γx = pm−2 (mod pm−1) and γ(`− 1) = 0 (mod pm−1).
• If v(x) = v(` − 1) and v(x) < v(y): then x = λ(` − 1). Take ν = g1 − λg2 and C

satisfying α = δ, β = 0, γ(`− 1) = −pm−2 (mod pm−1) and γy = 0 (mod pm−1).
• If v(x) = v(` − 1) = v(y): then x = λ1(` − 1) and y = λ2(` − 1). Take ν =
g1 − λ1g2 − λ2g3 and C satisfying α = δ, β = 0, γ(`− 1) = −pm−2 (mod pm−1).

�

Let N` = 〈u1, u2, ν〉, for the element ν of Lemma 4.2. It preserves the set C` for all
exponents m > n0. For smaller exponents, the reduction of ρ` modulo pm is trivial, and
as the trivial deformation does not have any equivalent deformation other than itself, it is
impossible to find an element ν as before in those cases.

(2) If ρ(σ`) = ( α 0
0 1 ), with α 6= 1, necessarily ` ≡ α (mod p) so d1 = 3 and d2 = 2 if ` ≡ −1

(mod p) and d1 = 2 and d2 = 1 otherwise. In both cases, let u ∈ H1(G`, Ad
0ρ̄) be given

by u(σ`) = ( 0 0
0 0 ) and u(τ`) = ( 0 1

0 0 ), and take N` = 〈u〉. Define the set C` of deformations
ρ that satisfy

ρ(σ`) = ρ`(σ`) and ρ(τ`) =

(
1 ∗
0 1

)
.

Clearly N` preserves C`.
(3) If ρ(σ`) = ( 1 1

0 1 ) , necessarily ` ≡ 1 (mod p), so d1 = 2 and d2 = 1. Let u ∈ H1(G`, Ad
0ρ̄)

be given by u(σ`) = 0 and u(τ`) = ( 0 1
0 0 ) and take N` = 〈u〉. This subspace preserves the

set C` of deformations ρ satisfying

ρ(σ`) = ρ`(σ`) and ρ(τ`) =

(
1 ∗
0 1

)
.

Remark 9. If we allow ramification in the coefficient field then the cases ruled out by Proposi-
tion 2.6 may happen. Most of them correspond to cases like the first unramified case, where a
trick like in [RH08] needs to be used. It is worth pointing out that in such cases we can construct
the corresponding sets C` and subspaces N` but the global arguments below do not adapt well to
that situation. See Remark 11.

4.1. The case ` = p. In this case we will pick Cp exactly as in [Ram02] (local at p considerations),
with the observation that in the supersingular case, it follows from the work done in [Ram93] that
the lifts picked have the same Hodge-Tate weights than ρp (which lie in the interval [0, p− 1]) and
are crystalline. Note that in each case considered by Ramakrishna, ρp is always trivially contained
in Cp.

5. Auxiliary primes

The sets Q1 and Q2 mentioned in the introduction consist of nice primes with some extra
conditions. Recall that nice primes are primes q 6≡ ±1 (mod p) such that ρ is not ramified
at q and ρ(σ) has different eigenvalues of ratio q, i.e. ρ̄(σ) =

(
qx 0
0 x

)
and ρ̄(τ) = ( 1 0

0 1 ). For
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these primes the cohomological dimensions are dim H0(Gq, Ad
0ρ̄) = 1, dim H1(Gq, Ad

0ρ̄) = 2 and

dim H2(Gq, Ad
0ρ̄) = 1. The set Cq consists of deformations ρ such that

(1) ρ(τ) =

(
1 px
0 1

)
and ρ(σ) =

(
q py
0 1

)
.

These two conditions define a tamely ramified deformation of ρ. Clearly the set Cq is preserved

by a subspace Nq ⊆ H1(Gq, Ad
0ρ̄) of codimension 1 given by j(σ) = ( 0 0

0 0 ) and j(τ) = ( 0 1
0 0 ).

There are two main goals we want to achieve in this section. Firstly, we would like to prove
that auxiliary primes do exist for representations with coefficients in W (F)/pn. In particular we
need to check that there are primes q such that ρn|Gq sends a Frobenius and a generator of the
tame inertia to the matrices defined in (1) modulo pn.

Secondly, we need to reprove the properties of the auxiliary primes we are going to use in our
context, although they look similar to the arguments in [Ram02].

5.1. Existence of auxiliary primes modulo pn. We claim that there are infinitely many nice
primes. Following [Ram99] and [Ram02], let µp be a primitive p-th root of unity, D = Q(Ad0ρ̄)∩
Q(µp), K = Q(Ad0ρ̄)Q(µp), D

′ = Q(Ad0ρn) ∩ Q(µp) and K ′ = Q(Ad0ρn)Q(µp), which fit in the
following diagram:

K ′ K

Q(Ad0ρn) Q(µp) Q(Ad0ρ̄) Q(µp)

D′ D

Q Q

Via the Artin map, the properties of a nice prime translate into the following:

• q 6≡ ±1 (mod p) is equivalent to Frobq not being the identity nor complex conjugation in
Gal(Q(µp)/Q).

• q being an auxiliary prime is equivalent to being unramified in Q(Ad0ρn), q 6≡ ±1 (mod p)
and Frobq lies in the conjugacy class of an element M ∈ Im(Ad0ρn), where M is a diagonal
matrix with elements of ratio q in the diagonal.

Therefore, if we prove that there is an element α ∈ Gal(K ′/Q) such that α|Gal(Q(µp)/Q) = t 6= ±1

and α|Gal(Q(Ad0ρn)/Q) = M where M is diagonal with elements of ratio t in its diagonal, then
Chebotarev’s Theorem implies the result.

Proposition 5.1. There exists c = a×b ∈ Gal(K ′/Q) ⊆ Gal(Q(Ad0ρn)/Q)×Gal(Q(µp)/Q) such
that a comes from an element M ∈ Im(ρn) ' Gal(Q(ρn)/Q) which has different eigenvalues with
ratio b ∈ F×p ' Gal(Q(µp)/Q), b 6= ±1.

The proof mimics the arguments given in [Ram99] for finding such elements with a slightly
modification to the proof of Theorem 2. Recall the following result (Lemma 3, IV-23 in [Ser89] 1)

Lemma 5.2. Let p ≥ 5 and F a finite field of characteristic p. Let H ⊆ GL2(W (F)) a closed
subgroup and H its projection to GL2(F). If SL2(F) ⊆ H then SL2(W (F)) ⊆ H.

This has the following easy consequences:

Corollary 5.3. If SL2(F) ⊆ Im(ρ) then SL2(W (F)/pn) ⊆ Im(ρn).

Proof. Denote by π : W (F) → W (F)/pn the projection, then this follows applying the above
lemma with H = π−1(Im(ρn)) ⊆W (F) which is closed as GQ is compact . �

The following lemma gives the existence of the element c.

Lemma 5.4. For D′ the field defined above, [D′ : Q] ≤ 2. Moreover PSL2(F) ⊆ Gal(Q(Ad0ρ̄)/D′).

1Actually, Lemma 3 is stated and proved in [Ser89] for F = Fp but the same proof holds for an arbitrary finite

field of characteristic p.
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Proof. Observe that [Q(Ad0ρn) : Q(Ad0ρ̄)] = p∗ which is coprime with [Q(µp) : Q]. This implies
that D′ = Q(Ad0ρn) ∩ Q(µp) = Q(Ad0ρ̄) ∩ Q(µp). Now both PSL2(F) ⊆ Gal(Q(Ad0ρ̄)/D′) and
[Q(Ad0ρ̄) ∩ Q(µp) : Q] = 1 or 2 follow from Lemma 18 of [Ram99], as we have proved that the
field D′ is the same as the field D of that Lemma. �

Proof of Proposition 5.1: If F 6= F5, let x ∈ F× be any element such that x2 ∈ F×p and x2 6= ±1
(observe that this exists for any F 6= F5). Let x̃ ∈ W (F)/pn be a lift of x, b ∈ {1, · · · , p− 1} ⊆

W (F)/pn be congruent to x2 modulo p and M =

(
x̃ 0
0 x̃−1

)
∈ SL2(W (F)/pn) ⊆ Im(ρn). Then

c = (M, b) ∈ Gal(Q(Ad0ρn)/D′)×Gal(Q(µp)/D
′) is such an element.

For p = 5, we imposed ρ to be surjective. We have two possible scenarios:

• If D′ = Q then Gal(K/Q) ' Gal(Q(Ad0ρ̄)/Q)×Gal(Q(µp)/Q) and we can find the element

c by taking a pair (M, b) where M =

(
q 0
0 1

)
∈ GL2(W (F)/pn) = Im(ρn) and b ≡ q 6= ±1

(mod 5)
• If D′ 6= Q then [D′ : Q] = 2. Then from Lemma 5.1, PSL2(F5) ⊆ Gal(Q(Ad0ρ̄)/D′). As

PSL2(F5) ⊂ PGL2(F5) with index 2, PSL2(F5) = Gal(Q(Ad0ρ̄)/D′). On the other hand,
Gal(Q(µp)/D

′) ⊆ Gal(Q(µp)/Q) ' F×5 with index 2 so Gal(Q(µp)/D
′) ' {±1}. With this

information we know that the pair (M, b), for M =

(
3 0
0 1

)
and b = 3 defines an element

in Gal(K ′/Q), as both elements coincide when restricted to D′ (both act non trivially).

�

Remark 10. The element c constructed in Proposition 5.1 is not the same as the one in [Ram99].
In fact they live in different Galois groups, the first one lying in Gal(K ′/Q) and the second one
in Gal(K/Q). However, it is true that the projection of the element we constructed through the
map Gal(K ′/Q) → Gal(K/Q) is an element like the one defined by Ramakrishna. In particular,
both elements act in the same way on Ad0ρ̄ (as the action of our c is through this projection). To
avoid confusion we denote the projection by c̃ .

5.2. Properties of auxiliary primes. The auxiliary primes must also fulfill some requirements
like the ones in Fact 16 and Lemma 14 of [Ram02]. Concretely, for different non-zero elements
f ∈ H1(GP , Ad

0ρ̄) and g ∈ H1(GP , (Ad
0ρ̄)∗), the auxiliary prime q should satisfy f |Gq = 0 or

f |Gq /∈ Nq and g|Gq 6= 0 at the same time.

If f ∈ H1(GP , Ad
0ρ̄), then f |Gal(Q/Q(Ad0ρ̄)) is a morphism, so we can associate an exten-

sion L̃f/Q(Ad0ρ̄) fixed by its kernel. Also let Lf = L̃fK = L̃f (µp). Analogously, for g ∈
H1(GP , (Ad

0ρ̄)∗) we define Mg/Q((Ad0ρ̄)∗) as the fixed field by the kernel of g|Gal(Q/Q((Ad0ρ̄)∗)).

Notice that we can obtain information about f |Gq or g|Gq by looking at the conjugacy class of
Frobq in Gal(Lf/Q) or Gal(Mg/Q) (as these are almost the extensions associated to the adjoint
representation of ρ(Id+ εf)).

Let f1, . . . , fr1 and g1, . . . , gr2 be bases for H1(GP , Ad
0ρ̄) and H1(GP , (Ad

0ρ̄)∗) respectively.
Define L to be the composition of the fields Lfi , M the composition of the Mgj , and F = LM .
The following lemma is a summary of results about these extensions from [Ram99].

Lemma 5.5. Let fi and gj as above.

(1) For every fi, Gal(Lfi/K) ' Ad0ρ̄ as GQ-modules, and for every gj, Gal(Mgj/K) '
(Ad0ρ̄)∗.

(2) Gal(L/K) '
∏

Gal(Lfi/K) ' (Ad0ρ̄)r1 and Gal(M/K) '
∏

Gal(Mgj/K) ' ((Ad0ρ̄)∗)r2 .
Also M ∩ L = K so Gal(F/K) ' Gal(L/K)×Gal(M/K).

(3) The exact sequences

1 −→ Gal(L/K) −→ Gal(L/Q) −→ Gal(K/Q) −→ 1,

and

1 −→ Gal(M/K) −→ Gal(M/Q) −→ Gal(K/Q) −→ 1,
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both split, hence Gal(F/Q) ' Gal(F/K) o Gal(K/Q).

Proof. The first claim is Lemma 9, the second is Lemma 11 and the last one is Lemma 13 of
[Ram99] with two remarks:

• In [Ram99] these results are proved for the representation Ãd
0
ρ̄, which is the descent of

Ad0ρ̄ to its minimal field of definition. As we are assuming that SL2(F) ⊆ Im(ρ), we have
that Ad0ρ̄ is already defined in its minimal field of definition, because of Lemma 17 of
[Ram99].

• In [Ram99] these lemmas are proved for P = S the set of ramification of Ad0ρ̄, but the
same proofs work for any P ⊇ S.

�

Finally, we can read properties of f |Gq ∈ H1(Gq, Ad
0ρ̄) from the class of Frobq in Gal(Lf/Q) '

Gal(Lf/K) o Gal(K/Q). Recall that the element c ∈ Gal(K ′/Q) constructed in the previous
section acts on Ad0ρ̄ through the projection to Gal(Q(Ad0ρ̄)/Q).

Proposition 5.6. Let q ∈ Q be a prime, f ∈ H1(GP , Ad
0ρ̄) and g ∈ H1(GP , (Ad

0ρ̄)∗).

(1) If Frobq lies in the conjugacy class of 0 o c̃ ∈ Gal(Lf/Q) then f |Gq = 0. The same holds
for g in Gal(Mg/Q).

(2) There are nontrivial elements α ∈ Ad0ρ̄ on which c acts trivially and if Frobq lies in the
conjugacy class of αo c̃ ∈ Gal(Lf/Q) then f |Gq /∈ Nq.

(3) There are nontrivial elements β ∈ (Ad0ρ̄)∗ on which c acts trivially and if Frobq lies in
the conjugacy class of β o c̃ ∈ Gal(Mg/Q) then g|Gq 6= 0.

Proof. See Lemmas 14, 15 and 16, and Corollaries 1 and 2 of [Ram99], noting that in our setting

Ad0ρ̄ = Ãd
0
ρ̄, so the proof of the existence of α and β is almost trivial. �

Corollary 5.7. There exists primes q such that ρ(Frobq) has different eigenvalues of ratio q and
such that for the basis elements any of the following conditions can be achieved: fi|Gq = 0 or
fi|Gq /∈ Nq and gj |Gq = 0 or gj |Gq 6= 0.

Proof. Pick an element

Ω = ω o c̃ ∈ Gal(F/Q) '

 r1∏
i=1

Gal(Lfi/Q)×
r2∏
j=1

Gal(Mgj/Q)

o Gal(K/Q),

where ω has coordinates 0 or α whether we want fi|Gq to be 0 or not in Nq in the first product
and 0 or β whether we want gj |Gq to be 0 or not 0 in the second one. Then any q such that Frobq
lies in the conjugacy class of Ω works. �

We need the same to hold for ρn, i.e. the auxiliary primes q must satisfy the same conditions
and ρn(Frobq) must have different eigenvalues of ratio q. Proposition 5.1 implies that any q whose
Frobenius element lies in the conjugacy class of c satisfies this extra condition. Therefore, we only
need to check that there is an element θ in Gal(K ′F/Q) such that θ|K′ = c and θ|F = Ω.

Observe that Ω|K = c̃ = c|K , a necessary condition. It is enough to prove that K ′ ∩ F = K, as
any pair of elements in Gal(K ′/Q) and Gal(F/Q) that are equal when restricted to K ′ ∩F define
an element in Gal(K ′F/Q).

Lemma 5.8. K ′ ∩ F = K.

Proof. Let H = Gal(K ′/K) ⊆ PGL2(W (F)/pn) and π1 : PGL2(W (F)/pn) → PGL2(F). Observe
that H consists of the classes of matrices in Im(ρn) which are trivial in PGL2(F), i.e. H =
Im(Ad0ρn)∩Ker(π1). By hypotheses PSL2(W (F)/pn) ⊆ Im(Ad0ρn) ⊆ PGL2(W (F)/pn), therefore
PSL2(W (F)/pn) ∩ Ker(π1) ⊆ H ⊆ Ker(π1). As [PSL2(W (F)/pn) : PGL2(W (F)/pn)] = 2 and
Ker(π1) is a p group we have that H = Ker(π1).
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Recall that Gal(F/K) ' (Ad0ρ̄)r × (Ad0ρ̄∗)s as Z[GQ]-module and by Lemma 7 of [Ram99],
this is its decomposition as Z[GQ] simple modules. This implies that if K ′ ∩ F 6= K then Ad0ρ̄ or
(Ad0ρ̄)∗ appear as a quotient of Gal(K ′/K).

Assume that K ′ ∩ F 6= K and that there is a surjective morphism $ : H → Ad0ρ̄. Let
π2 : PGL2(W (F)/pn) → PGL2(W (F)/p2) and let N = ker(π2) ⊂ H. We claim that $(N ) = 0.
Any matrix Id+p2M ∈ GL2(W (F)/pn) is the p-th power of some matrix Id+pN ∈ GL2(W (F)/pn).
Therefore, if Id + p2M ∈ N we have that

$(Id+ p2M) = $((Id+ pN)p) = p$(Id+ pN) = 0.

This implies that $ factors through Gal(Q(Ad0ρ2)/K), where Ad0ρ2 is the reduction mod p2 of
Ad0ρn. Since # Gal(Q(Ad0ρ2)/K) = #(Im(Ad0ρ2) ∩ Ker(π1)) ≤ (#F)3 and #Ad0ρ̄ = (#F)3 we
necessarily have Gal(Q(Ad0ρ2)/Q) = Gal(Lf/Q) for some f ∈ H1(GQ, Ad

0ρ̄). But this cannot
happen since it would imply that the image of Ad0ρ2 splits, which is impossible as it contains
PSL2(W (F)/p2) when p ≥ 7 or PGL2(W (F)/p2) when p = 5.

The case where there is a surjection π : H → (Ad0ρ̄)∗ works the same. �

Remark 11. As we mentioned before, this global argument does not adapt to the cases when
the coefficient field is ramified. Specifically, Lemma 5.8 above in no longer true if we allow
the coefficients to ramify, as the extension corresponding to Ad0ρ2 corresponds to an element
of H1(GQ, Ad

0ρ̄). Then we cannot apply Chebotarev’s Theorem to find auxiliary primes which
are nontrivial in the element of the cohomology corresponding to Ad0ρ2, so we do not get an
isomorphism between local and global deformations.

We end this section with a key property about auxiliary primes that will allow us to get the
desired local to global isomorphism for H1. For an element τ ∈ Gal(L/K) we define the Chebotarev
set Tτ as the set of nice primes for ρn such that Frobq ∈ Gal(K/Q) o Gal(L/K) has its second
coordinate equal to τ (the first one is determined as we are asking q to be nice for ρn).

Proposition 5.9. For any τ ∈ Gal(L/K) as above we have that

H1(GP∪Tτ , Ad
0ρ̄) −→

⊕
`∈P

H1(G`, Ad
0ρ̄)

is a surjection.

Proof. This is essentially Proposition 10 of [Ram02], except that we are asking for a condition
on Gal(K ′/Q) rather than Gal(K/Q) (the set Tτ is composed by primes that are nice for ρn).
Nevertheless, the same proof applies as the main argument is that for any g ∈ H1(GP∪Tτ , (Ad

0ρ̄)∗)
there are primes q ∈ Tτ such that g|Gq 6= 0 and this is Proposition 5.6. �

6. The small exponent case

So far we focused in constructing an appropriate set of deformation conditions and auxiliary
primes for the inductive method to work, but as was already noticed, the set C` and subspace N`
of Case 4 (1) only work for powers pm such that ρ` is not trivial modulo pm−1.

It might be the case that there is a prime ` such that ρn is trivial (not only unramified) at `, but
the local deformation ρ` is ramified. In this case, the argument fails. To bypass this obstacle, we
rely on a result by Khare, Larsen and Ramakrishna (the main idea appeared first in [KLR05] but
it is better explained in [Ram08]), where they prove that given ρ)n a global mod pn deformation,
one can lift ρn a finite number of powers of p, controlling local types at a finite set of primes, at
the cost of adding at each lifting step a finite number of ramified primes.

Proposition 6.1. Let ρn : GP → GL2(W (F)/pn) and z = (z`)`∈P ∈ ⊕`∈P H1(G`, Ad
0ρ̄) be any

element. Then one of the following holds:

• There is a nice prime q and an element h ∈ H1(GP∪{q}, Ad
0ρ̄) such that the image of h

in ⊕`∈P H1(G`, Ad
0ρ̄) is z and h|Gq ∈ Nq.

• There are two nice primes q1 and q2, and an element h ∈ H1(GP∪{q1,q2}, Ad
0ρ̄) such that

the image of h in ⊕`∈P H1(G`, Ad
0ρ̄) is z and h|Gqi ∈ Nqi .
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Proof. See Proposition 3.6 of [Ram08]. �

The application of this result to our setting is the following.

Proposition 6.2. Let ρn : GS → GL2(W (F)/pn) and ρ` : G` → GL2(W (F)) for ` ∈ P as in
Theorem A. Assume that III2

P (Ad0ρ̄) = 0. Then for any exponent s > n there is a finite set of
primes P ′ (depending on s) containing P and a deformation

ρs : GP ′ → GL2(W (F)/ps)

such that:

• ρs lifts ρn.
• ρ` ≡ ρs|G` (mod ps).
• The primes in P ′\P are nice for ρn and ρs|Gq is a reduction of a member of Cq.

Proof. By induction in s. If s = n the statement is trivial. Assume that the result holds for an
exponent s. We want to prove that it is also true for s+ 1.

Let ρn and ρ` for every ` ∈ P as in the statement of the proposition. Applying our inductive
hypothesis we get a deformation ρs : GP ′ → GL2(W (F)/ps) lifting ρn and satisfying the local
conditions. As ρ` mod ps lifts to W (F)/ps+1 for all ` ∈ P and ρs|Gq is the reduction of some
member of Cq for all q ∈ P ′\P , the deformation ρs is locally unobstructed and the hypothesis

III2
P (Ad0ρ̄) = 0 implies that ρs lifts to a ρ̃s+1 : GP ′ → GL2(W (F)/ps+1).
We need to adjust ρ̃s+1 such that ρs+1|G` ≡ ρ` (mod ps) for all ` ∈ P . Since ρ` are deformation,

there exists an element z = (z`)`∈P ∈ ⊕`∈P H1(G`, Ad
0ρ̄) that such that

(Id + psz`)ρ̃s+1|G` = ρ` (mod ps+1)∀` ∈ P, and (Id + pszq)ρ̃s+1|Gq ∈ Cq ∀q ∈ P ′\P.
Then by Proposition 6.1 there exists a global element to adjust by as claimed. �

7. Proof of main theorems

Theorem A. Let F be a finite field of characteristic p ≥ 5. Let ρn : GQ → GL2(W (F)/pn) be a
continuous representation ramified at a finite set of primes S satisfying the following properties:

• The image is big, i.e. SL2(F) ⊆ Im(ρn) and Im(ρn) = GL2(F) if p = 5.
• ρn is odd.
• The restriction ρn|Gp is not twist equivalent to the trivial representation nor the indecom-

posable unramified representation given by ( 1 ∗
0 1 ).

• ρn does not ramify at 2.

Let P be a finite set of primes containing S, and for every ` ∈ P , ` 6= p, fix a deformation
ρ` : G` → W (F) of ρn|G` . At the prime p, let ρp be a deformation of ρn|Gp which is ordinary or
crystalline with Hodge-Tate weights {0, k}, with 2 ≤ k ≤ p− 1.

Then there is a finite set Q of auxiliary primes q 6≡ ±1 (mod p) and a modular representation

ρ : GP∪Q −→ GL2(W (F)),

such that:

• the reduction modulo pn of ρ is ρn,
• ρ|I` ' ρ`|I` for every ` ∈ P ,
• ρ|Gq is a ramified representation of Steinberg type for every q ∈ Q.

Proof. For each prime ` ∈ P such that ρ` is ramified let n0 be the least exponent such that ρ`
modulo pn0 is non-trivial. In Section 4 we constructed for each ` ∈ P a pair (C`, N`) such that
N` preserves the modulo pm reductions of elements in C` for all m > n0. If n0 6= n, i.e. if there
exists a prime ` for which ρn|G` is trivial but ρ` is ramified, we apply Proposition 6.2 to lift ρn
to exponent n0 + 1. From this exponent, the inductive method does work, so we can mimic the
proof of Theorem 1 of [Ram02].

Let r = dimF III2
P (Ad0ρ̄) = dimF III1

P ((Ad0ρ̄)∗), and let {g1, . . . , gr} be a basis of III1
P ((Ad0ρ̄)∗).

Let {f1, . . . , fr} be a linearly independent set in H1(GP , Ad
0ρ̄). For each i = 1, . . . , r let qi be

such that:
fi|Gqi /∈ Nqi , gi|Gqi 6= 0 fj |Gqi = gj |Gqi = 0 for j 6= i.
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Such primes exists by virtue of Corollary 5.7 and Lemma 5.8. Let Q1 = {q1, . . . , qr} so that
III2

P∪Q1
(Ad0ρ̄) = 0 = III1

P∪Q1
((Ad0ρ̄)∗). With this choice, the inflation map H1(GP , Ad

0ρ̄) →
H1(GP∪Q1 , Ad

0ρ̄) is an isomorphism by the same dimension counting as in the proof of Fact 16
([Ram02]).

Next we need a set of auxiliary primes Q2 such that the restriction map

H1(GP ′∪Q2
, Ad0ρ̄)→

⊕
`∈P ′∪Q2

H1(G`, Ad
0ρ̄)/N`,

is an isomorphism. Let {f1, . . . , fd} be a basis of the preimage of ⊕`∈P ′N` under the restriction
map H1(G′P , Ad

0ρ̄)→ ⊕l∈P ′ H1(G`, Ad
0ρ̄) . Using the identification of Lemma 5.5, for 1 ≤ i ≤ d,

let αi be an element of Gal(L/K) all whose entries are 0 except the i-th which is a nonzero element
in which c̃ acts trivially. Let Ti be the Chebotarev set attached to αi (i.e. the set of nice primes
whose Frobenius class in Gal(L/Q) lies in the class of c o αi). Proposition 5.9 implies that the
map H1(GP ′∪Ti , Ad

0ρ̄)→ ⊕`∈P H1(G`, Ad
0ρ̄) is surjective. By Lemma 14 ([Ram02]), we can pick

a prime qi ∈ Ti such that if Q2 = {q1, . . . , qd}, then the map

H1(GP ′∪Q2 , Ad
0ρ̄)→ ⊕`∈P ′ H1(G`, Ad

0ρ̄)/N`,

is surjective. It is easy to see that with this set Q2 is the desired one. Then the process of lifting
and adjusting proves the existence of the lift ρ : GP∪Q → GL2(W (F)).

To prove modularity, we know that ρ is odd and has big residual image hence it is residu-
ally modular (by Serre’s conjectures), so we can use the appropriate modularity lifting theorem:
the ordinary case follows from Theorem 5.2 of [SW01] while the supersingular case follows from
Theorem 3.6 of [DFG04].

Regarding the conditions at inertia of the lift, for every ` ∈ P the lift ρ satisfies ρ|G` ∈ C`.
For primes ` where ρn|G` is ramified, the condition holds automatically since all deformations in
C` have isomorphic restrictions to inertia. The case where ρn is unramified and ρ` is Steinberg,
observe that the set C` contains a unique unramified deformation. Since ρ is modular, if it were
not ramified at `, then the eigenvalues of ρ(Frob`) should have the same absolute value but all
deformations in C` have Frobenius eigenvalues q and 1. �

Recall the hypothesis of our second result: let f ∈ Sk(Γ0(N), ε) be a newform, with coefficient
field Kf and ring of integers Of . Let p a prime ideal in Of dividing a rational prime p and Kp

and Op their respective completions at p. Let

ρn : Gal(Q/Q)→ GL2(Op/p
n),

the reduction modulo pn of its p-adic Galois representation.

Theorem B. In the above hypothesis, let n > 0 be an integer and p > max(k, 3) be a prime such
that:

• p - N or f is ordinary at p,
• SL2(Op/p) ⊆ Im(ρf,p), and Im(ρf,p) = GL2(Op/p) if p = 5.
• p does not ramify in the field of coefficients of f .
• ρn does not ramify at 2.

Let R be the set of ramified primes of ρn. If N ′ =
∏
p∈R p

vp(N), then there exist an integer r, a set

{q1, . . . , qr} of auxiliary primes prime to N satisfying qi 6≡ 1 (mod p) and a newform g, different
from f , of weight k and level N ′q1 . . . qr such that f and g are congruent modulo pn. Furthermore,
the form g can be chosen with the same restriction to inertia as that of f at the primes of R.

Proof. We want to apply Theorem A to ρn, with local deformations ρf,p|I` at the primes dividing
N ′. Clearly the second and third hypothesis of Theorem A hold (from the fact that p > k) and
the hypothesis p - N or f being ordinary at p implies that ρf,p|Ip can be taken as a deformation at
p. Then by Theorem A there exists a modular representation ρ which is congruent to ρf,p modulo
pn, and of conductor dividing N ′q1 . . . qr. By the choice of the inertia action, the conductor of ρ
has the same valuation as the ρn one at the primes dividing N ′, so we only need to show that
all the primes qi are ramified ones. But if this is not the case, by the choice of the sets Cqi , and
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looking at the action of Frobenius, it would contradict Weil’s Conjectures, since the roots of the
Frobenius’ characteristic polynomial would be 1 and q, which do not have the same absolute value.

If ρf does not lose ramification while reduced modulo pn it might happen that r = 0 so the
newform g obtained would be equal to f . If this is the case, we apply Theorem A with P = S∪{q},
q being in the hypotheses of auxiliary primes and

ρq =

(
χ ∗
0 1

)
with ∗ ramified (up to twist). �

8. Example

We end this article with an explicit example of Theorem A for level raising modulo p2. For an
elliptic curve E/Q of prime conductor q and full image at p = 5, i.e. Gal(Q(E[5])/Q) ' GL2(F5),
we construct a newform in S2(Γ0(qr)) (for some prime r) which is congruent to E modulo 25. The
choices p = 5 and prime conductor are used to make the cohomological dimensions as small as
possible.

Let ρ5 be the 5-adic Galois representation attached to E (by looking at the Galois action on the
Tate module). The adjoint representation of its residual representation is isomorphic to PGL2(F5)
which is isomorphic to S5, the symmetric group in 5 elements. We need to compute H1(GS , Ad

0ρ̄)
and H2(GS , Ad

0ρ̄) for S = {5, q}. Recall the following results:

• If ` 6≡ ±1 (mod p) then H2(G`, Ad
0ρ̄) = 0 (see Section 3, or [Ram99] Proposition 2).

• If ρ5 is flat, and ρ5|G5 is indecomposable. Then H2(G5, Ad
0ρ̄) = 0 (see [Ram02], Table 3).

Let r = dim III1
S((Ad0ρ̄)∗), and s be the number of primes for which H2(G`, Ad

0ρ̄) 6= 0, then (see
[Ram02] Lemma, page 139):

• dim H1(GS , Ad
0ρ̄) = r + s+ 2.

• dim H2(GS , Ad
0ρ̄) = r + s.

8.1. Some group theory. Recall from Lemma 9 (of [Ram99]) that the elements in H1(GS , Ad
0ρ̄)

(resp. in H1(GS , Ad
0ρ̄∗)) give extensions M of Q(Ad0ρ̄) (resp. Q(Ad0ρ̄∗)) whose Galois group

over Q is isomorphic to PGL2(F5) nM0
2 (F5) (the 2 × 2 matrices with zero trace). The problem

is that PGL2(F5) has order 120, and we cannot do Class Field Theory in such extensions. To
overcome this problem we study the groups involved so as to work with smaller extensions of Q.

Lemma 8.1. Let H be a subgroup of S5 and V ⊆M0
2 (F5) an H-stable subspace. Then H n V is

a subgroup of S5 nM0
2 (F5). Furthermore, if V ⊆W then H n V is a normal subgroup of H nW

if and only if H acts trivially on W/V .

Proof. The first claim is clear from the definition of a semi-direct product. For the second claim,
note that conjugation acts in the following way

(h,w)(g, v)(h,w)−1 = (hgh−1, w + h · v − (hgh−1) · w).

Since hgh−1 varies over all elements of H, the subgroup is normal if and only if w− h ·w ∈ V for
all h ∈ H. �

Let H be the unipotent subgroup of PGL2(F5) given by matrices of the form ( 1 ∗
0 1 ) and let

B ⊂ PGL2(F5) the Borel subgroup (of upper triangular matrices). Clearly |H| = 5, |B| = 20 and
H / B. For both H and B, M0

2 (F5) has the following stable submodules filtration:

0 ⊆ U0 ⊆ U1 ⊆M0
2 (F5),

where U1 is the subspace of upper triangular matrices and U0 is the subspace of strictly upper
triangular matrices. The group H acts trivially on all quotients of this filtration and B acts
trivially on U1/U0. Using Lemma 8.1 we get the following Hasse diagram
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(2) M

MHn{0}

Galois

5

MHnU0

Galois

5

MBn{0}

5

non-Galois

Q(Ad0ρ̄)

5

MHnU1

5

Galois

MBnU0

5

Galois

Q(Ad0ρ̄)H

4Galois

MBnU1

5

non-Galois

Q(Ad0ρ̄)B

6

Q

Remark 12. The Galois closure of MHnU1

is M , since it is easy to check that the intersection of
all Galois conjugates of H n U1 in S5 nM0

2 (F5) is trivial.

We also consider the subgroup S3 × C2 (where Cn denotes the cyclic group of order n). If we
identify S3×C2 = 〈( 1 2

2 0 ) , ( 4 2
1 1 )〉× 〈( 3 2

2 2 )〉 in PGL2(F5), the action decomposes as 〈( 3 1
0 2 ) , ( 3 0

1 2 )〉⊕
〈( 4 1

1 1 )〉. The action in the 1-dimensional subspace (which can be identified with the quotient) is
non-trivial. Nevertheless its restriction to the cyclic subgroup of order 6 is trivial (such group is
the stabilizer of the matrix ( 4 1

1 1 )). It is clear that the intersection of its conjugates is trivial (since
A5 is the only normal subgroup of S5 and the action of S5 in M0

2 (F5) is irreducible).

Lemma 8.2. (C3 × C2) n V2 � (S3 × C2) nM0
2 (F5).

Proof. The previous Lemma implies that (C3×C2)nV2 � (C3×C2)nM0
2 (F5) but since C3 �S3,

the same proof gives the statement. �

For such group, we get the following Hasse diagram.

M

Q(Ad0ρ̄) MC6nV2

Galois

Q(Ad0ρ̄)C6 M (S3×C2)nV2

non-Galois

Q(Ad0ρ̄)S3×C2

Q

To compute with the adjoint representation, we must add the 5-th roots of unity. The Hasse
diagram is the following
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(3) Q(Ad0ρ̄, ξ5)

Q(Ad0ρ̄) Q(ξ5)

Q(
√

5)

Q

Then Gal(Q(Ad0ρ̄∗)/Q) ' Gal(Q(Ad0ρ̄, ξ5)/Q) ' C4nA5, where the action is through the projec-
tion C4 → C2, and the latter action is the classical isomorphism S5 ' C2 nA5. This Galois group
also acts on M0

2 (F5), where the C4 part acts as F×5 (which corresponds to the mod 5-cyclotomic

character action), and A5 as before. To compute the Shafarevich group III1(GS , Ad
0ρ̄∗), we do a

similar trick as before, we consider the subgroup C4nC3 (which also satisfies that the intersection
of its conjugates is trivial), which is an extension of the previous cyclic group of order 6, and get
exactly the same degree 20 extension.

8.2. Particular example. In this section we will use many computations that were done using
[PAR13]. Consider the elliptic curve

E89b1 : y2 + xy = x3 + x2 − 2

Let ρE,5 denote the representation attached to the 5-adic Tate module of E. The residual rep-
resentation has full image (using [S+13]), so if we look at the representation on the 52 torsion
points, we get a representation that is in the hypothesis of Theorem A. The residual adjoint repre-
sentation corresponds to a Galois extension of Q with Galois group isomorphic to PGL2(F5) ' S5

and ramified at 5 and 89. We can search for such extensions (they are the Galois closure of a
degree 5 extension) in Jones-Roberts tables (see [JR13]), and get 12 such extensions, given by the
polynomials:

x5 − x4 + 5x3 − x2 + 6x+ 1, x5 + 10x3 − 20x2 + 45x− 148,

x5 − 5x3 − 5x2 − 5x− 6, x5 − 30x2 − 30x− 97,

x5 − 125x2 + 375x+ 425, x5 + 445x− 445,

x5 − 890x2 − 4005x− 5429, x5 − 890x2 + 9790x+ 10591,

x5 − 445x2 + 20915x+ 159132, x5 + 50x3 − 125x2 + 350x− 680,

x5 − 50x3 − 325x2 − 375x− 5220, x5 + 200x3 − 1625x2 + 9575x− 176395,

x5 − 200x3 − 375x2 + 22925x− 81155.

To know which one corresponds to our elliptic curve, we just compute the order of Frobenius
at 3, 7, 11 and 13, which are 6, 4, 3 and 6 respectively. If we compute the inertial degree at those
primes in the above extensions, we see that the only extension with those inertial degrees is the
one corresponding to x5 + 445x− 445.

Lemma 8.3. The representation ρE,5 satisfies the following properties:

• The extensions corresponding to its image and the adjoint image ramify at 89.
• If we restrict the representation to the decomposition group at 5, it is ordinary and inde-

composable.

Proof. The first fact can be checked by computing the field discriminant (note that the scalar
matrices correspond to an extension unramified at 89). Nevertheless, this is a more general
statement, since if the residual representation is unramified at 89, by Ribet’s lowering the level
theorem, there should exist a weight 2 and level 1 modular form, which is not the case. To prove
the second statement, we know that the representation is ordinary because a5(E) = −2 (it is not
divisible by 5). If the restriction to inertia at 5 were decomposable, then the order of inertia would
be 4, but 5 ramifies completely in the degree 5 extension computed above. �
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The degree 20 subextension of Q(Ad0ρ̄E) is given by the polynomial

P (x) = x
20

+ 45822985000x
16

+ 245086878906250x
14

+ 535483380861855000000x
12

+ 6701700495283613720703125x
10

+ 232361959662822291573095703125x
8
+

25962085250952507779173217773437500x
6 − 403189903768430226056054371193847656250x

4
+

4640939013548409613939783894070434570312500x
2

+ 96689369817657701380917597046902374542236328125.

Lemma 8.4. dim H2(G{5,89}, Ad
0ρ̄E,5) = 0 and dim H1(G{5,89}, Ad

0ρ̄E,5) = 2.

Proof. Recall that dim H2(GS , Ad
0ρ̄E) = r + s and dim H1(GS , Ad

0ρ̄E) = r + s + 2, where r =
dim III1

S((Ad0ρ̄E)∗) and s is the number of ` ∈ S such that dim H2(G`, Ad
0ρ̄E) 6= 0.

It can be checked that E has split multiplicative reduction at 89, implying that the residual
representation is Principal Series at 89.

As 89 ≡ −1 (mod 5), the comments at the beginning of Section 8 imply H2(G89, Ad
0ρ̄E) = 0

and since ρE,5|G5 is indecomposable H2(G5, Ad
0ρ̄E) = 0 and s = 0. On the other hand, elements

of III1
S((Ad0ρ̄E)∗) give raise to unramified degree 5 abelian extensions of Q((Ad0ρ̄E)∗) where

the primes above 5 and 89 split completely. In particular, they are unramified extensions of
Q(Ad0ρ̄E)C6 (see Diagram (3) and the discussion after it). Using [PAR13] one can check that the
class number of such degree 20 extension is 24, which is not divisible by 5, so Sha is trivial and
r = 0. �

Remark 13. The same argument proves that dim H1(G{5}, Ad
0ρ̄E) = 2, and by the inflation-

restriction exact sequence, H1(G{5,89}, Ad
0ρ̄E) ' H1(G{5}, Ad

0ρ̄E) so we restrict to elements which
are unramified at 89.

Remark 14. In our hypothesis, the local H1(G5, Ad
0ρ̄E) has dimension 3, and the subspace N5 is

that of finite flat group schemes which is 1 dimensional (by Table 3 of [Ram02]).

Consider the map

(4) H1(G{5,89}, Ad
0ρ̄E) 7→ H1(G5, Ad

0ρ̄E)/N5 ×H1(G89, Ad
0ρ̄E)/N89.

Recall that N89 = H1(G89, Ad
0ρ̄E), so we can just discard this term. Both spaces have dimension

2, so we need to compute the kernel of the map. Elements on the left give raise to degree 5
extensions of L = Q(Ad0ρ̄E)H that are unramified outside 5 and 89. A polynomial defining L is

x
24 − 9901250x

21 − 2291149250x
20 − 110151406250x

19
+ 38233553109375x

18
+ 23557750800468750x

17
+

11619555204080093750x
16 − 19413331678164062500x

15 − 125423983759758052890625x
14−

51488038276826726562500000x
13 − 10523678241093366455173828125x

12 − 106130857077478716288232421875x
11

− 175263255660771553472759091796875x
10

+ 44232966417342564073908569335937500x
9
+

22607278096633010862335357756591796875x
8
+ 491899359571950166587262640405273437500x

7
+

286726776632710222559712771240091552734375x
6
+ 61254459616385605854391463803496704101562500x

5
+

5346974474154298521538612265233075720214843750x
4
+ 333024482268238924643917008136132488250732421875x

3
+

53735066160353981335257513593580636940002441406250x
2
+ 4715974971592347401743210281496148224925994873046875x+

183669060144793707552717959489774709476947784423828125

In order to replicate the proof of Theorem A we need to understand morphism (4). We thank
Ravi Ramakrishna for the following observation.

Lemma 8.5. The morphism (4) has one dimensional kernel.

Proof. The domain of the morphism (4) is of dimension 2. We will see that its kernel is neither 0
nor 2 dimensional. The kernel gives the tangent space of the deformation problem corresponding
to minimally ramified lifts of ρE . If the morphism were injective, then the universal deformation
ring should be isomorphic to Z5, and there should be a unique lift to any coefficient ring. However,
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it can be checked that there is a modular form of level 89 and weight 2 which is congruent to E
modulo 5, therefore the kernel of the morphism (4) is not trivial.

On the other hand, since N89 = H1(G89, Ad
0ρ̄E), the kernel consists of cocycles mapping to N5

in H1(G5, Ad
0ρ̄E). As the elements in H1(G{5,89}, Ad

0ρ̄E) are only ramified at 5, if two linearly
independent cocycles map to N5 (which is one dimensional) we can take a linear combination of
them mapping to zero. In particular, there exists an unramified extension of Q(Ad0ρ̄E) which is
not the case. �

Lemma 8.5 tells us that there is a cocycle κ in H1(G5,89, Ad
0ρ̄E) that maps to H1

flat(G5, Ad
0ρ̄).

We want to compute this extension. The following Lemma describes the corresponding extensions.

Lemma 8.6. A cocycle κ lies in H1
flat(G5, Ad

0ρ̄) if and only if there is a prime above 5 in

Q(Ad0ρ̄)B that does not ramify in MBnU0

.

Proof. Let F = Q(Ad0ρ̄)B and F ′ = MBnU0

. Recall that to a cocycle κ ∈ H1(G{5,89}, Ad
0ρ̄)

we attached the field M fixed by Kerκ|GQ(Ad0ρ̄)
= κ|−1

GQ(Ad0ρ̄)
(0). Since F is the field fixed by

GF = κ|−1
GF

(Ad0ρ̄) it can be easily seen that F ′ is the field fixed by κ|−1
GF

(U0). Let I5 be a inertia
group at 5 in Gal(M/Q). By definition

H1
flat(G5, Ad

0ρ̄) = Ker
(
H1(G5, Ad

0ρ̄)→ H1(I5, Ad
0ρ̄/U0)

)
,

so κ ∈ H1
flat(G5, Ad

0ρ̄) if and only if there is a representative of the class such that κ(I5) ⊆ U0 which
happens if and only if I5 ⊆ κ−1(U0). We claim that I5 ⊆ κ−1(U0) if and only if I5∩GF ⊆ κ|−1

GF
(U0)

if and only if κ|GF (I5 ∩GF ) ⊆ U0. This follows from the following facts:

• κ factors through Gal(Q(Ad0ρ̄)/Q) n Gal(M/Q(Ad0ρ̄)).
• The image of I5 in Gal(Q(Ad0ρ̄)/Q) n Gal(M/Q(Ad0ρ̄)) is ρ(I5) n κ(I5).
• κ(I5 ∩Gal(Q(Ad0ρ̄)/Q) n 1) = ρ(I5) n 1 = Gal(Q(Ad0ρ̄)/F ) ' B n 1.
• U0 is stable under Gal(Q(Ad0ρ̄)/F ) ' B.

Summing up, κ ∈ H1
flat(G5, Ad

0ρ̄) if and only if I5 ∩GF ⊆ κ|−1
GF

(U0) if and only if (since F ′ is the

field fixed by κ|−1
GF

(U0)) the prime in F above 5 does not ramify in F ′. �

Remark 15. The cocycle κ gives a non-abelian degree 25 extension of F (see Diagram (2)). Instead
we compute it as degree 5 abelian extension of L (which has degree 24) using the fact that it is
unramified at a prime above 5 with ramification degree 4 in L/Q.

To use class field theory, we bound the modulus exponent e(p) with the following result.

Proposition 8.7. Let L/K be an abelian extension of prime degree p and p a prime ideal of K.
Let e(p|p) denote the ramification degree of p over the rational prime p. If p ramifies in L/K, then{

e(p) = 1 if p - p
2 ≤ e(p) ≤

⌊
pe(p|p)
p−1

⌋
+ 1 if p | p.

Proof. See [Coh00] Proposition 3.3.21 and Proposition 3.3.22. �

The prime 5 factors as p20
5,1p

4
5,2 in L, where each prime ideal p5,i has inertial degree 1. By

Remark 13 we do not need to allow ramification at the prime 89. Recall that the extension
attached to κ is unramified at p5,2. Proposition 8.7 gives the modulus p25

5,1p
0
5,2 whose class group

(using [PAR13]) is isomorphic to

C100 × C5 × C5 × C5 × C5 × C5 × C5 × C5 × C5.

From all these degree 5 extensions, we need to identify the ones that correspond to elements
in H1(G{5,89}, Ad

0ρ̄E) (which give extensions isomorphic to M0
2 (F5)). Let L̃ denote the abelian

degree 5 extension MHnU1

of L attached to an extension M in H1(G{5,89}, Ad
0ρ̄E).

Lemma 8.8. If a rational prime p is unramified in Q(Ad0ρ̄E) and has a prime ideal of L over it
with inertial degree 5, then it has inertial degree 5 in M .
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Proof. Let p be a prime in M dividing the prime with inertial degree 5 in L. Since the maximal
5-Sylow subgroup of S5 is cyclic of order 5, the decomposition group of p in Q(Ad0ρ̄E) is cyclic
of order 5. Then the decomposition group D(p) is a subgroup C5 nM0

2 (F5). Since a cyclic group
cannot be written as a semidirect product of groups whose orders are divisible by 5, D(p) = C5. �

Test 1: for each prime p check whether it has inertial degree 5 in Q(Ad0ρ̄E) or not (by looking
how the degree 5 polynomial splits modulo p). If it does, search for all primes in L with inertial
degree 5, and restrict to the subspace of characters in the class group which are trivial on them.

This first test lowers the dimension drastically. With primes up to 300, we find that the subspace
V which passes the test has dimension 2.

Lemma 8.9. Let L/K be a Galois extension, and M/L be a Galois extension of prime degree
p corresponding to a character χ. Consider the vector space obtained by evaluating the Galois
conjugates of χ at all different prime ideals, and let r denote its dimension (as an Fp vector
space). Then the Galois closure of M over K has degree pr.

Proof. This is an easy exercise of Galois theory. �

Test 2: consider each character of V as a character on Q(Ad0ρ̄E) by composing with the norm
map to L. To compute the action of Gal(Q(Ad0ρ̄E)/Q) on it, it is enough to determine its values
at prime ideals which split completely in Q(Ad0ρ̄E)/Q (they have density 1 in Q(Ad0ρ̄E)) where
the Galois action becomes simpler. To compute the conjugates of the character, we compute the
values that the character takes on the conjugates of these primes. Let α1, . . . , α5, be the the roots
of Q(x) = x5 + 445 ∗ x − 445 (so Q(Ad0ρ̄E) = Q(α1, . . . , α5)) and let L = Q(β), where β =
P (α1, . . . , α5) (in our case, we can take P (x1, . . . , x5) = x2

1x2 +x2
2x3 +x2

3x4 +x2
4x5 +x2

5x1). Recall
that any prime ideal q ∈ OL which splits completely can be presented in the form q = 〈β−aq, q〉OL
where q = N (q) and aq ∈ Fq. In particular, aq is the unique element in Fq which satisfies that
vq(β − aq) ≥ 1.

Note that since Q(x) factors linearly modulo q (with roots α̃1, . . . , α̃5), there is a match be-
tween {αi} and {α̃i} which makes aq = P (α̃1, . . . , α̃5) (since αi − α̃i ∈ (q)). Then if σ ∈
Gal(Q(Ad0ρ̄E)/Q) (which we identify with S5), its action on q is given by sending the ideal q
to the unique ideal q̃ such that aq̃ equals P (α̃σ(1), . . . , α̃σ(5)).

With this procedure, we loop over all characters of V (up to powers, i.e. we can think of them
as elements in P2(F5)) and compute the number of Galois conjugates of it at a finite list of primes
(the first 5 splitting primes work) discarding the ones giving a vector space of dimension greater
than 3. There are only 2 elements in P4(F5) whose vector space has dimension smaller than 4.
One of these elements corresponds to our cocycle κ.

To identify it, we need to run a not so rigorous test. Recall that we are searching for extensions
whose Galois group is S5 nM0

2 (F5). Since we cannot compute the Galois closure of our degree 5
extensions, we use Chebotarev density theorem. If M is such an extension, and a prime number
has inertial degree 6 in Q(Ad0ρ̄E), then it might have inertial degree 6 or 30 in M . Furthermore,
once we fixed an element in S5 of order 6, it is easy to see that there are 100 choices (out of the
125) of elements in S5 nM0

2 (F5) of order 30 and 25 of order 6 whose projection to S5 gives the
chosen order 6 element, giving a density of 0.8.

Test 3: for the two characters, we check whether they are trivial or not at all primes with inertial
degree 6 in Q(Ad0ρ̄E) up to a given bound, say 10.000. For the first character, we find that 156
out of 208 primes have inertial degree bigger than 6 while in the second case the same happens
for 24 out of 208 primes. This implies that the first character corresponds to the extension we are
looking for.

Remark 16. One can make the third test complete by using some explicit version of Chebotarev
density theorem but the range of computation will take too long without assuming for example
Artin’s conjectures.

We know that the image of (4) has dimension 1. In particular just one extra prime is enough
to get an isomorphism. We search for a prime q 6≡ ±1 (mod 5) and such that aq ≡ ±(q + 1)
(mod 25). The prime q = 293 satisfies both conditions, since a293 = −6 ≡ −(293 + 1) (mod 25).



CONGRUENCES BETWEEN MODULAR FORMS MODULO PRIME POWERS 25

Theorem 8.10. There exists a weight 2 modular form of level 89 · 293 which is congruent modulo
52 to the modular form attached to E89b1.

Proof. In view of the previous discussion, we just need to check that 293 is the right choice for
the map

H1(G{5,89,293}, Ad
0ρ̄E) 7→ H1(G5, Ad

0ρ̄E)/N5 ×H1(G89, Ad
0ρ̄E)/N89 ×H1(G293, Ad

0ρ̄E)/N293,

to be an isomorphism. Since 293 6≡ ±1 (mod 5), dim H1(G{5,89,293}, Ad
0ρ̄E) = 3. Let κ293 denote

a non-zero element not in H1(G{5,89}, Ad
0ρ̄E), and let κ1, κ2 be a basis of H1(G{5,89}, Ad

0ρ̄E), such
that κ2 = κ (the cycle unramified at p5,2). Then in the basis {κ1, κ2, κ3} the linear transformation

matrix looks like
(
a 0 b
c 0 d
e f g

)
. To prove it is invertible, it is enough to prove that

(
a b
c d

)
is invertible,

and that f is non-zero.
Since the image of H1(G{5}, Ad

0ρ̄E) in H1(G5, Ad
0ρ̄E) is two dimensional, if κ293 restricted to

G5 is not linearly independent with them, there should exist an extension of Q(Ad0ρ̄E) which is
unramified outside 293, but using CFT one easily sees that there are no such extensions (the ray
class group is isomorphic to C3504 × C12 × C2). Then

(
a b
c d

)
is invertible.

To prove that f 6= 0, we need to check that the prime 293 does not split completely in the
extension attached to the cocycle κ. Using the complete description of such cocycle (as a character
of a class group) we evaluate it at the primes dividing 293 and see that it is trivial at 2 primes, and
not trivial at the other 4 ones, which implies that 293 does not split completely from Q(Ad0ρ̄E)
to M . This ends the proof. �

Remark 17. In this particular case, searching for the particular form is out of computational reach,
as the level 89 · 293 is too big to compute the corresponding space.
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Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos

Aires

E-mail address: maxicampo@gmail.com
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