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We consider positive invertible Lamperti operators Tf(x) = h(x)Φf(x) such that Φ
has no periodic part. Let An,T be the sequence of averages of T and MT the ergodic 
maximal operator. It is obvious that if MT is bounded on some Lp, 1 < p < ∞, 
then sup ||An,T ||Lp(ν) ≤ ||MT ||Lp(ν) < ∞. It is known that the converse is true. In 
this paper we search the sharp dependence of the norm ||MT ||Lp(ν) with respect to 
supn ||An,T ||Lp(ν) < ∞. We prove that ‖MT ‖Lp(ν) ≤ C(p)(supn∈N ‖An,T ‖Lp(dν))p

′ , 
where p′ = p/(p − 1) is the conjugate exponent and C(p) depends only on p. 
Furthermore, the exponent p′ is sharp. Our results are closely related to Buckley’s 
theorem about sharp bounds for the Hardy–Littlewood maximal function.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, F , μ) be a σ-finite measure space and let M(μ) be the space of measurable functions f : (X, F) →
R where, as usual, we identify functions which are equal almost everywhere. By Lp := Lp(μ), 1 ≤ p < ∞, 
we denote the measurable functions f such that 

∫
X
|f |p dμ < ∞. For f ∈ Lp, we write ||f ||p = ||f ||Lp(dμ) =(∫

X
|f |p dμ

)1/p.
Associated to a linear operator T : M(μ) → M(μ) (or alternatively T : Lp(μ) → Lp(μ)), we consider the 

sequence An,T : M(μ) → M(μ) of operators (averages) defined by

An,T f = 1
n + 1

n∑
j=0

T jf, (1.1)
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and the ergodic maximal operator

MT f = sup
n≥0

|An,T f |. (1.2)

Akcoglu’s theorem [1] says that if 1 < p < ∞ and T is a positive linear contraction on Lp then

||MT f ||p ≤ p

p− 1 ||f ||p, (1.3)

and the sequence of averages An,Tf converges a.e. and in the norm of Lp for all f ∈ Lp (we recall that 
positive means that if f ≥ 0 a.e. then Tf ≥ 0 a.e. and contraction stands for ||T || ≤ 1). As usual, the norm 
of MT , denoted by ||MT || or ||MT ||p, is defined as the least constant Cp such that ||MT f ||p ≤ Cp||f ||p for 
all f ∈ Lp. Thus, the above inequality says that ||MT ||p ≤ p

p−1 for all positive linear contractions T on Lp.
The proof of Akcoglu’s theorem follows from the particular case of positive isometries (T is a positive linear 

operator and ||T || = 1) which was previously proved by A. Ionescu-Tulcea [3]. The proof of Ionescu-Tulcea’s 
result in Krengel’s book [5] follows the lines of the proofs by Kan [4] and de la Torre [2]. It is based on the 
following key fact: if 1 < p < ∞ and T is a positive linear isometry on Lp then T is a Lamperti operator 
or, in other words, T separates supports (fg = 0 a.e. ⇒ TfTg = 0 a.e.). As a first question we may wonder 
whether or not p/(p − 1) is the best constant in inequality (1.3) for positive invertible linear isometries 
on Lp. We answer to this question in the affirmative in Section 6 for positive linear isometries such that 
its associated automorphism has no periodic part (see Definition 2.1); obviously, the answer is negative for 
trivial cases like the identity). This result is probably known but we have not found any reference.

As we have noticed, Lamperti operators are a very important case. For that reason, we choose these 
kind of operators as the setting in the paper. Lamperti operators have a very special structure [4,6] that we 
resume in Section 2.

In [11] (see also the previous paper [8]) it was proved a kind of generalization of Akcoglu’s theorem. On the 
one hand, more restrictive assumptions are considered: the author works with positive invertible Lamperti 
operators and a measure ν = w dμ where w is a nonnegative measurable function. On the other hand, the 
author treats with an assumption more general: he does not assume that T is a positive contraction but the 
averages are uniformly bounded in Lp(ν), that is

sup
n

||An,T ||Lp(ν) < ∞

and, under these assumptions, it is proved that the maximal operator MT is bounded in Lp(ν). It is clear 
that supn ||An,T ||Lp(ν) ≤ ||MT ||Lp(ν). In this paper we search the sharp dependence of the norm ||MT ||Lp(ν)
with respect to supn ||An,T ||Lp(ν) < ∞. We establish that if the associated automorphism has no periodic 
part then

‖MT ‖Lp(ν) ≤ C(p)(sup
n∈N

‖An,T ‖Lp(dν))p
′
, (1.4)

where p′ = p/(p − 1) is the conjugate exponent and C(p) depends only on p. Furthermore, the exponent is 
sharp (see Theorems 3.1 and 3.2).

The paper is organized in the following way: Section 2 is devoted to establish the setting of the paper; 
in particular we resume the structure and properties of Lamperti operators. The next section contains the 
main results and the proofs of the results are in the following sections.
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2. Lamperti operators

In this section we state the setting of our paper (which is the same as in [11]). A Lamperti operator on 
M(μ) is a map T : M(μ) → M(μ) of the form

Tf(x) = h(x)Φf(x), (2.1)

where h ∈ M(μ) and Φ : M(μ) −→ M(μ) is linear and multiplicative, that is,

(1) Φ(αf + βg) = αΦ(f) + βΦ(g)
(2) Φ(fg) = Φ(f)Φ(g)

Throughout the paper we always assume that T is positive and invertible. It follows that 0 < h(x) < ∞
a.e. and Φ is invertible and positive. Other properties are Φ1 = 1, Φ(|f |r) = |Φ(f)|r for positive r and the 
following ones (see e.g. [4] and [6]):

(1) There exists a sequence of functions hj such that

T jf = hjΦjf (2.2)

where h1 = h, h0 = 1 and hj+k = hj Φjhk, for any j, k in Z.
(2) By the Radon–Nikodym theorem, for every j ∈ Z there exists a positive function Jj ∈ M(μ) such that 

if f ≥ 0 then
∫
X

Jj Φjf dμ =
∫
X

f dμ and Jj+k = Jj ΦjJk. (2.3)

We finish this section with one definition which plays an important role in the results of this paper.

Definition 2.1. If Φ is as before, we say that Φ is aperiodic or, in other words, it has no periodic part if 
for any n ≥ 1 and E ⊂ F with μ(E) > 0 there exists a non-null measurable subset A of E such that 
ΦnχA 
= χA.

Given any bimeasurable measure preserving transformation τ : X → X we consider Φf(x) = f(τ(x)). 
The morphism Φ is aperiodic if τ is ergodic and μ(X) = ∞ or τ is ergodic and (X, F , μ) is a finite nonatomic 
measure space. An example of an aperiodic Φ such that τ is not ergodic is the one induced by τ : [0, 1] ×[0, 1], 
τ(x, y) = ((x + a) mod 1, y), where a is irrational (see [12]).

3. Statement of the main results

A Cesàro bounded operator in Lp(wdμ) is a linear operator such that the averages are uniformly bounded 
in Lp(wdμ), that is, supn∈N ‖An,T ‖Lp(wdμ) < ∞. Under this assumption the next theorem estimates the 
norm of the maximal operator associated to a positive invertible Lamperti operator Tf(x) = h(x)Φf(x)
when Φ has no periodic part.

Theorem 3.1. Let Tf(x) = h(x)Φf(x) a positive invertible Lamperti operator such that Φ has no periodic 
part. Let w be a nonnegative measurable function on X and let 1 < p < ∞. If T is Cesàro bounded operator 
in Lp(wdμ) then the maximal operator MT is bounded in Lp(wdμ) and
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||MT ||Lp(wdμ) ≤ C(p)
(

sup
n∈N

‖An,T ‖Lp(wdμ)

)p′

,

where C(p) depends only on p.

The second theorem establishes that the above inequality is sharp.

Theorem 3.2. Let Φ : M(μ) −→ M(μ) invertible, linear and multiplicative and such that Φ has no periodic 
part. Assume that there exist p0, 1 < p0 < ∞, a constant β > 0 and a constant C(p0) depending only on p0

such that

||MT ||Lp0 (wdμ) ≤ C(p0)
(

sup
n∈N

‖An,T ‖Lp0 (wdμ)

)β

for all nonnegative measurable functions w on X and all positive invertible Lamperti operators Tf = h Φf . 
Then β ≥ p′0.

In order to prove the first theorem we need to compute the norm of the averages An,T . This is included 
in the next result.

Theorem 3.3. Let w be a nonnegative measurable function on X. Let Tf = h Φf a positive invertible 
Lamperti operator on M(μ) such that it has no periodic part. Let 1 < p < ∞. The following statements are 
equivalent.

(a) T is a Cesàro bounded operator in Lp(wdμ).
(b) w ∈ A+

p (T ), i.e., there exists a positive constant C such that for a.e. x ∈ X and all k ∈ N

( 0∑
i=−k

h−p
i (x)Ji(x)Φiw(x)

)( k∑
i=0

[h−p
i (x)Ji(x)Φiw(x)]

−1
p−1

)p−1

≤ C(k + 1)p. (3.1)

Furthermore, if [w]A+
p (T ) stands for the infimum of the constants in (3.1) then we have

1
2 [w]1/p

A+
p (T ) ≤ sup

n∈N

‖An,T ‖Lp(wdμ) ≤ 4[w]1/p
A+

p (T ). (3.2)

Remark 3.4. Inequality (3.1) must be understood in the following way: if Φiw(x) = 0 for some i, 0 ≤ i ≤ k, 
then Φjw(x) = 0 for all j such that −k ≤ j ≤ 0; if Φiw(x) = ∞ then [Φiw(x)]

−1
p−1 = 0; if Φiw(x) = ∞ for 

some i, −k ≤ i ≤ 0, then Φiw(x) = ∞ for all i, 0 ≤ i ≤ k. Similar conditions appearing in this paper must 
be understood in the same way.

Remark 3.5. w ∈ A+
p (T ) if and only if there exists a positive constant C such that for a.e. x ∈ X all integers 

j and all k ∈ N

( j∑
i=j−k

h−p
i (x)Ji(x)Φiw(x)

)( j+k∑
i=j

[h−p
i (x)Ji(x)Φiw(x)]

−1
p−1

)p−1

≤ C(k + 1)p.

Notice that the infimum of the constants in the above inequality equals [w]A+(T ).
p
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In the proof of Theorem 3.2 we need to compute the norm of the maximal operator associated to a 
positive invertible isometry. This result is probably known but we have not found any reference. We include 
a proof to make the article more self-contained.

Theorem 3.6. Let 1 < p < ∞. Let Tp be a positive invertible Lamperti operator Tpf = h Φf which is an 
isometry on Lp(μ), that is,

Tpf(x) = J1(x)1/pΦf(x).

Assume that Φ has no periodic part. Then

‖MTp
‖Lp(dμ) = p

p− 1 .

4. Proof of Theorem 3.3

Proof. Let’s start by proving that if (b) holds then T is a Cesàro bounded operator in Lp(wdμ) and

sup
n∈N

‖An,T ‖Lp(wdμ) ≤ 4[w]1/p
A+

p (T ).

We consider first the averages

Ã2kf(x) = 1
2k

2k+1−1∑
i=2k

T if(x),

and we prove that

‖Ã2k‖Lp(wdμ) ≤ 2[w]1/p
A+

p (T )

for all k ≥ 0.
We may assume that the functions f are nonnegative. Let ui(x) = h−p

i (x)Ji(x)Φiw(x). Notice that by 
Remark 3.4, if A = {x : ui(x) = 0 for some i, 2k ≤ i ≤ 2k+1 − 1}, then w(x) = 0 for a.e. x ∈ A. We also 
point out that if B = {x : ui(x) = ∞} then for all f in Lp(wdμ) we have that Φif(x) = 0 for a.e. x ∈ B.

Using that Φ is linear and multiplicative, identities (2.2) and (2.3), Hölder’s inequality and what we have 
pointed out before, we have

‖Ã2kf‖pLp(wdμ) =
∫
X

∣∣∣∣ 1
2k

2k+1−1∑
i=2k

T if

∣∣∣∣
p

w dμ =
∫
X

∣∣∣∣ 1
2k

2k+1−1∑
i=2k

hi(x)Φif u
1/p
i u

−1/p
i

∣∣∣∣
p

w dμ

≤ 1
2kp

∫
X

( 2k+1−1∑
i=2k

(hiΦif)pui

)( 2k+1−1∑
j=2k

u1−p′

j

)p−1

w dμ

= 1
2kp

2k+1−1∑
i=2k

∫
X

J−i Φ−i(hp
i )Φ

−i(Φifp) Φ−i(ui)
( 2k+1−1∑

j=2k

(Φ−iuj)1−p′
)p−1

Φ−iw dμ

= 1
2kp

2k+1−1∑
i=2k

∫
X

fp w

( 2k+1−1∑
j=2k

(Φ−iuj)1−p′
)p−1

Φ−iw dμ.

(4.1)

If we use (2.2) and (2.3) again then we obtain
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( 2k+1−1∑
j=2k

(Φ−iuj)1−p′
)p−1

=
( 2k+1−1∑

j=2k

[
Φ−i(h−p

j )Φ−i(Jj)Φ−i+jw
]1−p′)p−1

= J−ih
−p
−i

( 2k+1−1∑
j=2k

[
h−p
−i Φ

−i(h−p
j ) J−iΦ−i(Jj) Φ−i+jw

]1−p′)p−1

= J−ih
−p
−i

( 2k+1−1∑
j=2k

[
h−p
−i+j J−i+j Φ−i+jw

]1−p′)p−1

= J−ih
−p
−i

( 2k+1−1∑
j=2k

u1−p′

−i+j

)p−1

.

Putting the last equality in (4.1) and taking into account that −2k + 1 ≤ −i + j ≤ 2k − 1, we get

‖Ã2k‖pLp(wdμ) ≤
1

2kp
2k+1−1∑
i=2k

∫
X

fp w J−ih
−p
−i Φ

−iw

( 2k+1−1∑
j=2k

u1−p′

−i+j

)p−1

dμ

= 1
2kp

∫
X

fp w

( 2k+1−1∑
i=2k

u−i

( 2k+1−1∑
j=2k

u1−p′

−i+j

)p−1)
dμ

≤ 1
2kp

∫
X

fp w

( 2k+1−1∑
i=2k

u−i

)( 2k−1∑
l=−2k+1

u1−p′

l

)p−1

dμ

= 1
2kp

∫
X

fp w

( −2k∑
l=−2k+1+1

ul

)( 2k−1∑
l=−2k+1

u1−p′

l

)p−1

dμ

≤ 1
2kp

∫
X

fp w

( −2k∑
l=−2k+1+1

ul

)( 2k−1∑
l=−2k

u1−p′

l

)p−1

dμ

≤ 2(k+1)p

2kp [w]A+
p (T )

∫
X

fp w dμ

= 2p[w]A+
p (T )

∫
X

fp w dμ,

as we wished to prove.
Now we compare the general averages An,T with Ã2k . Since A0,T f(x) = f(x), it is enough to consider 

n ≥ 1. In such a case, there exists j ∈ N such that 2j ≤ n ≤ 2j+1 − 1. Then we have

An,T f(x) = 1
n + 1

n∑
i=0

T if(x) ≤ 1
n + 1

2j+1−1∑
i=0

T if(x) = 1
n + 1

(
f(x) +

2j+1−1∑
i=1

T if(x)
)

= 1
n + 1

(
f(x) +

j∑ 2k+1−1∑
T if(x)

)
= 1

n + 1

(
f(x) +

j∑
2kÃ2kf(x)

)
.

k=0 i=2k k=0
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Thus

‖An,T f‖Lp(wdμ) ≤
1

n + 1

(
‖f‖Lp(wdμ) +

j∑
k=0

2k‖Ã2kf‖Lp(wdμ)

)

≤ 1
n + 1

(
‖f‖Lp(wdμ) + 2 [w]1/p

A+
p (T )‖f‖Lp(wdμ)

j∑
k=0

2k
)

≤ 1 + 2(2j+1 − 1)
n + 1 [w]1/p

A+
p (T ) ‖f‖Lp(wdμ)

= 2j+2 − 1
n + 1 [w]1/p

A+
p (T ) ‖f‖Lp(wdμ)

≤ 4 [w]1/p
A+

p (T ) ‖f‖Lp(wdμ),

where we have used that [w]1/p
A+

p (T ) ≥ 1.
Now we prove the converse: if supn∈N ‖An,T ‖Lp(wdμ) < ∞, then w ∈ A+

p (T ) and

1
2 [w]1/p

A+
p (T ) ≤ sup

n∈N

‖An,T ‖Lp(wdμ).

More precisely, we prove that for a.e. x ∈ X and all k ∈ N

( 0∑
i=−k

h−p
i (x)Ji(x)Φiw(x)

)( k∑
i=0

[h−p
i (x)Ji(x)Φiw(x)]

−1
p−1

)p−1

≤ 2p sup
n∈N

‖An,T ‖Lp(wdμ)(k + 1)p. (4.2)

We start proving the following remark.

Remark 4.1. Let A = {x : Φiw(x) = 0}. For a.e. x ∈ A, Φi−jw(x) = 0 for all j ≥ 0.

Proof of 4.1. Since T is Cesàro bounded we have that

||T j(Φ−iχA)||Lp(wdμ) ≤ (j + 1)(sup
n∈N

‖An,T ‖Lp(wdμ))||Φ−iχA||Lp(wdμ)

= (j + 1)(sup
n∈N

‖An,T ‖Lp(wdμ))

⎛
⎝∫

X

Φ−iχAw dμ

⎞
⎠

1/p

= (j + 1)(sup
n∈N

‖An,T ‖Lp(wdμ))

⎛
⎝∫

X

JiχAΦiw dμ

⎞
⎠

1/p

= 0.

Thus hj(x)Φj−i(χA)(x)w(x) = 0 a.e. Then Φi−j(h−i)(x)χA(x)Φi−jw(x) = 0 a.e. and it follows that 
Φi−jw(x) = 0 for a.e. x ∈ A. �

Now we begin the proof of 4.2. Let us fix k. Let

Y = {x :
k∑

i=0
[h−p

i (x)Ji(x)Φiw(x)]
−1
p−1 = ∞} = ∪k

i=0{x : Φiw(x) = 0}.

By Remark 4.1, for all i ≤ 0 we have that Φiw(x) = 0 for almost every x ∈ Y . Therefore, (4.2) holds for 
a.e. x ∈ Y . Now, let
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Z = {x :
k∑

i=0
[h−p

i (x)Ji(x)Φiw(x)]
−1
p−1 < ∞}.

We shall prove that (4.2) holds for a.e. x ∈ Z. This completes the proof of (4.2) for a.e. x ∈ X.
As in the proof of the Lemma in [10] (see also [11]), we may assume without loss of generality that there 

exists an invertible measurable map S : X → X such that S−1 is measurable and Φjf = f ◦ Sj for every 
j ∈ Z and all f ∈ M(μ). Since Φ has no periodic part, for fixed k ≥ 0, there exist sets Bj such that

Z =
∞⋃
j=0

Bj ,

where the sets Bj satisfy the following:

Bj ∩ SlBj = ∅ for all l such that 1 ≤ l ≤ 2k.

Let us fix Bj y let A be any measurable subset of Bj with 0 < μ(A) < ∞. Let f be the function defined on 
X by

f(Six) =
{

hp′−1
i (x)[Ji(x)w(Six)]

−1
p−1 if x ∈ A and 0 ≤ i ≤ k

0 otherwise

Using the definition of f it follows that for x ∈ A and 0 ≤ j ≤ k we have

A2k+1,T f(S−jx) = 1
2(k + 1)

2k+1∑
i=0

hi(S−jx)f [Si(S−jx)] = 1
2(k + 1)

k+j∑
i=j

hi(S−jx)f(Si−jx)

= 1
2(k + 1)

k∑
i=0

hi+j(S−jx)f(Six) = 1
2(k + 1)

k∑
i=0

hj(S−jx)hi(x)f(Six)

= 1
2(k + 1)hj(S−jx)

k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1

= 1
2(k + 1)[h−j(x)]−1

k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1 ,

where in the last inequality we have used that hj(S−jx) = [h−j(x)]−1.
By property (2.3)

∫
⋃k

j=0 S−jA

|A2k+1,T f(x)|pw(x)dμ

=
k∑

j=0

∫
X

|A2k+1,T f(x)|pχS−jA(x)w(x)dμ

=
k∑

j=0

∫
X

|A2k+1,T f(S−jx)|pχS−jA(S−jx)w(S−jx)J−j(x)dμ

=
k∑

j=0

∫
|A2k+1,T f(S−jx)|pw(S−jx)J−j(x)dμ (4.3)
A
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= 1
2p(k + 1)p

k∑
j=0

∫
A

[
h−p
−j (x)w(S−jx)J−j(x)

( k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1

)p]
dμ

= 1
2p(k + 1)p

∫
A

( k∑
j=0

h−p
−j (x)w(S−jx)J−j(x)

)( k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1

)p

dμ.

Using the hypothesis, the fact that f is supported in ∪k
i=0S

iA and (2.3) we get
∫

⋃k
j=0 S−jA

|A2k+1,T f(x)|pw(x)dμ ≤ ‖A2k+1,T ‖pp
∫

⋃k
i=0 SiA

|f(x)|pw(x)dμ

≤ sup
n∈N

‖An,T ‖pLp(wdμ)

k∑
i=0

∫
X

|f(x)|pχSiA(x)w(x)dμ

≤ sup
n∈N

‖An,T ‖pLp(wdμ)

k∑
i=0

∫
X

|f(Six)|pχSiA(Six)w(Six)Ji(x)dμ

≤ sup
n∈N

‖An,T ‖pLp(wdμ)

k∑
i=0

∫
A

h
p(p′−1)
i (x)[Ji(x)w(Six)]

−p
p−1w(Six)Ji(x)dμ

≤ sup
n∈N

‖An,T ‖pLp(wdμ)

k∑
i=0

∫
A

hp′

i (x)[Ji(x)w(Six)]
−1
p−1 dμ

≤ sup
n∈N

‖An,T ‖pLp(wdμ)

∫
A

k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1 dμ.

(4.4)

Putting together (4.3) and (4.4) we obtain

∫
A

( k∑
j=0

h−p
−j (x)J−j(x)w(S−jx)

)( k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1

)p

dμ

≤ 2p sup
n∈N

‖An,T ‖pLp(wdμ)(k + 1)p
∫
A

k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1 dμ.

Since A is any measurable subset of Bj ⊂ Z with finite and positive measure, it follows that for all j and 
for a.e. x ∈ Bj and, therefore, for a.e. x ∈ Z

( k∑
j=0

h−p
−j (x)J−j(x)w(S−jx)

)( k∑
i=0

[h−p
i (x)Ji(x)w(Six)]

−1
p−1

)p−1

≤ 2p sup
n∈N

‖An,T ‖pLp(wdμ)(k + 1)p,

as we wished to prove. �
5. Proof of Theorem 3.1

As usual, the proof follows by transference arguments from a result in the integers. We start with some 
definitions and the result we need on the integers.
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If f : Z → R is any function then the one-sided maximal function m+f on the integers is defined as 
follows:

m+f(i) = sup
n≥0

1
n + 1

n∑
j=0

∣∣f(i + j)
∣∣ = sup

n≥0

1
n + 1

i+n∑
j=i

∣∣f(j)
∣∣.

We point out that m+ = MT , where Tf(i) = f(i + 1). It is said that a weight w defined on Z belongs to 
A+

p (Z) if it is a nonnegative function such that

[w]A+
p (Z) := sup

j,k∈Z,k≥0

(
1

k + 1

j∑
i=j−k

w(i)
)(

1
k + 1

j+k∑
i=j

w(i)
−1
p−1

)p−1

< +∞. (5.1)

The quantity [w]A+
p (Z) is known as the characteristic of the weight w.

It is well known that if w ∈ A+
p (Z) then there exists C ≥ 0 such that

( ∞∑
i=∞

|m+f(i)|pw(i)
)1/p

≤ C

( ∞∑
i=∞

|f(i)|pw(i)
)1/p

, (5.2)

for all f ∈ Lp(Z, w). As usual, the least constant C in (5.2) is the norm of m+ and it is denoted by 
‖m+‖Lp(Z,w). The next theorem follows from the results in [9] and gives the sharp constant in the above 
inequality.

Theorem 5.1. Let w be a weight defined on Z and let 1 < p < ∞. If w ∈ A+
p (Z) then there exists a constant 

C(p) such that

‖m+‖Lp(Z,w) ≤ C(p)[w]
1

p−1

A+
p (Z).

Furthermore, the exponent is sharp, that is, if β ≥ 0 and C(p) is a constant such that ‖m+‖Lp(Z,w) ≤
C(p)[w]β

A+
p (Z) for all w ∈ A+

p (Z), then β ≥ 1
p−1 .

Although the proof follows from the results in [9], for reasons of completeness, we give an sketch of the 
proof of this result in Section 8.

5.1. Proof of Theorem 3.1

For fixed x ∈ X, let ux(i) = h−p
i (x)Ji(x)Φiw(x) a function defined on the integers. By Theorem 3.3 and 

Remark 3.5 we have that for a.e. x ∈ X the functions ux belong to A+
p (Z) and

[ux]A+
p (Z) ≤ 2p(sup

n∈N

‖An,T ‖Lp(wdμ))p

for a.e. x ∈ X.
Now we start the proof of the boundedness of MT . It is enough to work with nonnegative measurable 

functions f . For any natural number L, we consider the truncated maximal operator

MT,Lf = sup
0≤n≤L

An,T f. (5.3)

Let N be any natural number. By (2.3), we have
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∫
X

(MT,Lf)pw dμ = 1
N + 1

∫
X

N∑
i=0

(Φi(MT,Lf))pΦiwJi dμ. (5.4)

Let fx the function on the integers given by fx(i) = T if(x) and let [0, N + L] be the interval 
{0, 1, . . . , N + L}. By the properties of the functions hj we have

Φi(MT,Lf)(x) ≤ (hi(x))−1m+(fxχ[0,N+L])(i).

Then

N∑
i=0

(Φi(MT,Lf))p(x)Φiw(x)Ji(x) ≤
N∑
i=0

(m+(fxχ[0,N+L])p(i)(hi(x))−pJi(x)Φiw(x)

≤
∞∑

i=−∞
(m+(fxχ[0,N+L])p(i)ux(i),

where, as before, ux(i) = (hi(x))−pJi(x)Φiw(x). By Theorem 5.1, for a.e. x ∈ X

N∑
i=0

(Φi(MT,Lf))p(x)Φiw(x)Ji(x) ≤ C(p)[ux]p
′

A+
p (Z)

N+L∑
i=0

(fx)p(i)ux(i)

≤ C(p)2pp
′
(sup
n∈N

‖An,T ‖Lp(wdμ))pp
′
N+L∑
i=0

Φifp(x)Ji(x)Φiw(x).

The last inequality together with (5.4) gives

∫
X

(MT,Lf)pw dμ ≤ C(p)2pp
′
(sup
n∈N

‖An,T ‖Lp(wdμ))pp
′ 1
N + 1

∫
X

N+L∑
i=0

ΦifpJiΦiw dμ

= C(p)2pp
′
(sup
n∈N

‖An,T ‖Lp(wdμ))pp
′ N + L + 1

N + 1

∫
X

fpw dμ.

Taking limit as N → ∞,
∫
X

(MT,Lf)pw dμ ≤ C(p)2pp
′
(sup
n∈N

‖An,T ‖Lp(wdμ))pp
′
∫
X

fpw dμ.

Finally, letting L go to ∞,
∫
X

(MT f)pw dμ ≤ C(p)2pp
′
(sup
n∈N

‖An,T ‖Lp(wdμ))pp
′
∫
X

fpw dμ,

as we wished to prove.

6. Proof of Theorem 3.6

Proof. It is well known that MTp
is bounded in Lp(dμ) and

‖MTp
‖Lp(dμ) ≤

p
,

p− 1
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(see [3]). In what follows, we shall prove

p

p− 1 ≤ ‖MTp
‖Lp(dμ).

As before, we may assume, without loss of generality, that there exists an invertible measurable map S :
X → X such that S−1 is measurable and Φjf = f ◦ Sj for every j ∈ Z and all f ∈ M(μ). Also, as before, 
since Φ has no periodic part, for all natural numbers k there exist measurable sets Bj such that

X =
∞⋃
j=0

Bj and Bj ∩ SlBj = ∅, 1 ≤ l ≤ 2k.

Let us fix a measurable subset A ⊂ B0 such that 0 < μ(A) < ∞ and consider the function

f(x) =
k∑

j=0

1
(j + 1)1/p

Jj(x)1/pχS−jA(x).

Let 0 ≤ i ≤ k and x ∈ S−iA. It follows from the definition of Tp and (2.3) that for all l, 0 ≤ l ≤ i,

T l
pf(x) = Jl(x)1/pΦlf(x)

= Jl(x)1/p
k∑

j=0

1
(j + 1)1/p

Jj(Slx)1/pχS−jA(Slx)

= 1
(i− l + 1)1/p

Jl(x)1/pJi−l(Slx)1/p

= 1
(i− l + 1)1/p

Ji(x)1/p.

Therefore, if x ∈ S−iA then

MTp
f(x) ≥ 1

i + 1

i∑
l=0

T l
pf(x) = Ji(x)1/p

i + 1

i∑
l=0

1
(i− l + 1)1/p

= Ji(x)1/p

i + 1

i∑
j=0

1
(j + 1)1/p

.

Thus

∫
⋃k

i=0 S−iA

|MTp
f(x)|pdμ =

k∑
i=0

∫
S−iA

|MTp
f(x)|pdμ

≥
k∑

i=0

∫
S−iA

∣∣∣∣Ji(x)1/p

i + 1

i∑
j=0

1
(j + 1)1/p

∣∣∣∣
p

dμ

=
k∑

i=0

(
1

i + 1

i∑
j=0

1
(j + 1)1/p

)p ∫
X

Ji(x)χS−iA(x)dμ

=
k∑

i=0

(
1

i + 1

i∑
j=0

1
(j + 1)1/p

)p ∫
X

Ji(x)χA(Six)dμ

= μ(A)
k∑(

1
i + 1

i∑ 1
(j + 1)1/p

)p

.

i=0 j=0
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Now we apply that MTp
is bounded in Lp(dμ) and we obtain

∫
⋃k

i=0 S−iA

|MTp
f(x)|pdμ ≤ ‖MTp

‖pLp(dμ)

∫
X

|f(x)|pdμ

= ‖MTp
‖pLp(dμ)

k∑
j=0

1
j + 1

∫
X

χS−jA(x)Jj(x) dμ

= ‖MTp
‖pLp(dμ)

k∑
j=0

1
j + 1

∫
X

χA(Sjx)Jj(x) dμ

= ‖MTp
‖pLp(dμ)μ(A)

k∑
j=0

1
j + 1 .

Putting together both inequalities we have

∑k
i=0

(
1

i+1
∑i

j=0
1

(j+1)1/p

)p

∑k
j=0

1
j+1

≤ ‖MTp
‖pLp(dμ).

(6.1)

We compute the limit of the sequence on the left hand side by applying Stolz–Cesàro theorem. We consider 
the sequences (ak)k∈N and (bk)k∈N where

ak =
k∑

i=0

(
1

i + 1

i∑
j=0

1
(j + 1)1/p

)p

and bk =
k∑

j=0

1
j + 1 .

It is easy to see that

ak − ak−1

bk − bk−1
=

(
1

k+1
∑k

j=0
1

(j+1)1/p

)p

1
k+1

=
( ∑k+1

j=1
1

j1/p

(k + 1)1−
1
p

)p

.

We observe that the term into the brackets is a Riemann sum of the function x−1/p on the interval [0, 1]. 
Taking limit and applying Stolz–Cesàro theorem we obtain

lim
k→∞

ak
bk

= lim
k→∞

( ∑k+1
j=1

1
j1/p

(k + 1)1−
1
p

)p

=
( 1∫

0

x−1/p

)p

=
(

p

p− 1

)p

.

This limit together with (6.1) gives

p

p− 1 ≤ ‖MTp
‖Lp(dμ). �

7. Proof of Theorem 3.2

We start with the following lemma which is interesting by itself.

Lemma 7.1. Let 1 < p < p0 < ∞ and let Tp a positive invertible isometry on Lp(dμ), Tpf = J
1/p
1 Φf , such 

that Φ has no periodic part. For each f ∈ Lp(dμ) let
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Rpf =
∞∑
k=0

Mk
p f

(2p′)k ,

where Mp = MTp
is the ergodic maximal operator associated to Tp, M0

pf = f , Mk+1
p f = Mp(Mk

p f) and 
p + p′ = pp′. Finally, let w = (Rpf)p−p0 . Then Tp is Cesàro bounded in Lp0(wdμ) and

sup
n∈N

‖An,Tp
‖Lp0 (wdμ) ≤ 4(4p′)(p0−p)/p0 . (7.1)

Proof of Lemma 7.1. We recall that the maximal operator Mp is bounded on Lp(dμ) and ||Mp||Lp(dμ) =
p/(p − 1) = p′. Then it is clear that

Rpf ∈ Lp(dμ), |f | ≤ Rpf, ||Rpf ||Lp(dμ) ≤ 2||f ||Lp(dμ) and Mp(Rpf) ≤ 2p′Rpf. (7.2)

It follows from the last inequality that if k ≥ 0 and −k ≤ i ≤ 0 then

1
k + 1

k∑
j=0

T j
p (Rpf) ≤ 4p′T i

p(Rpf) a.e. x. (7.3)

Notice that this property implies that, for a.e. x, if T i
p(Rpf)(x) = 0 for some i, −k ≤ i ≤ 0, then T j

p (Rpf) = 0
for 0 ≤ j ≤ k (in fact for all j ≥ i). Taking into account this remark it follows from (7.3) that

0∑
i=−k

(T i
p(Rpf))1−p0

(
k∑

i=0
T i
p(Rpf)

)p0−1

≤ (4p′)p0−1(k + 1)p0 a.e. x. (7.4)

Now we proceed to prove that Tp is Cesàro bounded in Lp0(wdμ). By Theorem 3.3, it suffices to prove that 
w ∈ A+

p0
(Tp). More precisely, we will prove that for a.e. x ∈ X and all k ∈ N

( 0∑
i=−k

J
−p0/p
i (x)Ji(x)Φiw(x)

)( k∑
i=0

[J−p0/p
i (x)Ji(x)Φiw(x)]

−1
p0−1

)p0−1

≤ (4p′)p0−p(k + 1)p0 . (7.5)

By Hölder’s inequality with exponents q = p0−1
p0−p and q′ = p0−1

p−1 applied to both sums in (7.5) we get that 
the left hand side of (7.5) is bounded by

( 0∑
i=−k

(T i
p(Rpf))1−p0

) p0−p
p0−1

(k + 1)
p−1
p0−1

(
k∑

i=0
T i
p(Rpf)

)(p0−1) p0−p
p0−1

(k + 1)
p−1
p0−1 (p0−1) a.e. x. (7.6)

Using (7.4) we obtain (7.5) and the lemma is completely proved since (7.1) follows from (7.5) and Theo-
rem 3.3. �
Proof of Theorem 3.2. We follow in this proof the ideas in [7].

Let f ∈ Lp(dμ) and let Mpf , Rpf and w be as in Lemma 7.1. Applying Hölder’s inequality with exponent 
p0/p we obtain

‖Mpf‖Lp(dμ) =
(∫

X

|Mpf |p(Rpf)(p−p0) p
p0 (Rpf)(p0−p) p

p0 dμ

) 1
p

≤
(∫

|Mpf |p0w dμ

) 1
p0
(∫

(Rpf)p dμ
) p0−p

p0p

.

(7.7)
X X
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By Lemma 7.1, Tp is Cesàro bounded in Lp0(wdμ) and (7.1) holds. Then, by the assumption of Theorem 3.2,

⎛
⎝∫

X

|Mpf |p0w dμ

⎞
⎠

1
p0

≤ C(p0)(4(4p′)(p0−p)/p0)β
⎛
⎝∫

X

|f |p0(Rpf)p−p0 dμ

⎞
⎠

1
p0

≤ C(p0)(4(4p′)(p0−p)/p0)β
⎛
⎝∫

X

|f |p dμ

⎞
⎠

1
p0

,

where in the last inequality we have used that |f | ≤ Rp(f) (see (7.2)).
By (7.2)

(∫
X

(Rpf)p dμ
) p0−p

p0p

≤ 2
p0−p
p0

(∫
X

|f |p dμ
) p0−p

p0p

.

The last inequalities together with (7.7) give

‖Mpf‖Lp(dμ) ≤ C(p0)2
p0−p
p0 (4(4p′)(p0−p)/p0)β

⎛
⎝∫

X

|f |p dμ

⎞
⎠

1
p

.

Since ‖Mp‖Lp(dμ) = p/(p − 1) = p′,

p′ ≤ C(p0)2
p0−p
p0 (4(4p′)(p0−p)/p0)β .

Taking limit as p goes to 1, we obtain that

1 ≤ p0 − 1
p0

β

or, in other words β ≥ p′0, as we wished to prove. �
8. Sketch of the proof of Theorem 5.1

We recall notations and results in [9].
Let μ be a Borel measure on the real line which is finite on bounded sets. For any measurable function 

F on the real line we define the one-sided maximal functions

M+
μ F (x) = sup

h>0

1
μ([x, x + h))

∫
[x,x+h)

|F | dμ,

and

M−
μ F (x) = sup

h>0

1
μ((x− h, x])

∫
(x−h,x]

|F | dμ,

where the respective quotients are understood as zero when μ([x, x + h)) = 0 or μ((x − h, x]) = 0. We also 
introduce the following notations: given real numbers a ≤ b ≤ c, {a, b] and [b, c} will stand for (a, b] or [a, b]
and [b, c) or [b, c], respectively, while {a, c} will denote the union {a, b] ∪ [b, c}.
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Definition 8.1. Let 1 < p < ∞. Let W be a weight on the real line (a nonnegative measurable function). 
The one-sided constant [W ]A+

p (μ) is defined as

[W ]A+
p (μ) := sup

(a,b,c)∈T

⎛
⎜⎝ 1
μ({a, b])

∫
{a,b]

W dμ

⎞
⎟⎠

⎛
⎜⎝ 1
μ([b, c})

∫
[b,c}

W 1−p′
dμ

⎞
⎟⎠

p−1

, (8.1)

where the supremum is taken over the set T of triplets (a, b, c) such that

μ({a, c}) > 0, μ({a, b]) ≥ 1
2μ({a, c}) and μ([b, c}) ≥ 1

2μ({a, c}).

The one-sided constant [W ]A−
p (μ) is defined reversing the orientation of the real line:

[W ]A−
p (μ) := sup

(a,b,c)∈T

⎛
⎜⎝ 1
μ([b, c})

∫
[b,c}

W dμ

⎞
⎟⎠

⎛
⎜⎝ 1
μ({a, b]))

∫
{a,b]

W 1−p′
dμ

⎞
⎟⎠

p−1

. (8.2)

Theorem 8.2 ([9] Buckley’s theorem for one-sided maximal operators). Let 1 < p < +∞. Let W be a weight 
in R. The following assertions are equivalent.

(a) [W ]A+
p (μ) < +∞.

(b) M+
μ is bounded on Lp(Wdμ).

Moreover, if any of the above conditions hold then

1
2 [W ]

1
p

A+
p (μ) ≤ ||M+

μ ||B(Lp(Wdμ)) ≤ 2ep′[W ]
1

p−1

A+
p (μ).

Proof of Theorem 5.1. Let μ be the measure on the real line defined as the sum of the Dirac deltas on the 
integers. For any real number x, let [x] be the integer part of x. Given any function f on the integers, let 
F be the function on the real line defined as F (x) = f([x]). Taking into account this notation, we have the 
following two lemmas.

Lemma 8.3. Let μ be the measure on the real line defined as the sum of the Dirac deltas on the integers. 
The weight w ∈ A+

p (Z) if and only if W (x) = w([x]) ∈ A+
p (μ). Furthermore, there exists a constant C(p)

such that

[w]A+
p (Z) ≤ [W ]A+

p (μ) ≤ C(p)[w]A+
p (Z).

Lemma 8.4. For any function f on the integers and all j ∈ Z, we have

m+f(j) = M+
μ F (j),

with F (x) = f([x]).

The proofs of both lemmas are quite direct. So we left to the reader to fill the details of the proofs.
It follows from Lemmas 8.3 and 8.4 that

‖m+f‖Lp(Z,w) = ‖M+
μ F‖Lp(W dμ) ≤ 2ep′[W ]

1
p−1

A+
p (μ) ≤ 2ep′(C(p)[w]A+

p (Z))
1

p−1 ,

as we wished to prove. �
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