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Abstract

For the system of Laguerre functions {5} we define a suitable BMO
space from the atomic version of the Hardy space H;,a ={f € L'
Wiaf € L'} considered by Dziubariski in [7], where We is the maximal
operator of the Heat Semigroup associated to that Laguerre system. We
prove boundedness of Wio over a weighted version of that BMO, and
we extend such result to other systems of Laguerre functions, namely
{£5} and {f5}. To do that, we work with a more general family of
weighted BM O-like spaces that includes those associated to all of the
above mentioned Laguerre systems. In this setting, we prove that the
local versions of the Hardy-Littlewood and the Heat-diffusion maximal
operators turn to be bounded over such family of spaces for A}, weights.
This result plays a decisive role in proving the boundedness of Laguerre
semigroup maximal operators.

1 Introduction.

For a > —1, let us consider the Laguerre semigroups generated by the second
order differential operators
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As it is well known, the eigenfunctions of these operators are given by
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respectively, where L% (x) is the Laguerre polynomial of order n. The eigenvalues
are, in the three cases, n + "T'H, forn=0,1,2,.... All systems give orthonormal



basis of L2(R*), with the Lebesgue measure in the first two cases and with 2“dx
in the last one.

Let us remember that, whenever we have {¢,} an orthonormal basis of
L?(dy), which members are eigenfunctions of a self-adjoint and non-negative
second order differential operator L, with eigenvalues {),}, we can define the
Heat-Diffusion Semigroup {e~*£};- as

e f(@) =) e (f ) ()

and the Maximal Operator associate to this semigroup as

W* f(z) = suple™"" f(2)].
>0
In [14], [10], [11], [12] and [3], among others, the behaviour on Lebesgue and
weighted Lebesgue spaces of the maximal semigroup operators associated to the
above Laguerre systems {¢5}, {£;}, and {3} denoted W , W7 and Wy,
respectively, has been studied.

As it was pointed out in [14], all of the three semigroups are given by inte-
gration against explicit kernels. These kernels, near the diagonal, more precisely
on the set Ay = {(z,y) € RT x R : £ <y < 2z}, behave very much like the
classical Weierstrass kernel, and therefore the local parts of the maximal op-
erators end up to be bounded by the Hardy-Littlewood maximal function but
localized according to that region. More generally, as it was defined in [13], for
any k > 1, the k-Local Hardy-Littlewood Maximal operator is given by

ME f(z) = sup ﬁ / 1 w)ldy, (1.4)

x€l€Z,

for any f € L} (R*) and z € R, where

loc
Z. ={(a,b) : 0 < a < b < ka} (1.5)
is the set of k-local intervals on R™.

The aim of this paper is to study the behaviour of the above maximal oper-
ators, Wi, Wz. and W/, acting on appropriate versions of weighted BMO
spaces. Such spaces are naturally defined as duals of the H; spaces introduced
by Dziubaiiski in [7].

In fact we introduce a wider class of weighted BMO type spaces, in the
spirit of those BMO considered in [8], that includes those associated to the
Laguerre semigroups, and prove some special properties in section 2. Then, in
this general context, we obtain in section 3 the boundedness over those weighted

BMO-like spaces of the local Hardy-Littlewood maximal function M}’ . and of
the Local Maximal Heat-Diffusion Semigroup Tj, ., given by
2z
Tioof (@) = sup | [ L) f(0)d]. (16)
0<s<1 z
where Ts(z,y) is the classical heat-diffusion kernel
1 _le—y?
Ts(z,y) = e” & (1.7)
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provided that the weight w satisfies the A;-Muckenhoupt condition only over
local intervals, that is, those (a,b) with 0 < a < b < 2a. We believe that these
boundedness results may be of independent interest.

In sections 4, 5 and 6, we consider the particular cases of weighted BMO
spaces associated to the three Laguerre systems. We are able to establish the
boundedness of the maximal operators of the semigroups of each system over
the corresponding spaces and under appropriate assumptions on the weight.
The result concerning the continuity of the local maximal heat semigroup Tj,,
obtained in section 3, turns out to be crucial. The classes of weights have a
look resembling Muckenhoupt classes but weights in there may increase as any
power at infinity. As an example, weights of the type 1 4 27 for any v € R are
allowed in our classes.

Finally, as it was pointing out by one of the referees, two related articles
by L.Cha and H.Liu have been published during the reviewing process of our
manuscript. Both concern with BM O spaces associated to the Laguerre systems
{¢%}, @ > —1/2. In [6] the authors prove the boundedness of the corresponding
maximal semigroup operator on a BMO-like space, previously introduced in
[5]. In fact, such space coincides with the one presented here in Section 4 for
the case w = 1 and hence our result stated as Theorem 4.3 is in fact a weighted
version of Theorem 3.2 of [6]. However, let us remark that their technique is
different from ours in the sense that they compare this Laguerre semigroup
with the one dimensional Hermite semigroup. Such relationship was discovered
in [1], where some clue estimates are obtained. Instead, our argument is based
on local comparison with the classical heat semigroup and to do that we prove
all the needed estimates. Let us add that also in Theorem 1 of [5], the authors
actually prove that BMOp.«, as they denote it, is the dual of the Hardy space
H}. introduced in [7]. One ward of alert about their notation: even in [5] and
in [4] the authors name the space as BMOpe, there is not an actual dependence
from the parameter «, as the notation may suggests. Also we notice that from
the atomic decomposition given in [7], the corresponding Hardy spaces are all
the same up to a Banach spaces isomorphism.

2 BMO.(w) spaces.

In this section we will introduce the notion of local AP classes of weights as well as
the critical radius function and weighted versions of the BM O spaces associated
to such function. Also, we will establish some basic but useful properties for
them.

We start by reminding the definition of the classical BMO(R™) space and
its weighted version. Given a weight w, we say that a locally integrable function
on RT = (0, 00) belongs to BMO(w) if it satisfies the bounded mean oscillation
condition: there exists a constant C' such that

ﬁ / (@) — filde < C, (2.1)

for all intervals I with closure contained in R*, where, as usual, f; = ﬁ I}  f(x)da,
that is the mean value of f over I. The seminorm | f| garo(w) is taken as the



least value of C' that satisfies (2.1). In order to obtain a normed space, those
functions which differ a.e. by a constant should be considered identical.

For the heat semigroup, the kind of weights that allow to extend important
properties of the operators to weighted-BM O, are those in the Muckenhoupt
classes. Let us remind the definition of Muckenhoupt classes 4; and A,,
1<p<oo.

e A weight w belongs to AP(RT), 1 < p < oo, if there exists C' > 0 such that

(/Iw(x)d:v> v </Iw(x)p’/pdx)1/pl < O] (2.2)

for any interval I CC RT.

e A weight w belongs to A'(RT), if there exists C' > 0 such that

w(l) < C|I| glﬁréflw(ac) (2.3)

for any interval I CC R*. By inf we mean the essential infimum.
e We denote A* = -, AP.

Our new kind of BMO type spaces will be defined for a wider classes of
weights, namely the local Muckenhoupt classes as the ones considered in [13],
section 6.

To be precise, given x > 1, a weight w on R, i.e. any non-negative and
R*-locally integrable function, is said to belong to A? 1 < p < o0, if there

loc,k?

exists a constant C' = C(k,p) such that (2.2) holds foryany B € 7., being Z,
the set of k-local intervals given by (1.5).
Similarly, for p = 1, we say that w € Alloc,ﬁ if (2.3) holds for all B € Z,.

The semi-norm [w], . is the least constant C(k,p) for which (2.2) or (2.3)
holds, according to p > 1 or p = 1. As usual, we denote A = Up21 AP

loc,k loc,k*
From Proposition 6.1 of [13], the class A7 actually does not depend on &,

and then it will be denoted just by A} = and we shall say that w is a local A4,
weight whenever w € A} . Nevertheless, the semi-norms [w], . still depend
on k and may increase to infinity. This is the case when w(z) = %: it is not

difficult to show that w € A7, ., for any &, and [w]z » — 00 when £ — co.

In the same article, the authors established a relationship between those
weights and the Local Maximal Hardy-Littlewood operator M# given by (1.4).

loc

Indeed, they proved that M is of strong type (p,p), when 1 < p < oo, and

loc

of weak type (1,1), with respect to measure w(z)dz, if and only if w € A} or
w € A}, respectively.

locy

Let us point out that if w € A} | then it follows directly from definition that

loc?

1
w(l) < OH|S||M(S) (2.4)
for any I € Z,, and any measurable set S C 1.
Moreover, as it was shown in [13], this property also holds for any 1 < p < cc.
We shall refer to that as the local doubling property.



Lemma 2.1. Letw € A} |1 <p < oco. Then, for every k > 1, there exists a

constant Cy, depending on k, p and [w]p ., such that

n=c (1) ws)

w = K Tal w )
|5

for any I € Z,; and any measurable set S C I.

We introduce now the notion of critical radius function, that will be needed
in the definition of our BMO spaces.

Definition 1. Given a positive and continuous function 7 defined on RT =
(0,00), we say that 7 is a critical radius function if

gclil%l+ T(x) =0, (2.5)
and
m(y) < 7(x) + )z —yl, (2.6)

for some 0 < v < 1 and any z,y € RT.
Examples of critical radius functions are, for v < 1, 7(z) = vz, 7(z) =
ymin{z,1} and 7(z) = ymin{z, 1}.

Associated to a critical radius function we distinguish different types of in-
tervals. Let us remark that we will always consider intervals I = B(z, R) =
(x — R, + R) such that I C R™, so we assume 0 < R < x.

Critical interval: T = B(z,7(x)) = (z — 7(z),z + 7(x));

Sub-critical interval: I = B(xz, R) such that 0 < R < 7(x);

Super-critical interval: I = B(z, R) such that R > 7(z);

o \-super-critical interval: I = B(x, R) such that R > A7(z), where 0 <
A < 1is a fixed constant. In other words, I is a A-super-critical interval if
and only if I is super-critical for 7/ = A\7.

We enumerate some useful properties of 7 and the related intervals. Their
proofs are quite straightforward so we omit them.

Proposition 2.2. Let 7 satisfy (2.5) and (2.6). Then

a)
7(x) < ~vyx, forallz € RT. (2.7)

b) Let k = i—z If I is a critical or sub-critical interval for T, then I is
a k-local interval (see (1.5)). Moreover, if I and J are two critical or
sub-critical intervals for T such that INJ # 0, then I U J is a k2- local
interval.

¢) If I is a critical interval for T, then %T(IL') < 7(y) < kr(x) for anyz,y €1,
where Kk = }i% Moreover, if I and J are two critical intervals for T such
that INJ #0, then 57(z) < 7(y) < £27(x), for any z,y € TUJ.



The following statement gives a covering of R™ by means of critical intervals.
We provide an elementary and constructive proof of this fact.

Lemma 2.3. There exists an increasing sequence {a;};cz of positive numbers
such that the critical intervals I; = (a; — 7(aj),a; + 7(a;)) are disjoint and

satisfy U;ez I; = RY.

Proof. In order to define the sequence {a;};ez, we first consider j = 0 and set
ap=1and Iy = (1 —7(1),147(1)). Since 7(x) < vz, for some fixed 0 < vy < 1,
we have 1 — 7(1) > 1 —~ > 0 and this implies [y CC R*.

For j > 0, we define aj41 in order to satisfy aj41 > a; and

aj +7(a;) = aj41 — 7(aj41). (2.8)

In this way, the interval I;;; is at the right of I; and they have an extreme
point in common.

In order to choose such a;y1, we call a function h(x) =  — 7(x) and a
constant b = a; + 7(a;). Note that h is continuous and limg o h(z) = +o0,
since h(x) > (1 —~)z, for any x > 0. Then, since b > h(a;), there exists at least
one y > a; such that h(y) = b. If we take a;y1 = inf {y > a; : h(y) = b}, this
a;+1 will satisfy (2.8).

Now, in a similar way, we define a;_; for 7 < 0 such that a;_1 < a; and

aj—1 + T(aj_l) =a; — T(aj). (29)

For that we consider h(z) = = + 7(z) and b = a; — 7(a;). Then, since
h is continuous, lim,_,o+ h(z) = 0 and 0 < b < h(a;), we can take aj_1 =
sup{0 <y < a; : h(y) = b}.

Thus, we have obtained a sequence {a;};cz satisfying (2.8) and (2.9).

Finally, in order to prove that {I;} cover R, is enough to show that

li = 2.10
im0 = oo 210)
and
lim a; =0. (2.11)
j——o0

Both limits exist since {a;};ez is increasing and takes values on R*. Suppose
that lim; ,ya; = b < 4o00. Then, taking j — +oo on (2.8), we obtain
b—7(b) = b+ 7(b) and this implies 7(b) = 0. This cannot happen for any b > 0
since 7 is a radius function, defined to be positive in RT. Thus he have obtained
(2.10).

Analogously, if we assume lim;_,_ ., a; = a > 0, making j — —oo on (2.9)
we obtain 7(a) = 0. Thus, (2.11) holds.

O

In the next lemma we show how to measure with a local weight A-super-
critical intervals for 7 , using the covering just given.



Lemma 2.4. Let w € AfS., T a critical radius function and I a A-super-critical

interval for T. If T ={j € Z: I;N1 # 0}, where {I,} is the covering by critical
intervals of Lemma 2.3, then

w(l) <) w(l;) < Cw(l), (2.12)

JjET
for some constant C depending on A, the constant v of (2.6), and [w]p , with p

2
such that w € A} . and k = (}f—l) )
Proof. Since for any interval I CC RY we have I = {J;c, I N1I;, the first
inequality is trivial.
Let I = B(xg, R), with zg € Rt and At(z9) < R < zo. Suppose first that
87 = 1. In this case I C I}, for some j € Z. Also we have w € A} | for some
1 < p < co. Then, since by Proposition 2.2 b) I, is a ifz—local interval, Lemma

2.1 gives us

w(I;) < C (“}?)pwu).

Then, since R > A7(x¢) and, by Proposition 2.2 ¢), 7(zg) ~ 7(a;), we obtain
the second inequality of (2.12).
Suppose now that §7 = 2. Then I C I; Ul;11, for some integer j. Since,

- 2
by Proposition 2.2 b) and c), I; U1 is a (11‘—1) -local interval and 7(a;) ~

T(aj41) ~ 7(x0), by Lemma 2.1 we obtain again (2.12).

Finally, suppose 7 > 2. Let us call jy to the first integer of J and j; to
the last one. If j is such that jo < j < j1 then I; C I and since all the I; are
disjoint, we can always write

Y wlly) € w(ljy) +w(l) +w(I;,). (2.13)
JjeT
On the other hand, using again Lemma 2.1 and Proposition 2.2 we have
w(lj ) < W(Ijo UIjo-‘rl)
Cw(1j0+1)
Cw(I).

IN A

Analogously, w(l;,) < Cw(lj,—1) < Cw(I). Therefore, from (2.13) we obtain
(2.12). O

Now we are ready to introduce the spaces BM O, (w). As we noticed, it will
be in the spirit of the BM O spaces, associated to some critical radius function,
introduced in [8].

Definition 2. Let 7 be a critical radius function and w a weight in RT. We
say that a real function f € L} (R*) belongs to BMO,(w) if there exists a

loc
constant C' such that f satisfies the bounded mean oscillation condition

ﬁ / F) - fildy < C, (2.14)



for any subcritical interval I (see definitions under equation (2.6), and the
bounded mean condition

ﬁ / FW)ldy < C, (2.15)

for any critical and super-critical interval I. The norm || f|| gas0, () is taken as
the least constant C satisfying both conditions.

Remark 2.5. Since [, |f(y) — fildy < 2 [;|f(y)|dy for any interval I, we have
BMO,(w) C BMO(w). Also, L*®(w™) = {f : fw™! € L*} ¢ BMO,(w),
since ﬁ J; 1f(@)|de < || fw™!||s, for any interval I CC R¥.

Remark 2.6. Notice that if we ask condition (2.15) to be true only for super-
critical intervals, by continuity it will also hold for critical intervals.

Remark 2.7. In [4], we introduced a local BM O space on R* called BM O} (w),
for k > 1, associated to the family of intervals Z,, as those functions satisfy-
ing the bounded mean oscillation condition for intervals belonging to Z., and
the bounded mean condition for bigger intervals. The relationship between
BMO;(w) and BMOj; (w) is as follows. Given xk > 1, if we take 79(z) = vz
with v satisfying x = fiy then the set of all sub-critical and critical intervals

11—
for 7y is exactly Z,, the set of k-local intervals given by (1.5). Hence BM O, (w)
is the same space as BMO}: .(w). More generally, for any critical radius function

T satisfying (2.5) and (2.6), and for xk > }1‘—1, we have
BMO;(w) C BMO}.(w), (2.16)

in view of (2.7), v < ’Z—_ﬁ and the obvious fact that 7 < 7/ implies BMO, C
BMO,..

The introduction of these spaces is inspired, as we said, by the study of the
right substitutes of BM O(w) for the context of the semigroups associated to the
Laguerre systems {¢%}, {£3} and {£2}. Indeed, if we take p(z) = § min{z, 1}
and w = 1, BMO, is the dual of the atomic space H}. associated to {¢%},
studied by J. Dziubasiski in [7], for o > —1. Also, for o(z) = § min{z, 1}, we
obtain the proper BMO-spaces for the two other systems {£%}. Later we will go
over those particular cases and we shall study the action of the corresponding

semigroup maximal operators on such spaces.

Now we establish some useful properties of BM O, (w).

The following lemma says that it is enough to check the bounded mean
condition (2.15) just for critical intervals to conclude that it also holds for any
supercritical interval.

Lemma 2.8. Let w € A5, and T a critical radius function. Suppose that f, a

locally integrable function on RT, satisfies
1 /
—— | |f(z)|de < A 2.17
= @ (217)

for all critical intervals I CC R™, where A is a constant depending on f and
w. Then, for each 0 < X\ < 1, (2.17) also holds for any A-super-critical interval,
with constant C A, where C is the constant of Lemma 2.4.



Proof. Let I a A-supercritical interval and let J = {j € Z : I; N I # (}. Since
each I; is a critical interval, by hypothesis we obtain

[ir@iae < X [ i@l

jeg i
< AN w(ly)
JjET
< ACw(I),
where the last inequality arises by Lemma 2.4. O

As immediate consequences we obtain:

Corollary 2.9. Letw € AS, and f € L}, (w) such that (2.14) holds for any sub-
critical interval respect some critical radius function 7. Then, f € BMO,(w) if
and only if f satisfies the bounded mean condition (2.15) for any critical interval
for T.

Corollary 2.10. Ifw € AfS. and f € BMO,(w) then

loc

1
— de < C
7 | 1 @de < Cl o,
for any A-supercritical interval I.

We usually say that two non-negative functions f and g are equivalent,
denoted f ~ g, if there exist constants ¢ and C such that ¢f(z) < g(z) < Cf(x)
for a.e. x for which f and g are defined.

Corollary 2.11. If 7 ~ 7' and w € A, then BMO,(w) = BMO. (w), with
equivalence of norms depending on the constants of the relation between T and
7', In particular, all the spaces BMOY = BMOY  contain the same functions,

loc loc
for any k > 1.

Proof. Let 7 < 7/ and f € BMO.(w). In order to obtain f € BMO. (w), by
Corollary 2.9, we only have to prove that (2.15) holds for I = B(xg, 7' (20)),
with zg € RT. Since 7/(z0) > e7(x¢), I is a c-super-critical interval for 7 and
the result follows from Corollary 2.10. O

Remark 2.12. Notice that given 7 and 0 < A < 1, A-supercritical intervals
become supercritical with respect to 7y(z) = Ar(z). By Corollary 2.11, we have
BMO,;, = BMO,. But we can not move A too many times since the BMO-
norm with respect to 7, may go to infinity. We already remark that a similar
thing happens with local weights: although Afom contains the same functions
for any k > 1, we can find a weight such that the A} ¢ x~ROrm increase to infinity
with £ (just consider w(z) = 1). For that reason, many times we will work out
our proofs with the explicit values of x and A that we need to consider in order
to get the desired results.

The following lemma extends the familiar consequence of John-Nirenberg
inequality for classic BMO to the space BMO,(w).



Lemma 2.13 (Equivalence of norm’s property.). Let w € A} 1 < p < oo,

and 7 a critical radius function. For 1 < r < p/, there exists a constant C' =
C(r,w,T) such that if f € BMO,(w) then

1/r
(w(lB)/BV(‘T) — fB|rw1T(x)dx> < Ol fllBMmO. (w) (2.18)

for all critical and sub-critical intervals B, ie: B = B(xo,R) with 0 < R <
7(z0), and

1/r
(w(lB) /B f(mwwl_r(x)dx) < ClfllBamo, w) (2.19)

for all critical and super-critical intervals, ie: B = B(xg, R), with R > 7(

.130).
Proof. Let f € BMO,(w). Then, by (2.16), f € BMO} (w), with x = 12,

loc
p

-
locs for any r such that

In [4] we have proved, given £ > 1 and a weight w € A
1 <r <y, that

1 r 1—r d l/r <C1
(W(B) [ 150) = galre @ x) < Cllflmrror.

for any k-local interval B. Then, Proposition 2.2 b) imply (2.18) for any critical
and sub-critical interval for 7.
We will prove now (2.19). Consider first B = B(xg, 7(x9)). Then

(w(lB)/B|f(a:)|Tw1—r(x)dx)1/r

(w(lB)/B|f(3:) _fB|rw1_T(x)dx>1/r
1—r '/

+ (LUM(BE)B)> |fBl.

From (2.18), the first term on the right hand side is bounded by || f||zr0. (w)-
For the second term, observe that r < p’ and w € A} . imply wl=" € A7 and
then

< |IfllBmo, (w)-

r
loc?

A

Finally, if we consider B = B(xg, R) with R > 7(xq), we use the result for
critical intervals just proved to obtain

/B|f(x)vw “(@)de < j;/j 1 (2)[ "t (2)da
< CHf”TBMOT(w)ZW(Ij)v

JjeJ

where J = {j € Z : I; N B(zo,R) # 0} and {I;} is the covering by critical
intervals. Then, using Lemma 2.4, we obtain (2.19). O

10



Finally, we state a version of a very well known and useful property for
functions in BMO(w) with w € A;. Because of our assumption w € A}, we
have to restrict the conclusion to local intervals. Its proof follows exactly with
the same steps, so we omit it.

Lemma 2.14. Consider two
kappa-

local intervals J and J' with the same center such that J C J'. Then, if
f € BMO,(w) and w € A}, we have

loc?

[ 17@) = sslde < Callaso. o) ('°’+1) (2.20)
; U

3 Local Classical Operators on BMO,(w)

In this section we will introduce the local versions of the Hardy-Littlewood
Maximal function and the Heat Diffusion Maximal operator. We will establish
their boundedness over BM O, (w) spaces.

Let us remind that in the classic BMO theory, the Hardy-Littlewood Maxi-
mal function M is not bounded on BMO, since we may have M f = oo for some
f € BMO (see [2]). Anyway, from [4], it is already known that for w € A} ,
the Local Maximal Hardy-Littlewood operator M}, ., with x > 1, given by (1.4),
is bounded from BMOj (w) into BMOy (w), with boundedness constant de-
pending on k. As we already pointed out, such spaces coincide for different
values of k (corollary 2.11) and also are particular cases of our family BMO..,
in fact they contain all of them (remark 2.7). Based on that, we will prove now
a more general result.

Theorem 3.1. Let k > 1 and 7 a critical radius function satisfying (2.5) and
(2.6), for some 0 < v < 1. Then, if w € A}, the operator M . is bounded on
BMO, (w), with constant depending on k, v and the A} constant of w.

loc,k

Proof. Fix k > 1. Along the proof we assume that v € (0,1) is such that
K> H'y Then, by Corollary 2.11, we can extend the results for any 0 < v < 1,
cons1der1ng 7=1r

Let f € BMO,(w). By (2.16) we have BMO,(w) C BMO}: (w) continu-
ously. This, together with the boundedness of M’ . obtained in [4] gives that
HMzocfHBMO" @) S Ifll Baro, (w), provided w € A} .. In particular, this implies
that My is locally integrable and

loc
1
m/lefocf(x) — (M) 1lde < C| fllBao. w)

for any interval I compactly contained in R*.
On the other hand, by Corollary 2.9, it is enough to prove the bounded mean
condition

/ M £ (2)|dz < Clf]l a0 o, (3.1)

for any critical interval B = B(zg,7(x9)). Let B* = B(zo,07(xp)), where
o= % > 1. Let us write f = f1 + f2, where f1 = fxp+ and fo = fxp=e.

11



For f1, we apply Holder inequality and we use that w € AlloC implies w!™? €
for any p > 1, and hence Mf . : LP(w'™P) — LP(w!'~P). Therefore

i [ MA@l < (S [MiaEre e
< o (W(B)/ et )i

B\ 7
< o(45) Ifllavo, o

Since B* C B(xo,/7%0), Lemma 2.1 gives w(B*) < C,w(B). Then, from
the equivalence of norm’s inequality (2.19), (3.1) becomes true for fj.
As for fy we will prove first that for z € B

AP

loc

-

w(J)

o (3.2)

locf2(2) < C [|fllBro, (w) Sup =77
where the supremum is taken over those J € Z,; such that x € J and JNB*© # 0.
Indeed, observe that to evaluate the left hand side for some x € B we only have
to consider -local intervals J such that J N B # @ and J N B* # (. In this

case we have
|J| > (6 — 1)7(x0). (3.3)

If 27 denotes the center of J, using (2.6) and (3.3) we obtain
m(xy) < vlzs — zo| + 7(20) < C4[J].

Then by Corollary 2.10, (3.2) follows.
Now, for each of those J of the supremum of (3.2), the interval J' = JU B,

by Proposition 2.2 b), is a x?-local interval. Then by (2.4), and since |J| ~ |.J'],
w(J) w(J') w(B)

we have 5 < 77 < 57 - This implies
w(B)
<
locfQ( ) Hf”B]VIO |B|
and then (3.1) holds for fs. O

Next we consider the local version of the classical heat-diffusion semigroup,
and its associated maximal operator, T}, ., given by (1.6). As expected, it turns
out that T}, is controlled by some local Maximal Function. Such estimate
together with Theorem 3.1 will help us to prove the boundedness of T},  over

BMO,(w).

Lemma 3.2. There exists a constant C' such that T}, f(z) < CM} _f(z), for
all z € RT and any f locally integrable function.

Proof. Let f a locally integrable function. We have to check that

[ nealrwlds < M)

12



for any € R™ and s € (0,1). For fixed = and s pick the integer jo such
that 2701 /s <z < 2j0+2\f Let us call B = B(x,27\/s). By our choice of
Jo, we have that § —200\/5s < 433 and 22 < x4 2/°\/s < 2z. This choice

gives us (5,2x) C (5 ,32)UBj, U (3z,2x) and we may write

@)y < /;sz(xvy)\f(y)ldw / T, (2, 9) 1/ ()l dy

2 13j0
2x
+ / Ty(,9) £ (1) ldy

= I(x)+1I(x)+11I(x).

o

For I(z) and III(x) the estimate follows easily since in any case Ts(z,y) <
% and the intervals of integration are 4-local, contain the point x and their
measures are equivalent to x.

On the other hand, we write

s | nelrw

j=—00 \ j—1

If y € B; \ Bj_1, for j < jo, we have |y — x| > 2971\/s and this implies
Ts(z,y) < \[e_c2 . Then,
Jo i1
@< Y. e oo [ )y S M S,
R2 B,1 ),

since, for any j < jo, B; C (3,2x) and hence they are 4-local intervals. O

Remark 3.3. Let us notice that M;! f < oo a.e. for any locally integrable func-

tion on R*. In fact, to evaluate M;! f(z) for x € [27,277Y] j € Z, we may
replace f by the integrable function fx(gi-2 2i+3). Therefore the above lemma

implies the same property for T}, ..

Now we will prove the most important result of this section.

Theorem 3.4. If 7 is a critical radius function and w € A}
bounded on BMO,(w).

Proof. Let f € BMO,(w) and B = B(xg, R), with g € RT and R > 0.

We will prove first that T}, f satisfies the bounded mean condition (2.15) for
R > %%) For this we use Lemma 3.2, which gives T} . < Mf ,
3.1. Then, by Corollary 2.10, we obtain

then T7 , is

loc?

and Theorem

1 *
5 L T d@lde < fllavo, )
) o

for any %—supercritical interval B, that is, with R > (20)
Since the bounded mean condition (2.15) implies the bounded oscillation

condition (2.14), it only remains to prove that

1
5 /B TS, (@) — eldz < Ol maro. ) (3.4)

13



holds for 0 < R < @, and some ¢ = ¢(f, B).

By Corollary 2.11, we may assume v = é and hence 7(x) < g, for any
z € RT.

Let us call B* = B(zg,3R) and f = f1 + fo + f3, where f1 = (f — f5~)xB*,
fa = (f = fB<)x(B+)c and f3 = fp-, and let us choose x1 € B(xo, %) such that

c =T} .(fo+ f3)(z1) < co. Observe that, by the above Remark, T}, .(f2 + f3)

loc
2z

is finite a.e. If we denote T f(z) = fz/Q Ts(z,y) f(y)dy, we have T} .f(z) =
SUPg<s<1 T, f(x)|. Then

Tioef (2) — ¢ < Ax(2) + Az(2) + As(),

where
Ai(z) = Tj,cfr(2),
Ag(z) = sup |Tsfoz) — Tsfolar)],
0<s<1
and

Az(z) = sup |Tsfs(x) — Tsfa(a1)].

0<s<1

In order to obtain (3.4), it is enough to prove for ¢ = 1,2, 3 that

1
w(B) /B Aj(z)dz < C| fllBro, (w)- (3.5)

For A;(z), observe that w € A}, implies w™! € A? . Then, from [13], M}
is of strong type (2,2) with weight w1, and so is T}, ., according to Lemma 3.2.

Then, using Holder inequality, we have

2

i e < (o ITfocfl(w)IQW‘l(w)dw)%
1

< (s [ 160 - oo )

S fllBmo, (w)
where in the last inequality we have used the local doubling property of w
(Lemma 2.1) and the equivalence of norms inequality (2.18).

Next we consider Az(z). First note that

~ ~ 2z 211
ofata) = Tetaon) =Sl | | Ty = [ Ty

2 2
Performing the changes of variables z = % and z = y\_/? in each integral, we
obtain
2x 2z — 2«\'5/5 % 2
/ Ts(xuy)dy_/ Ts(xlay)dy ,S / e~ Tdz + / e Tdz
3 = - 2% v
Ty
< ‘ / Vet de
=

14



Since z and z1 belong to B, which is contained in B(zo, 7(20)), B is local
and then x ~ z1 ~ x¢ which implies

=L 2
/ﬁei%dz < 7‘m_1‘1|eicz?0 §@7
% Vs %o

for some constant ¢. Then, since B* C B(zg, 7(zg)) C (%xo,%xo) = Iy,
which is a super-critical interval for 7, we have

Tsfa(x) — Tofa(z1)] < - |f( )|dy
< ||f||BMoT<w>““0)
[ 1o
w(B
< Wlasro. -

for any = € B, where in the last inequality we use (2.4) and that I is local.
Therefore, (3.5) holds for As.

Finally, regarding As, we will show that, for any = € B,

w(B)
Az () < || fllBro, (w) TR B (3.6)
|B|
which implies (3.5) for A,.
Note that
A2(l‘> < Oiugl s(xvy)X(%,Z:v) - Ts(xlay)X(ITl,Qa:l) |f2(y)|dy
< Ao (x) + Age(x) + Ass(z),
where
Ag1(z) = sup / Ts(z,y) | f2(y)ldy,
0<s<1J(Z 22)\(5F,221)
Ag() = sup / W(w1,9) | fa()|dy
0<s<1 J (5L 221)\ (%
and

0<s<1

Ass() = sup / T y) — Ta(wr,v)] | fow)ldy.
(%,293)0('171,211)

Let us call B, = (§,22) \ (%,2r1), with  # x;. Notice that z,2; €
(%xo, %xo) imply (§,2z) C (176300, Zxo) and (mmo, Zxo) C (%, 2x1). Then, for
y € B, we have |z —y| > |y — 20| — |z — z0| > 320 and hence Ts(x,y) < O
Therefore

1

An(z) S v ) |f(y) — fB|dy
1 -

< 2 [ 1rwldy + B2l
Zo JB, o

15



Since |B,| < Clz — 21| < C|B| and the local interval Jo = ({50, J20)
contains B, and B* we have

Aoi(z) < 370 |f( )dy
J
< Wlaso,w 2t

and we obtain (3.6) for A using again (2.4). In an analogous way, we obtain
the same for Ass.

We will prove now (3.6) for Ass. First notice that B* C (£xo,320) and
(19—6:[0, %xo) - (%,Qx) N (%,Qxl) C (1—76x0, %xo). This implies that ?%,Qx) N
(%1, 2;101) N B*‘ is not empty and is contained in Iy \ B*, where Iy = (1—76x0, %xo).

On the other hand, since T™* is a vector valued Calderén-Zygmund operator,
or also applying the mean value Theorem to T(x,y) in the variable x, we obtain

— X
sup |Ty(e,y) - Tu(er, )] < C2= 2]

0<s<1 ly — a1
if [y — 1| > 2|z — z;]. This is actually the case for z € B, z; € B(zo, &) and
y € (B*)¢. Also, |y — x1| ~ |y — 0| and then

R
sup |Ts(z,y) — Ts(x1,y)| < C—m.
0<s<1| (@9) (z1,9)] ly — xo|?

Therefore, using that (%, 23:) N (%, 2x1) C Iy, we have
Io\B* Iy - 1?0|

Let us call B; = B(z¢,3’R) and choose an integer jo such that 3% <

370+l Then . 9
IO C <16$0, l’o) UBJO+1 U ( Xo, 41’0) .

Observe that, since 3R < 7(xg) < %, we have jo > 1. Then we can write

dy+R/ 7()_%’* dy
Bjy+1\B1 ly — o

The first term can be estimated as we did with As;(x). For the second we
have

Lo
sk S

A23<x>sx—fg 11w - 0

Jo
R/ /() ff;* &y < RZ/ /() fg* ay
Bj,+1\B1 ly — ol =17 Bi+1\B; ly — xo|
Jo 1
S : |f(y) = fB~1dy.
;32”% Bjt1

Let us note that each B;; is a local interval since Bj,+1 C Ip. Then, using
Lemma 2.14 with J = B* = By and J' = B,11, we get

16



w(B) 20 J

Jdy < el SS A N

ng [, = folds 5 Wflswo. g >3
«(B)

S ||f||BMO,.(w)W-

Thus, we have obtained (3.6) for Ass(z) completing the proof of the Theo-
rem.

O
If, for a given critical radius function 7, we consider, instead of T} ., the
smaller operator
2x
Ty f@) = sw | [ L) f)a. (37)
T(2)2<s<1|J %

we obtain the following stronger result that will be useful in the next section.

Proposition 3.5. The operator T;
for w € A}

is bounded from BM O, (w) into L>°(w™1),

loc, T

loc*

Proof. Let f € BMO,(w). Without loss of generality, by Corollary 2.11, we
may consider v = é. Let us fix € R™ and 0 < s < 1 such that z is a Lebesgue
point of w and s > 7(x)%. Notice that, for such z, we have infyc; w(y) < w(x),
for any interval I which contains . Remember that inf represents the essential
infimum. Now, choose the integer ky < 0 such that ko < L\/? < 2kotl and
let us call By = B(x,2%\/s) N (%,2z), for k > ky. Observe that the By are
increasing intervals and, after a certain k;, they are equal to (5,2z). Since
Biy1 \ B = {y € (%£,22) : 2k < L\/gl < 2F1) for kg < k < k; — 1, we can
write

ki1—1

2x 2
_ly—=|
/ T )y < / TITED> / (v)ldy
z Bko k+1\Bk
kil 2k
< / F@ldy+ 3 e / F@)ldy
B, k=ko By

We will show now that each By, for kg < k < kq, is a %—super—critical
interval for 7. In fact, denote by by the center of By and Ry to it radius. Since
B(z,$7(z)) is contained in B(z,2%\/s) and also in (%£,2z), for any k > ko
we have B(z, §T(x)) C By and thus 7(z) < 2Rj. Then, using (4.3), we get

7(br) < 7(2) + 3|z — bi| < X Ri. Then, each By is a <-super-critical interval
for 7 and Corollary 2.10 implies

2z
_ly
e
z
2

k1—1
Wldy < 1 fllBmo, w) ( (Bro) + Y €™ Bk+1)> .

k=kq

17



On the other hand, since By C (3, 2x), they are local intervals and by (2.3)
we have w(By) < |Bg|infyep, w(y) < 28y/s w(z), since z is a Lebesgue point of
w contained in Bj. This gives us

Al

Therefore,

k-1
92k
Wldy < IfllBmo, ww(®) <2k°+ Z e 2’““)

k=kq
S Hf”BMOT(w)w(x)'

Tzkoc,'rf(x) 5 Hf”BMO,(w)w(x)
holds for a.e. z € RT and that completes the proof. O

4 Weighted BMO spaces associated to the La-
guerre functions {©%}.

We consider now the heat diffusion semigroup associated to the Laguerre func-
tions {¢%} given by (1.1), where o > —1/2, and its associated maximal operator,
Wi.a. In [7], Dziubaiiski defined in this context the Hardy Space

Hio ={f€L'(R"): Wi.f e L'(RT)}, (4.1)

providing an atomic decomposition. The intervals related to the atoms of H}
were asked to satisfy different conditions, according to a critical radius function:

p(z) = %min{x, %} (4.2)

From that it seems reasonable to introduce as suitable BMO weighted space
the BMO,(w) associated to the critical radius function p given by (4.2).
It is a straightforward verification to check that p satisfies

p(0) < pla) + gl —ul. (4.3

for all x and y in R™, which is condition (2.6) for v = 1/8. Therefore according
to Proposition 2.2, any sub-critical interval for p is also a local interval.

In this section we will prove that the operator W{,. preserves the BMO,(w)
spaces for any o > —1/2, under appropriate assumptions on w.

First we remind that, as it was shown in [14] and [3], the semigroup maximal
operator can be expressed as

Woa f(x) = sup
0<s<1

/ Won (s, 2, 9) f (9)dy|

where the kernel Wi e (s, z,y) is given by

1— 2 1— 2
W (s, 2,y) = 283 (zy);e;<s+§><m2+y2>1a< 2: :py) (4.4)

18



Here, I,(z) = e7%“™ J,(iz) is the modified Bessel function (J, being the usual
Bessel function, see [9]). We will be using the following estimates for I,. For a
proof see, e.g., [15].

Lemma 4.1. For a given o > —1 we have

a.
Io(2) = 2%, for any 0 < z <1,
b.
Io(2) ~ 27 Y2e%, for any 2 > 1
and
c.

1

[V2rz e 1, (2) — 1| < -
z

,  for every z >

ol —

As we have proved in [3], the following estimates of the kernel W (s, z,y)
will be useful in the proof of the Theorem.

Lemma 4.2. For the kernel Wa (s, x,y) given by (4.4), with o > —3% we have

27
that

22\ _ae2 1
W@"‘(Sa‘ray)s e 16 3Y 2,

forany0<s<land0<y<3.

Proof. Using Lemma 4.1 a. in (4.4) we have, for 0 < 1552 xy < 1, that

1— g2
Weo(s,z,y) =~ ( P

1
2\ e 1 1
J— e 4 s ya+2_
S anr%

On the other hand, if 1;;2 zy > 1, using Lemma 4.1 b. we obtain

a+1
) e et

A

1
1-— 2 1-— 2 T2 1 1 —s2
Wen(s,2,9) S 258 (wy)é( 2: :ry) e~ i (D ) ey,

1—s

Since 57

xy > 1and o > f%, we have
1—s? ~3 < 1—s? “
25 Y - 25 )

_a2
e i+ D@y ey i (ety)? o ()

On the other hand

22
B
)

IN
o
sk
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where in the last inequality we have used |z —y| > 2/2, since 0 <y < 3. This
gives us

< 22\ ™! _ae2 1
Woe(s,z,y) S | — e 165 R

Thus, we have obtained the desired estimate. O]

Next, we state the boundedness of WZ. over BM O,(w) under appropriate
conditions on the weight.

For a given n > —1/2 and 6 > 0, consider the class A’f"e of those weights w
that satisfy

. 140\ [,
w(x)x"dx supw” " (z)z" < C xdzx, (4.5)
I I

xel 1+a

for any interval I = (a,b) C RT. Here, by “sup” we mean the essential supre-
mum with respect to the Lebesgue measure. When 6 = 0, we denote the class
with A7.

It is immediate to check that these weights are in particular in A} .. Further,

w € A?’a implies that w(z)z~"(142)2 belongs to A!(du(x)), the usual A® class

= %dm Also let us notice that the classes A;”a

are increasing with §. We denote A7 = (J,., A7’

Regarding power weights, easy computations show that z% € AT if and
only if —p — 1 < & < 7, that is we get the same powers weights that belong
to A]. For weights of the form w(x) = (1 + z)°, which behave like a constant
for 0 < # < 1 and like 2 for > 1, we have that w € A7 only if > 0 and
—n—1 < & <n. However, such weights belong to A7 for any § € R, provided
that n > 0.

Now we are ready to state the main theorem of this section.

on RT with measure du(z)

1
a+§,<x>

Theorem 4.3. Let o > —1/2. If a weight w belongs to A, , then Wi is
bounded on BMO,(w).

As an immediate consequence of the above result we get the following state-
ment for power weights.

Corollary 4.4. For o > —% and a power weight w(x) = x°, we have that Woa
is bounded on BMO,(w) if —a— 3 <§<a+ 1.

Let us point out that the above intervals for the power § coincide with the
limiting case p = oo given in Theorem 2.2 of [3], which were shown to be optimal.
To check that, it is need to replace the exponent § by —dp in the theorem, and
then let p tend to infinity.

Proof of Theorem 4.3. For T}, the local classic heat maximal operator, we can
write Who = T}, + (W5a — Tj,.). According to Theorem 3.4 with 7 = p, we
only need to prove that W7o — T7, . is bounded on BMO,(w). In fact we shall
prove the stronger inequality

[Woa f(2) = Tl f ()| S fllBMO, wyw(T), fora. e ze RT, (4.6)
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that is, [[(WEa = Tio) flle w1 S [1f a0, w)-

Let z € RT be a Lebesgue point of w. Then, for f € BMO,(w), we split
(Wi f(z) — T}, .f ()| into four parts:

loc

(Woa (@) = Thoef (@) < If(x) + 11 f(2) + TT1f(2) + IV f(x),

where
2x
If(z) = | W f(z) — sup | Weo (s, 2,9) f(y)dyl
0<s<1 %
2x
IIf(x):: sup VV¢a(s,x,y)f(y)dy )
p(z)2<s<1
2x
11f@) = swp [ Worls,.0) - Lol w)ld,
0<s<p(x)?
and

IV f(x) =

2
sup | / T, ) f(y)dy| — Thof ()] .

0<s<p(x)?

So we have to prove estimate (4.6) for each term.

For the term I f(x), observe that

If@) < sup / W (s, 9)|f (9)ldy + sup / Woa(s,2,9) | (1) |dy

0<s<1 0<s<1 J2z

= Aof(z) + A f(2).

Using the estimate of Lemma 4.2 we have

LE2 a+1
all — 5 at3
C sup (S) s / [F()ly*T2dy

0<s<1

—er? 1 ’ 1
< Coee™ $a+%/ £y 2dy,
0

Ao f(z)

IN

AN

for some € > 0.
Since intervals of the form (27¢~!x,27%x) for any integer i are super-critical
for p, we have
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0 2 'z

[isoetiay s Yot [ s
= 00 ' 27y
S fllmwo,w D@0 [ iy
i=0 x
S fllssio,e [ o™iy
S fllBro, ) (1 + )z *? (%I}E)W(y)y*a*%
< fllBaro, ww @)zt (1+2)°.

Therefore,

Aof(@) S 1 fl o, e w@)(1+2)° < I fllsao, ww ().

To take care of A, term we first check that a weight in our class satisfies
the inequality

b inf w(y)<C <1 + b>9 inf  w(y)y™" (4.7)
ye(L,b) - 14+a/ ye(a2a) ’ ’

for any positive a and b such that b > 2a. Indeed,

b
b inf w(y) < b‘"‘l/ w(y)dy
b

ye(5.) b

b
< Cb_Q"_l/ w(y)y"dy.
a

Now we use (4.5) for the interval (a,b) to obtain

1+b o —2n—1 - — ’ 2
C b2 f " q
(1+a> yé&’b)w(y)y /ay y

b= inf w(y)
yE(%,b)

IN

0
1+5b

< C inf -,

- (1+a> yel(g%)w(y)y

Next, using the symmetry of the kernel (4.4) and Lemma 4.2, we can estimate
Aso f(x) by

< at+l oo (y° atl —eﬁ 1
Ao f(z) ~ SUPgcs<1 Zfzx s € Sya+%|f(y)|dy

for some positive constant €. Now, for a fixed s with 0 < s < 1 we consider the
intervals Jy, s = (2%/s,2%+1\/s) for k > ko, where ko denotes the integer such
that 2k0,/s < o < 2k0*1 /5. Note that J 5 are 1/3-supercritical for p and also

22



local intervals. Thus we have

o y2 ot y> 1 y2 att y? 1
[(5) g < >, (%) ol

k>ko

4’(7(0(4’1)6764]6
< C 7/ £ (y)ldy
k;[) (Qk\/g)ﬁ+1 Ji,s
4]6(0(4’1)676416 W(Jk )
< Cllfllsmo, =
ol )k;;o (2F/5)1 | Jis
4k(o¢+1)efe4k )
< COlfllBmo,w) Z —=— inf w(y),

Sr, VAT e

1

ioc and Jy, is a 2-local

where in the last inequality we have used (2.3), since w € A
interval.

By our choice of kg, we have that = < 2¥*1,/s for any k > kg. Then, using
(4.7) with b = 2F*1,/s and a = Z (observe that 2a < b) we obtain, for any

2
k > Ifo, that

(2"V5) 7" inf w(y) < C inf w(y)y "
yEJk yE(%,Z‘)

< Cw(x)x™".

Since the series 3°° 4kt e=54" being a + 1 > 0, is convergent we get that
the desired inequality (4.6) holds also for A..

Now, let us note that Wye (s, z,y) S Ts(z,y), for any 0 < s < 1 and 0 <
x,y < oo. This follows easily using the estimates for the Bessel functions of
Lemma 4.1. Then, both I1f(z) and IV f(z) are controlled by Tj,. |f[(z),
where this operator have been defined in (3.7). Since f € BMO,(w) implies
|f| € BMO,(w), Proposition 3.5 gives us

Hf(z) + 1IV(2) < Cllfl rmo, w)w(@)-
Finally, we consider the third term 7] f(z). Let us rewrite the kernel (4.4)

as
ch” (Sa z, y) = (I)clas(sa €, y)q)?es(sv z, y)‘@err(s, &€, y)7
where )
4rs B 1+s2 2
_ —1? sy
Dopos(s,z,y) = <1 n s2> e ul” (4.8)
1— 2 3 1-s2 y 1— g2
o = (2 D 4.9
bes(swray) ( ™ 25 xy) € < 92 .’L‘y) ( )
and )
1—-s2\2 _
q)err(saxay) = <H:’5?2) € y' (410)
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Let us write

|WLP“ (S,.’E,y) - Ts(m,y)| ‘(I)Clas(s?xvy)@ges(svx’y)q)ETT(Sa x,y) - TS(I>y)‘
‘(I)clas(s»xvy) - Ts(xvy)‘q)l?es(sa (an)q)err(&xvy)
‘(I)baes(sa :z:,y) - 1|T9(Iay)q)€?“r(sa ‘T7y)

‘¢e7'7'(57x7y) - 1|Tb(‘x’ y)
3
= ZQi(Saz7y)‘
i=1

We want to prove that

+ 4+ IA

2
L (5,2, )| )1y < | Fll 5310, (@), (4.11)

for any 0 < s < p(z)? and i = 1,2, 3.

Consider first Q4 (s,z,y). If we take, for fixed x and y, the function h(t) =
o— 2
(47rt)—1/26_‘ 7 , we have, from (1.7) and (4.8), that ®g,s(s, z,y) <1+82>

and Ts(x,y) = h(s). Then, the mean value theorem for h in [s, 1+Ss ] implies

‘(I)clas(syxvy) - Tg(l’,]J)‘ <C 33/23

with C independent of x and y. Also, using that ®3. (s, z,y) < C and Pepr(s, z,y) <

e~ 350 for§§y§2xand0<s<17wehave

1
Qi (s,z,y) <C-. (4.12)
x

Setting I, = (%,2x) and noting that I, is super-critical for p and also a
4-local interval, we obtain

2z
[ el wldy < € [ @y < ClSllosio, e inf wl)

2

Therefore (4.11) holds for ¢ = 1 using that « is a Lebesgue point of w.
On the other hand, we have

Da(s,z,y) < C|PR(s,2,y) — 1\5_%.

Since § <y <2z and 0 < s < p(x ) Whlchlmp11e50<8<fand0<s<@,

it is not difficult to check that 1 i TY > 3 (more precisely, 23
£3). Then, from (4.9) and Lemma 4.1 C we obtain (4.12) for Qs(s,z,y) and
hence (4.11).

Consider now ¢ = 3. We can write

93(575379) = |(b67"7“(87‘r7y) _1|T8(x7y)

IN

1 —82 1/2
(155) ~ 1T + ™ 1T )

= 931(37$7y)+932(37$7y)~
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For the first of those kernels, since y ~ z and s < z—z,

estimate like (4.12):

we get again an

Q31(S z y) < 83/2 st s

SE

Finally, for the kernel Qg3a(s,,y), by the mean value theorem and using
y =~ = we have

ly—=|?

QgQ(S,IE,y) 5 \/gx e s

If 0 <2 <1, then /s22 <1< % and we get that also Q32(s,z,y) < %
Consider now x > 1. Since /s < p(x) = g, we have \/sz* < z. Therefore

2x JJ—%
Qu(ssyliwlay £ o [ (v)ldy
b [ il
p(z) B(xz,p(z))
2x 2
+ x/ e EE (y)|dy. (4.13)
m+8%

Since f € BMO,(w), w € A}, and z is a Lebesgue point of w, we can bound
the term in the middle by a constant times || f|| prro, (w)w()-
For the first term we can write

1
T8z
T e
x
2

where kg is an integer that satisfies x — % <3 <z- k—o. That is, we
choose kg such that ko < 422 < kg + 1. Observe that x > 1 1mphes ko > 3.

(y)|dy, (4.14)

Ifye(x— %7$ = —) then |z —y|? > 64962, and since s < p(2)? = gz,
we obtain
_ly—a? _ K2
e & <e 1.
Thus, if we call I¥ = B(z, %),We have
I_ﬁ _ly—=|? _7
o £ / Fldy.  (415)
o il ‘[
For 1 < k < ko, observe that each I¥ is a critical or super-critical interval,
since £HL > p(2). Also, ko < 4z% implies I¥ C (22, £2), and hence IF are local

intervals. Then, (4.15) is bounded by a constant times || f| zaro, w) w(®)k ek
Plugging this estimate into (4.14), we obtain the desired inequality for the first
term of (4.13).

Finally, for the third term of (4.13), we choose an integer k; > 1 such that
T+ ’g—; <2z <z+ klsl'l (or equivalently, k; < 822 < k; + 1) and, analogously
as we did with the first term, we obtain
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I
=
)
A‘k‘w
o
B
=
)
a
&

where JF = (z — &, 2+ %) Let us call ¢; and Ry to the center and the
radius of J¥, respectively. Observe that the center of JO is x. Then, for k > 1,
we have ¢; > x and since p is decreasing on (1, 00), we obtain p(cx) < p(x) =
& < (5 +1)& = Ry. Therefore, J¥ is a super-critical interval for p and since
it is also local we may proceed as above arriving to the same estimate.

Altogether we get

2x
L Qo (5,2, 9)| f W) |dy < Cllf | 5r10, (0 (x)-

2

The proof of the Theorem is now complete. O

5 Weighted BMO spaces associated to the La-
guerre functions {£{}.

In this section we introduce BMO,;, the BMO spaces related to the Laguerre
functions {£%}. We will prove the boundedness over those spaces of the maximal
operator using the relationship between the systems {£5} and {4}

For the family of Laguerre functions {L£%} given by (1.2), we denote by
W7o the Maximal Operator associated to this semigroup. As in the case of
the Laguerre functions {45} and the operator W, in [7], Dziubaiiski also
considered the Hardy type space

Hio={feL':Wi.felL'},

providing an atomic decomposition.

The suitable weighted BMO spaces for the systems {£%} arises from Defini-
tion 2 when the critical radius function is o(z) = § min{z, 1}. It is not difficult
to prove that o satisfies the critical radius condition (2.6) with v = 1/8, that is

o(y) < ola) + gle —yl, 6.1)

for any x and y in R*. The space BMO,, for w = 1, is actually the dual space
of Héa, introduced by Dziubanski, when a > 0.

Next, for a > 0, we shall prove boundedness results for W}.. on the spaces
BMO,(v) under suitable conditions over the weight v.

Theorem 5.1. Let o« > 0 and v a weight belonging to AI%’OC, then Wha is
bounded on BMO,(v).
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Corollary 5.2. For a > 0 and a power weight w(z) = 2°, we have that Wia
is bounded on BMOg(v) if =5 —1<0< 5.

For the proof of this theorem, let us note that, from definitions (1.1) and
(1.2), there exists a relationship between the Laguerre functions ¢% and L,

namely
1

N z)z

In [3] it has been shown that W7.. can be expressed as

Al

L3 (x) = (5.2)

Wrag(z) = sup
0<s<1

/ Wea (s, z,y)g(y)dy|

where

Wi (s,,9) = 3 (29)" W, (5, VE, V5). (5.3)

This equality suggests that the result for W7, of Theorem 5.1 could be
derived from the analogous one for W7,. (see Theorem 4.3).

Based on (5.2), we define a linear transformation R acting on measurable
functions defined on Rt = (0, 00) as follows

Rf(x) = —=f(z?)a™ 1. (5.4)
Clearly, R is an isomorphism in LllOC(O, o0) and its inverse is given by

_ 1
R™'g(y) = V29(y*)y>. (5.5)
For this operator we have the the following transference result.

Proposition 5.3. A weight w belongs to A}, if and only if v = Rw belongs

to A},.. Moreover, R is an isomorphism between the Banach spaces BMO,(w)
and BMO,(v), provided w € A}

loc*

For the proof, we will use the following lemma.

Lemma 5.4. If (a,b) is a critical interval for o, then (\/a,/b) is a %—super—
critical interval for p. Conversely, if (a,b) is a critical interval for p, then
(a?,b?) is a super-critical interval for o.

n{x 1}. Con-

Proof. Let us remind that p(z) = % min{z,1} and o(z) = tm
| =20 (2£2). Let us call

sider first I = (a,b) a critical interval for o, that is, |I

I = (\/a,v/b). Then

= 1 Y a+b 2
=M= ( 2 >¢a+¢5'

If ‘ITH’ <1 then

(20t (a9,
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and this implies

If ‘”b > 1 then o (ib) = é and then

7= R Va+vb
8 Va+ va+vb 2 '
Therefore, Tisa %—super-critical interval for p.

Consider now I = (a,b) a critical interval for p, that is [I| = 2p (2$2), and
let us call I’ = (a2, b?) Then

a+b

7] = |I|(a+b) = 2p< ) (a+b).

If ‘LTH’ < 1 then p (‘LTH’) = %%’b and this implies
1
= Satby?

1
g(a2 +b2)

2, 12
> 2cr<a ;rb>

If ‘LT'H’ > 1 then p(%“b) = %% and then
1

2 4 32
" a”+b
|| 5 2 4(7( 5 )

Therefore, I’ is a super-critical interval for o.

Y

O

Proof of Proposition 5.3. Let w € A}
= (a,b) a k-local interval. Since

f/ %x 4da:*\f/ u2du,

v(I) ~ aiw(]), (5.6)
where I = (y/a, vb). Note that I is a /r-local interval. Then, by (2.3),

e and v = Rw, given by (5.4). Assume

we have that

wI) < Cx []infw(y)
yel

< Cpa” 2|I|1nfw( 3),

where we have used |I| = Vb — /a =

f+f~a z|I|. Then, by (5.6),

v(I)

IN

L1
C’,i|1|110r€1t;x 1w(z?)
C’H|I|01£réf;v(x).

1
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Conversely, if v € A}, ., we can prove, in an analogous way, that w = R~ 1o,

given by (5.5), belongs to A}, ., using this time that I € Z,; implies I’ = (a?,b?) €
T,

Now, consider w € A}, and f € BMO,(w). For v = Rw, we will show that
there exists a constant C', independent of f, such that

b
(1)

for any I critical or super-critical interval for o, and

/I R (2)|dz < C|lfl| 5o, ). (5.7)

1
e / RF () — cldz < Cfllmrr0, ). (5.8)

for some ¢ = ¢(f,I) and any I sub-critical interval for . This will imply

IRfllBro. ) S I fllBro, (w)-

First, to prove (5.7), according to Corollary 2.9, it is enough to consider
I = (a,ax*) a critical interval for o. Performing the change of variable u = /x,
since a < a* < %a, we obtain

]. @ 1 1
z)lder = — xr2)|x” 4dx
[ Rs@lar = = [ isat)
Va* .
= V2 [ |fwlutdu
Ja

12

ot /INIf(U)Idu,

where I = (v/a, v/ax). Since, by Lemma 5.4, Tisa %—super— critical interval for
p, Corollary 2.10 implies

/f\f(U)ldu < 1o, we®

< fllsao,wo@)a 1, (5.9)

where the last inequality follows from (5.6), since I is a local interval. Thus,
(5.7) holds for a o-critical interval I.

Now, counsider I = (a,b) a sub-critical interval for o. Let a* such that
a <b<a*, with (a,a*) a critical interval for c. We will prove now that (5.8)
holds for I and some constant ¢ = ¢(f, ).

Making the change of variable u = /z and considering I = (va, Vb), we
have

1 -3 — cludu
J i@ —dar = 2 [t — cua
= \@/Jf(u)—\/iu%du%du
T

S [ —Vantubau s [ ot ot udan
! I
= I+1II
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If we choose ¢ = %a’%ff, by (5.6) we get

I3 ai/N‘f(u) — f7ldu
I
S fllBamo, @ v(d).
On the other hand,

II < lela® (b7 —a®)|]|
1 L Va*

S (b faZ)/ |f(2)|da

S WflBmo,wv((a,ax))a™3 (b3 —a%),

where we have used (5.9) for the critical interval (a, ax).

Since v € A},, and I C (a,ax), which is a local interval, by (2.4) we have

v((a,ax*)) < %’U(I). Also, observe that

b—a= (b} —af)(bF +aP)(b? +a?) = (bF —at)at.

Thus, we obtain that I satisfies the desired inequality (5.8).
The proof that R™*, given by (5.5), is bounded from BM O, (v) to BMO,(w),

follows in an analogous way.
O

Proof of Theorem 5.1. By (5.3) we can write
Wie =RoWh.oR™L (5.10)

Then, in view of Proposition 5.3 and Theorem 4.3, we only need to prove
that a weight v belongs to Aifg if and only if w = R™!v belongs to Ai’i/z'
In fact, for such pair v,w we have for some 6 > 0

b2

b
1
/ W(y)yaﬂ/zdy: \ﬁ )
6 b2
1+ CL2 . —a/2 a
S <1+b2> ze(ltgf;bﬂv(z;)z /az @z

1+a\* b
< (7 inf 7a71/2/ 2a+1d )
N <1+b> yé&’b)w(y)y Y Yy

1,00
a+1/27

v(2)2%%dz

provided w is in A~ O

Similarly, it follows that v belongs to A atl)2"

6 Weighted BMO spaces associated to the La-
guerre functions {(%}.

In this section we consider the weighted BMO spaces related to the Laguerre
functions {¢%} given by (1.3). We will prove the boundedness over those spaces
of the maximal operator using the results of the previous section.
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In view of the equality £ (z) = £ (x)2~*/2, which is evident from definitions
(1.2) and (1.3), we may derive also a point-wise relationship between the kernels
of both semigroups and write for any measurable non-negative function f

Wi f(z) = sup x*a/z/ Y P Wea (s, 2, y) f(y)y*dy
0<s<1 0 (61)

— gp0/2 sup/ Wee (s, 2,y) y*/? f(y)dy.
0<s<1 Jo

Regarding the appropriate BM O space for this system, the critical radius func-
tion is the same as in the previous section, namely, o(z) = %min{x, 1}. How-
ever, the class of weights will be different, since the system {2} is orthonormal
with respect to the measure p, with du = z%dx.

For a measure p on R let us introduce the more general classes A%’“(du)
as those weights for which there exists # > 0 such that the inequality

0

/w(m)x"du supw ™ H(x)z" < C (W)) /xQ"du (6.2)
I wel L+a/ J;

holds for any interval I = (a,b) C RT. Here, with “sup” we denote the essential

supremum with respect to the measure p.

Let us notice that when p is the Lebesgue measure we obtain the classes
A,l7’°° previously defined and that, as before, weights belonging to these classes
are in A}, (du).

With this notation we are ready to state the result concerning the bound-
edness of W, .

Theorem 6.1. Let a > 0 and w a weight belonging to A(l)’oo(x“dx), that is, for
some 8 > 0 there is a constant such that the inequality

/Iw(x)aro‘da: supw™(z) < C (1 +b>9/jxo‘da; (6.3)

xel 1+a

holds for any interval I = (a,b) contained in (0,00). Then, the mazimal operator
W is bounded on BM O, (w).

Proof. We first observe that if for w satisfying (6.3) we set v(x) = w(x)z*/?,
then v belongs to Ai/og and because of Theorem 5.1 we know that Wj}. is

bounded in BMO,(v).

Now, if we define the transformation S(f)(z) = f(z)x®/2, in view of (6.1),
we have that W}, = S~ o W}, 0 S and also, according to the above definition,
v=S(w).

Therefore, it suffices to show that S is an isomorphism of Banach spaces
between BM O, (w) and BM O, (v).

We shall give the details only for the boundedness of S. Indeed, assume that
f € BMO,(w) and let us prove that

ﬁ / 1S(f)(@)ldz < 1f |l saro, )

for any o-critical interval I, and that

ﬁ / IS(N@) = erlde S 1 £l Bro, @),
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holds for any subcritical interval I.

Since any I = (a,b) critical or subcritical interval for o is also local, we
have that 2%/2 ~ ¢®/2 ~ b*/2 for any z € I, and hence [, S(g) ~ a®/? [, g. In
particular, v(I) ~ a®/?w(I). Clearly these observations imply the first of the
above inequalities.

To prove the second, we write

5 [ 150@ — e S e [17@"72 = enyr2y Ry
1 iy
< ot [ 1w = ey

<A+B,

with 1
- —cra~%/?
A w(I)/I\f(y) cra” ' %|dy

and

el / —aj2 . —a)2
B= a” %= —yT | dy.
o0 Jy! |

Notice that choosing ¢; = a®/2f7, it easily follows that A < IlfllBaro, (w)-

As for B we observe that to estimate the integrand we can make use of the
mean value theorem since the interval I = (a,b) is such that 0 < a < b < 2a
and hence

|a—oz/2 _ y—a/2| ~ ‘CL _ y‘s—l—a/Z 5 (b _ a)a—l—a/2.

In this way we arrive to

B<1

< s P

But, if we call I to the interval (a,2a), we get

11fr] < / 1 < 1 830, (D).

Finally, as it is clear from inequality (6.3), w is in A}

ioc and then is doubling over
local intervals, so we have

w(l) < w(f)}f:,

leading to the desired inequality for B. O

As it is easy to check either directly from (6.3) or through Corollary 5.2, the
range for power weights 2° is in this case —a — 1 < § < 0, that is, the same
power weights that belong to A;(z%dx).
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