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Anthropogenic activities, such as grazing by domestic animals, are considered drivers of 
environmental changes that may influence the structure of interaction networks. The 
study of individual-based networks allows testing how species-level interaction patterns 
emerge from the pooled interaction modes of individuals within populations. Expo-
nential random graph models (ERGMs) examine the global structure of networks by 
allowing the inclusion of specific node (i.e. interacting partners) properties as explana-
tory covariates. Here we assessed the structure of individual plant–frugivore interaction 
networks and the ecological variables that influence the mode of interactions under 
different land-use (grazed versus ungrazed protected areas). We quantified the number 
of visits, the number of fruits removed per visit and the interaction strength of mammal 
frugivore species at each individual tree. Additionally we quantified ecological vari-
ables at the individual, microhabitat, neighborhood and habitat scales that generated 
interaction network structure under the different land uses. Individual plant–frugivore 
networks were significantly modular in both land uses but the number of modules was 
higher in the grazed areas. We found interaction networks for grazed and ungrazed lands 
were structured by phenotypic traits of individual trees, by the microhabitat beneath 
the tree canopy and were affected by habitat modifications of anthropogenic origin. The 
neighborhood surrounding each individual plant influenced plant–frugivore interac-
tions only at the grazed-land trees. We conclude that anthropogenic land uses influence 
the topological patterns of plant–frugivore networks and the frugivore visitation to trees 
through modification of both habitat complexity and the ecological traits underlying 
interactions between individual plants and frugivore species. 
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Introduction

Species participating in ecological interactions, e.g. mutualism, antagonism and 
commensalism, are influenced by both biotic and abiotic factors, leading to wide-
spread context-dependency in interaction outcomes and network structure (Bronstein 
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2015). These interactions are often embedded in mega-
diverse networks (Bascompte and Jordano 2014). Recent 
efforts are assessing how the characteristics of the nodes 
(partner species) influence the density and strengths of the 
links (interactions) leading to distinct interaction modes 
(Rodríguez-Rodríguez  et  al. 2017) and, finally, determine 
network structure. Ultimately, the interaction pattern at the 
species-level described in most complex networks emerges 
from the pooled interaction modes shown by individuals 
within populations (Bolnick  et  al. 2011, Tur  et  al. 2014). 
Yet we are far from understanding how individual traits and 
ecological variables mold interaction patterns in nature.

The study of ecological interaction networks emerged as 
a way to visualize entire communities and compare complex 
interaction systems in different environments (Bascompte 
and Jordano 2014). In particular, bipartite networks depict 
multiple plant and animal species (nodes) that interact 
between them and are connected by links (Bascompte et al. 
2006). These species-level links, actually emerge from indi-
vidual-based networks (e.g. interactions among individual 
plants and their pollinators), given that trait variation 
among individuals might shape the structure of species-level 
ecological interactions (Carlo et al. 2007, Valverde et al. 2016, 
Rodríguez-Rodríguez et al. 2017). In this context, variation in 
interactions at the intraspecific level has the potential to affect 
ecological processes or community organization at different 
levels of biological organization (Bolnick et al. 2011). Thus, 
the heterogeneity of traits among individuals within popu-
lations and the biotic interactions they are involved in may 
have different implications for population dynamics and 
persistence (Carlo 2005, Gómez and Perfectti 2012).

Topological network properties such as nestedness and 
modularity are useful indexes to describe the architecture of 
mutualistic interactions (Dormann  et  al. 2009, Bascompte 
and Jordano 2014) and also to compare multiple networks 
across communities (Jordano et al. 2003). However, models 
of food webs and interaction networks have been routinely 
built on averaged estimators for species, implicitly ignor-
ing variation in patterns and outcomes among individuals 
(Melián  et  al. 2014). Thus, a persisting challenge has been 
to predict interaction patterns from the traits of interacting 
partners, in a way that the multiple influences on outcomes 
can be teased apart. For example, both spatial arrangement 
(i.e. structure of fruiting neighborhoods) and individual 
traits such as size, plant architecture and fecundity, or flower 
shape and fruit size determine distinct modes of interaction 
with pollinators and frugivores that ultimately influence the 
position of individual plants within the population mating 
network or in the ranked contributions to seed rain (Carlo 
2005, Valverde  et  al. 2016, Rodríguez-Rodríguez  et  al. 
2017). Yet the use of modeling frameworks for testing specific 
hypotheses about the influences of intrinsic and extrinsic 
traits of nodes on network topology and structure is still very 
limited in ecology. 

Variation in the outcome of interspecific interactions 
due to biotic and abiotic contexts (i.e. context-dependence) 
has been documented in a number of studies (Thompson 

1988, Agrawal et al. 2007, Chamberlain and Holland 2009, 
Valverde et al. 2016, Rodríguez-Rodríguez et al. 2017). In 
particular, plant–pollinator and plant–frugivore interactions 
are greatly context-dependent (Carlo 2005, Carlo and Yang 
2011, Rodríguez-Rodríguez  et  al. 2017), mainly because 
they largely involve generalized interactions among partners 
instead of highly specialized ones (Schleuning et al. 2012). 
One of the main drivers of the context variation in inter-
action networks can be anthropogenic disturbances, such 
as species introduction and changes in land use manage-
ments, by modifying natural habitats and population abun-
dances (Tylianakis et al. 2008, Dirzo et al. 2014, Potts et al. 
2016, Vanbergen  et  al. 2017). Alteration of mutualisms 
by anthropogenic drivers may in turn affect the mainte-
nance of biodiversity and the ecosystem services provided 
(Tylianakis et al. 2008, Kiers et al. 2010, Díaz et al. 2013). 
Changes in landscape patterns occurring at both local and 
larger scales (forest loss and fragmentation, mosaics of veg-
etation, shrub encroachment, etc.) may lead to changes in 
mutualistic assemblages and thus impact the outcomes of 
interactions in a number of ways (Tscharntke et al. 2012). 
These influences can be properly assessed within complex 
interaction networks with the help of generalized linear 
models (ERGM). Such models explicitly account for both 
the attributes of the nodes, i.e. characteristics or proper-
ties of species or individuals that covary with the modes 
of interaction and their outcomes, and the full structure of 
the network (Wasserman and Pattison 1996, Snijders et al. 
2010). 

The social sciences have an extended tradition of causal 
modeling approaches to decipher correlates of complex 
social interactions (Saul and Filkov 2007). Recent social 
network studies have extensively used exponential random 
graph (ERGMs) and probability (p*) models to account 
for the global structure of social networks as a function 
of their “local” features, i.e. properties of the interacting 
nodes (Wasserman and Pattison 1996, Wang  et  al. 2013). 
ERGMs model the probability distribution function (pdf ) 
for interactions within a given class of graphs (Snijders et al. 
2010). Given an observed graph and a set of explanatory vari-
ables on that graph the pdf is estimated. The pdf provides a 
concise summary of the class of graphs to which the observed 
graph belongs, i.e. the pdf can be used to calculate the prob-
ability that any given graph is drawn from the same distribu-
tion as the observed graph. When comparing the observed 
network structure with modeled networks that include or 
exclude specific covariates of node attributes, inferences can 
be made about causal influences determining how interac-
tions are distributed among nodes in the network (Kolaczyk 
and Csárdi 2014).

In this study we assessed the effect of land use manage-
ment (protected areas and surrounding grazed lands) and 
the heterogeneity of individual tree traits on the structure 
and organization of plant–frugivore networks. We used an 
individual-based approach and a plant-based perspective 
to evaluate the strength and frequency of plant–frugivore 
interactions and their context-dependency at the scale of 
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individual trees within distinct types of landscape. The study 
plant is Prosopis flexuosa (Fabaceae: Mimosoideae), a key tree 
species in its natural distribution area (Campos and Velez 
2015). We hypothesized that frugivory networks will vary 
at two scales, the local or individual context determined by 
the ecological traits of each individual plant (e.g. tree size, 
fruit crop, physiognomy of the growing site, neighborhood 
effects) (García et al. 2001, Carlo 2005, Bolnick et al. 2011), 
and at a broader context influenced by the large-scale anthro-
pogenic land use where interactions take place. Specifically, 
we: 1) evaluated the topological patterns of frugivory net-
works among individual Prosopis plants and their frugivore 
assemblage; 2) compared the topological patterns of fru-
givory networks between protected areas and surroundings 
grazed lands; 3) related variation of frugivore visitation to 
trees with individual plant traits, and 4) linked topologi-
cal patterns of plant–frugivore networks to the ecological 
variables underlying the interactions.

Material and methods 

Study site

We conducted the fieldwork in the MaB Ñacuñán Reserve 
(ungrazed site) and in adjacent grazed lands located at 
Mendoza Province, Argentina (see Supplementary material 
Appendix Table A1 for details). The climate is semi-arid and 
seasonal, with hot wet summers (mean temperatures 20°C) 
and cold dry winters (mean temperatures 10°C). The 
mean annual precipitation is 325 mm (Estrella et al. 2001). 
Vegetation communities that occur in the area are: Prosopis 
flexuosa woodlands, creosotebush shrublands and sand dunes 
(Roig 1971). Open woodlands consist of a tree layer of P. 
flexuosa and Geoffroea decorticans, a shrub layer of Larrea 
divaricata, L. cuneifolia and Condalia microphylla, and a grass 
layer of Pappophorum spp. Trichloris crinita and Digitaria 
californica (Roig 1971). 

The Ñacuñán Reserve (34°02'S, 67°58'W) is the only 
fenced protected area in the Monte Desert Biome free 
from livestock since 1961 (Ojeda et al. 1998). Around the 
reserve, grazing by domestic animals (predominantly cat-
tle) is the main land use. The production system is exten-
sive with an average stocking density of 27 ha per animal 
unit (Guevara et al. 2009). Prosopis flexuosa is the only tree 
species (mean height = 5 m) in the plant community that 
produces large-sized fruits (length = 14  2 cm; number of 
seeds = 15  2; individual fruit dry mass = 2.47  0.68 g) 
with a sugary mesocarp attractive to animals (Roig 1971, 
Kingsolver et al. 1977, Mooney et al. 1977). The Prosopis 
assemblage of frugivores includes mammal species ranging 
from antagonistic (seed predators) to mutualistic species 
(legitimate seed dispersers; Campos and Ojeda 1997, 
Campos  et  al. 2008, 2017, Giannoni  et  al. 2013). Previ-
ous studies showed that the species is visited by a restricted 
set of frugivore species (Campos et al. 2016, Miguel et al. 
2017).

Plant–frugivore interactions

The study was conducted during the P. flexuosa fruiting sea-
son in the years of 2015 and 2017. We selected two repli-
cated areas inside the ungrazed site and three adjacent grazed 
sites (n sites = 4), and following internal roads we randomly 
chose and individually tagged adult P. flexuosa trees (diam-
eter ground level 7.5 cm; Álvarez  et  al. 2006). To avoid 
spatial pseudoreplication, we defined a pairwise average dis-
tance among trees of 400 m. The number of selected trees was 
70 for the ungrazed (with subgroups of trees located in two 
different areas inside the site) and 120 (three subgroups of 
trees located in different sites) for the grazed lands (n= 190; 
Supplementary material Appendix 1 Fig. A2). 

We placed an infrared camera trap on a branch of every 
tree at 1.5 m above the ground to quantify the number of 
visits and the number of fruits removed by frugivore spe-
cies at each focal tree. Cameras were vertically-oriented (De 
Bondi et al. 2010) and faced to a bait station of 20 Prosopis 
fruits under the tree crowns. Before placing the fruits we 
removed all other ripe fruits on the ground under the tree 
crowns. To prevent false triggers, we cleared the vegetation 
in an area of 0.07 m2 where fruits were placed (Smith and 
Coulson 2012). Each camera was set up to take 3 consecu-
tive photographs every 30 s, triggered by movement at high 
sensitivity to detect small mammal species (100 g), during 
48 h (total hours recorded = 9120). A total of 40 cameras (20 
per site) were operating simultaneously at randomly-selected 
trees. We downloaded photographs captured by cameras and 
analyzed images individually to identify frugivores at the spe-
cies level following species descriptions (Braun and Ojeda 
2000, Giannoni et al. 2001, Tognelli et al. 2001). 

The sequence of three consecutive photographs by a fru-
givore species was defined as a visitation event, and the fre-
quency of interactions was calculated by summing all the 
independent visits of each frugivore species to every focal 
tree. To determine the number of removed fruits by each 
frugivore species per visit we subtracted the number of final 
fruits (number of fruits left after each frugivore visit) from 
the number of initial fruits and summed all removed fruits 
per frugivore species at every tree to determine the intensity 
of interactions.

Plant traits

For each focal tree we obtained a set of intrinsic and extrinsic 
ecological variables (Jordano and Schupp 2000). The intrin-
sic variables include individual tree traits: total tree height, 
number of unripe fruits on crown and number of ripe fruits 
on ground beneath tree crown. In order to count all the 
fruits on the canopy and the ground beneath, two observ-
ers scanned each Prosopis tree before the installation of the 
camera trap. 

As extrinsic tree variables we characterized two scales, 
the immediate surroundings of each tree and the broader, 
mesoscale characteristics of the habitat surroundings. Thus, 
the extrinsic variables include the number of interspecific 
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and intraspecific tree neighbors surrounding each focal tree 
within a circle of 10 m radius (hereafter neighborhood). To 
describe the microhabitat beneath each Prosopis tree canopy, 
we measured the vegetation cover beneath tree crowns using 
the modified point quadrat method (Passera  et  al. 1983). 
Under each tree canopy we quantified the height and cover of 
plant species every 0.3 m at four 3 m-long transects (oriented 
to the cardinal points). We estimated the mean and standard 
deviation of: total vegetation cover, bare ground cover, litter 
cover and vegetation cover classified at three height stratum 
(lower: 0.2 to 0.4 m; medium: 0.6 to 0.8 m and high stra-
tum: 1.1 to 1.4 m). To summarize data for each vegetation 
stratum we obtained the Shannon–Wiener diversity index 
for each tree (H’= –S pi log pi) (Magurran 2004). We also 
recorded the geographical location (UTM coordinates) for 
every focal Prosopis tree. 

To describe the habitat at the mesoscale in the proximity 
of each Prosopis tree (hereafter habitat), we used the modi-
fied point quadrat method (Passera  et  al. 1983) with 100 
sample stations along ten 50 m length transects in each of the 
ungrazed and grazed sites (n sample stations per site= 1000) 
and obtained the same vegetation measures explained in the 
paragraph above for the transects under tree crowns. In order 
to relate habitat structure with focal Prosopis trees we associ-
ated trees to the nearest vegetation transect. For doing so, 
we considered a middle distance point at each transect and 
associated its data to the nearest tree(s) using the geographical 
positions of trees and transects. In cases with more than one 
transect located near to only one tree, we averaged covers of 
those transects and associated the averaged data to the tree. 

Data analysis

Individual-based network analysis 
We constructed weighted bipartite networks between  
P. flexuosa individual trees and frugivore species (i.e. indi-
vidual-species networks) for both land uses (ungrazed and 
grazed sites), by defining an adjacency matrix among 190 
plants as rows and frugivore species as columns. Matrix ele-
ments were  0 if a plant–frugivore interaction occurs and 
zero otherwise (Bascompte and Jordano 2014). For each indi-
vidual plant we obtained the number of visits per animal spe-
cies (frequency of interaction) and the number of removed 
fruits per visit (intensity of interaction). We obtained the 
interaction strength (total effect) by multiplying frequency 
and intensity of interactions (Vázquez et al. 2005). Individual 
Prosopis plants and frugivore species were represented as nodes 
in weighted bipartite networks with links representing the 
interaction strength between them. We discarded data from 
trees in which camera traps did not work (n = 8). In addition, 
we dropped from further analyses (except visualization of the 
networks) those trees for which no interaction was recorded 
during the sampling (n = 9 and n = 14 trees in the ungrazed 
and grazed areas, respectively).

We used the nonparametric Spearman's rank-order cor-
relation test to compare the ranks in intensity of frugivore 
interactions across species at both land uses. To describe 

and compare the topological structures between plant–fru-
givore weighted networks we estimated three parameters, 
modularity (M) by applying the Beckett algorithm (Beckett 
2016), the Hamming distance (HD), and the graph struc-
tural correlation (gscor). Modularity is the tendency of 
a network to be organized in clusters, in which a modular 
network is organized into highly inter-connected subsets 
of nodes being less connected to other nodes (Olesen et al. 
2007, Dupont et al. 2009). In our study modules represent 
groups of individual plants in the populations that shared 
higher number of interactions of similar frugivore species. 
The Hamming distance between two network graphs mea-
sures the minimum number of link substitutions required to 
change one network into the other, or the minimum number 
of link additions/deletions that could have transformed one 
network into the other (Butts and Carley 2005). The overall 
structural congruence between the two network graphs was 
tested with the structural graph correlation (gscor; ‘sna’ 
package in R).

The significances of both modularity and Hamming 
distance were assessed by randomization, based on null 
models with 999 iterations each. Significance of the Ham-
ming distance between the two networks compared is 
obtained by estimating the distance between one of the 
observed networks and each of n = 999 randomized ver-
sions of the other. An observed distance above a 95% sig-
nificance percentile indicates a significant difference in the 
overall structure of the two networks. The Hamming dis-
tance estimation requires networks of the same size. Given 
that the grazed area had a larger sample of trees (n = 106) 
compared to the ungrazed area (n = 61), we subsampled the 
grazed dataset (n = 999 random subsamples without replace-
ment) to samples of n = 61 trees and run the Hamming dis-
tance estimation algorithm at each iteration. We averaged 
the observed distance estimation and compared its value to 
the average of the total 998 001 randomizations obtained 
during the runs. The significance for the gscor estimate was 
obtained by a similar repeated subsampling of the larger 
network, as explained above. We used the ‘ggplot2’ and 
‘igraph’ R packages for networks fitting and visualization 
(Csárdi and Nepusz 2006, Wickham 2009) and the ‘bipar-
tite’ and ‘sna’ packages for network analysis and comparisons 
(Handcock et al. 2008, Butts 2016).

Frugivore visitation to trees
To test for relationships between frugivore visitation and plant 
traits we performed canonical correlation analysis (CCA; 
Borcard  et  al. 2011). Thus, we compared two multivariate 
data sets of the same length (same number of rows, the 
number of studied trees, n = 120), in which one included 
plant traits (tree traits, neighborhood, microhabitat and 
habitat) while the other data set included data of frugivore 
species-specific visitation to trees. Before performing CCA, 
we tested for multicollinearity (VIF factors) among predictor 
variables, setting a conservative threshold of 2 (package ‘vif ’ 
in R) and excluding redundant variables. 
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The CCA generates pairs of synthetic variables (canoni-
cal variables) by linear combinations of the two measured 
sets of variables in order to maximize their correlations. The 
analysis obtained canonical correlations (R2) between syn-
thetic variables that refer to the total variance from data sets 
explained by them. In order to assess the significance of the 
canonical correlation, the CCA performs a Wilk’s lambda test 
in which the lambda value represents the total variance not 
explained by the full canonical model (Nimon et al. 2010). 
We used the CCA R package for performing the canonical 
correlation analysis (González and Déjean 2012).

Ecological correlates
We built exponential random graph models (ERGMs) to 
analyze the ecological variables that might have produced 
the structure of weighted plant–frugivore networks at 
each land use (Kolaczyk and Csárdi 2014). First we tested 
for multicollinearity (pearson correlation) among predic-
tor variables and we did not include in models variables 
with a pairwise correlation  0.30, considering a value of  
p  0.05. ERGMs implement a version of Markov chain 
Monte Carlo maximum likelihood to estimate parameters 
within linear models analogous to general linear models 
(GLM’s). The structure of an ERGM closely parallels that 
of a standard regression model in statistics. The presence or 
absence of network edges (i.e. the interaction links between 
a tree and the frugivore species visiting it) is taken to be 
the response variable, while the role of the predictor vari-
ables is played by some combination of network summary 
statistics (i.e. endogenous variables) and functions of node 
and edge attributes (i.e. incorporating exogenous effects of 
variables such as tree size, density of neighbors, etc.). Given 
that the theoretical justification for the asymptotic χ2 and 
F-distributions used by ERGM to compute the significance 
values for the parameter estimates has not been established 
formally to date, our preference is to interpret these values 
with caution, as additional summary statistics (Kolaczyk and 
Csárdi 2014).

In its simplest form, the model specifications involve 
statistics that are functions only of the network structure 
(i.e. controlling for endogenous effects derived from just the 
pattern of links among nodes). Yet we may expect that the 
probability of a link joining two nodes depends not only on 
the status (i.e. presence or absence) of links between other 
pairs of nodes, but also on attributes of the nodes themselves 
(i.e. allowing for assessment of exogenous effects). For attri-
butes that have been measured, we can incorporate them into 
the ERGM specification in the form of additional statistics 
in the exponential term (Snijders et al. 2010, Kolaczyk and 
Csárdi 2014). Thus, the presence or absence of network links 
and their configurations is considered as a response variable 
in random graph models. In addition, we considered plant 
node traits (tree characteristics, neighborhood, microhabitat 
and habitat variables) as predictor variables in the ERGM. 
Therefore, we first have assigned specific ecological traits to 
each plant node (i.e. node attributes) and then we associated 

the weighted bipartite structures to these traits in order to 
assess the conditional contribution of each predictor variable 
to the overall network structure. To verify independence, we 
tested for spatial autocorrelation between latitudinal (X) and 
longitudinal (Y) coordinates of each Prosopis tree using the 
corAR1 function from the ‘nlme’ R package (Pinheiro et al. 
2016). 

We set four groups of models including different 
descriptor variables according to the types of effect tested: 
individual tree models, including variables of tree size 
and fecundity; neighborhood models, with variables asso-
ciated with the intraspecific and interspecific neighbor-
hood of each Prosopis tree; microhabitat models, including 
descriptors of the vegetation cover surrounding each focal 
tree, and, habitat models, with variables related to vegeta-
tion cover describing land uses. To compare model fits 
we computed analysis of variance (ANOVA) using the 
‘Chisq’ test statistic (Handcock  et  al. 2017) and we fol-
lowed the BIC (Bayesian information criterion) approach 
to model selection (Link and Barker 2006). We per-
formed ERG models using the ‘sand’ and ‘ergm’ R pack-
ages (Hunter et al. 2008, Handcock et al. 2017, Kolaczyk 
and Csárdi 2017). Analyses were performed using R 
( www.r-project.org ). 

Data deposition

Data and R code for the analyses are available at the GitHub 
repository:  https://github.com/PJordano-Lab  and the 
Dryad Digital Repository  http://dx.doi.org/10.5061/
dryad.1n755  (Miguel et al. 2018). 

Results

Prosopis–frugivore networks at different anthropic land 
uses 

We analyzed a total of 29 902 images from camera traps  
(18 271 for grazed and 11 631 for ungrazed land uses) in 
which 12 frugivore species were recorded interacting with a 
total of 167 Prosopis trees (Fig. 1). Also, other three species, 
including one bird species, Eudromia elegans, were recorded 
visiting trees but not removing fruits (Supplementary mate-
rial Appendix 1 Table A2 for taxonomic details). The total 
number of trees without frugivore interactions recorded was 
15. 

The ranked intensity of frugivore interactions across spe-
cies was significantly consistent when comparing trees at the 
ungrazed and grazed lands (S = 122.86, p = 0.05, Spearman’s 
rho = 0.57). However, individual frugivore species varied in 
their frequency, intensity and strength of interactions with 
Prosopis plants in the two land uses (Table 1). The total num-
ber of frugivore species interacting with Prosopis trees was 11 
for grazed (two domestic species) and nine for ungrazed lands 
(Table 1, Fig. 1). Microcavia australis was the species with 

http://www.r-project.org﻿
https://github.com/PJordano-Lab﻿
http://dx.doi.org/10.5061/dryad.xxxxx﻿
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the highest number of frugivory interactions recorded at both 
land uses. 

The topologies of plant–frugivore interaction networks 
did not differ between land use types (Hamming distance 
[mean and 1st–3rd quantiles] = 77 900 [74 900–80 900]; 
randomized values: 95 600 [93 400–97 900]), with the 
observed Hamming distances being significantly below the 
randomized ones (p = 0.003). The overall congruency of 
the two network topologies and structures is further sup-
ported by the significant structural graph correlation (gscor) 
between them, assessed with a quadratic-assignment proce-
dure (gscor = 0.8421, p  0.0001). 

Frugivory networks were significantly modular at both  
land uses and modularity values were highly significantly 
different of that expected from a random distribution 

(Mgrazed = 0.52, z = 51.39, p  0.0001; Mungrazed = 0.41, 
z = 26.38, p  0.0001). The weighted bipartite networks 
comprised nine modules for grazed lands and five for 
ungrazed land use (Supplementary material Appendix 1  
Fig. A1). The majority of modules included only one fru-
givore species interacting with either a large number of 
Prosopis trees (e.g. M. australis at grazed and ungrazed net-
works) or a low number of trees (e.g. Dolichotis patagonum 
at the ungrazed network; Fig. 2). Additionally, connectance 
(C) and nestedness (NODF, Almeida-Neto  et  al. 2008) 
were statistically significant for both interaction networks 
(Cgrazed = 0.11, z = –10.45, p  0.0001; Cungrazed = 0.16, 
z = –9.56, p  0.0001; NODFgrazed = 9.16, z = –11.87, 
p  0.0001; NODFungrazed = 23.68, z = –11.16,  
p  0.0001). 

Figure 1. Photos from camera traps illustrating the main frugivore species interacting with Prosopis trees. (A), Graomys griseoflavus; (B), 
Dolichotis patagonum; (C), Microcavia australis; (D), Lycalopex griseus; (E), Conepatus chinga; (F), Chaetophractus vellerosus. Infrared camera 
traps were suspended from the canopy, on a branch of every sampled tree 1.5 m above the ground.
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Ecological context of frugivore visitation to Prosopis 
trees

For grazed land uses, variation in frugivore visitation to trees 
was significantly related with plant traits (Wilk’s λ = 0.05, 
F = 1.62, df = 176,761, p  0.0001; Table 2). Only the 
first canonical variable was significant, with a canonical cor-
relation of R2 = 0.65 (F = 1.62, p 0.0001), explaining 
46% of the total variance shared between the two original 
variable sets. Frugivore species with high correlations on this 
canonical variable included: Tupinambis rufescens (0.772), 
Conepatus chinga (0.520), Akodon dolores (0.249), Bos taurus 
(0.210), Equus caballus (0.215) and Chaetophractus vellerosus 
(–0.259). Regarding the plant traits, this first canonical vari-
able was mainly correlated with traits describing trees fecun-
dity (fruits on crown, 0.908, and fruits on ground, 0.313), 
interspecific neighborhood (–0.226), microhabitat variables 
(variation of the low height vegetation stratum, 0.195; cover 
and variation of the medium height vegetation stratum, 
–0.195 and –0.225, respectively) and habitat characteris-
tics (litter cover, 0.271 and cover of the high height stratum 
0.226; Table 2). 

Contrary to what we found for grazed lands, frugivore 
visitation was not significantly correlated with plant traits at 
ungrazed land- uses (Wilk´s λ = 0.08, F = 0.88, df = 140,345, 
p = 0.81). The first fitted model explained 43% of the 
total variance shared between the two original variable sets 
R2 = 0.59 (F = 0.88, NS; Table 2).

Correlates of individual-specific Prosopis traits and 
interaction patterns

As expected from the tree-sampling protocol, where focal 
trees were selected at a minimum distance of 400 m, the 
visitation patterns to Prosopis plants were not spatially 
correlated (L= –1194.3, df = 5, p = 1). Therefore we fitted the 
ERG models without any spatially-explicit information. The 
number of edges between nodes in the grazed-lands graph 
was of L(yg) = 1368, while in the ungrazed-lands graph was 
of L(yug) = 482. Because of the bipartite character of these 
networks, triads (i.e. three nodes connected by links) were 
not a possible outcome, as individual plants can directly 
interact only with animals and not between them. 

We fitted twelve candidate models for the grazed-lands 
graph and ten for the ungrazed-lands network graph (Supple-
mentary material Appendix 1 Table A3). For both the grazed 
and ungrazed-lands graphs, the edges effects were highly 
significant, implying that there is an influence of the num-
ber of interactions on the probability of observing the given 
networks; i.e. the probability of a link is proportional to the 
degrees of the interacting nodes. For the grazed-lands graph 
the exponential random model containing twelve predictor 
variables (full model) was the one that better explained the 
variation in network connectivity. This model showed that, 
tree height decreases the odds of plant–frugivore (vertices) 
interactions by a factor of exp (–0.016847) = –1.07. More-
over, crown fruits (standing fruit crop) increases the odds of 

Table 1. Number of trees visited at least once and interaction measures (frequency, intensity and total effect) between frugivore species and 
Prosopis trees of the grazed (G) and ungrazed (Ug) land uses. Frequency of interactions indicates the number of total visits of each mammal 
species to trees; intensity of interactions represents the number of fruits removed from trees per species, and the total effect was calculated 
as the product of frequency and intensity. Data indicate mean values  1SE.

Frugivore species Order: Family Anthropic land use No. of visited trees Frequency Intensity Total effect

Graomys griseoflavus Rodentia: Muridae G 66 5.08  0.72 3.38  0.53 42.09  8.15
Ug 51 16.46  2.96 4.99  0.80 114.81  31.85

Akodon dolores Rodentia: Muridae G 35 2.42  0.50 2.44  0.53 28.67  7.79
Ug 27 8.51  1.83 1.36  0.42 42.39  16.56

Calomys musculinus Rodentia: Muridae G 3 0.05  0.03 0.08  0.08 0.08  0.08
Ug 6 0.24  0.11 0.07  0.05 0.24  0.16

Microcavia australis Rodentia: Caviidae G 67 11.61  1.75 4.98  0.69 157.74  30.18
Ug 47 20.23  3.20 6.90  0.96 270.97  51.37

Dolichotis patagonum Rodentia: Caviidae G 6 0.49  0.29 0.49  0.26 8.00  5.07
Ug 4 0.27  0.16 0.26  0.22 1.59  1.50

Ctenomys mendocinus Rodentia: Ctenomyidae G 0 – – –
Ug 1 0.03  0.03 0.09  0.09 0.17  0.17

Bos taurus Artiodactyla: Bovidae G 26 1.25  0.30 1.93  0.48 11.87  3.61
Ug 0 – – –

Equus caballus Perissodactyla: Equidae G 5 0.38  0.17 0.54  0.29 5.33  2.97
Ug 0 – – –

Lycalopex griseus Carnivora: Canidae G 28 0.80  0.21 1.39  0.40 8.50  3.09
Ug 9 0.23  0.08 0.44  0.22 0.91  0.55

Conepatus chinga Carnivora: Mephitidae G 16 0.27  0.08 0.38  0.16 1.13  0.52
Ug 4 0.06  0.03 0.04  0.04 0.04  0.04

Chaetophractus vellerosus Xenarthra: Dasypodidae G 9 0.10  0.03 0.20  0.09 0.27  0.12
Ug 7 0.10  0.04 0.13  0.11 0.13  0.11

Tupinambis rufescens Lacertilia: Teiidae G 7 0.11  0.05 0.10  0.08 0.25  0.18
Ug 4 0.06  0.03 0 0
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vertices interactions by a factor of exp (0.004764) = 1.005. 
Attributes that significantly decreased the odds of tree inter-
actions with frugivore species were: tree height, number of 

intraspecific neighbors, vegetation mean cover beneath the 
tree canopy, variation in litter cover and the mean cover of 
the low vegetation stratum at the habitat scale (Table 3). 
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Figure 2. Energy-minimization graphs illustrating weighted bipartite networks between individual Prosopis trees (orange nodes) and frugi-
vore species (green nodes) in sites under different anthropogenic land managements, (A) grazed and (B) ungrazed land uses. Lines (edges) 
represent a frugivory interaction. The width of the edges represents the scaled interaction strength (total effect) between frugivore species and 
individual trees. Codes for frugivore species represent: Gra.gri = Graomys griseoflavus; Ako.dol = Akodon dolores; Cal.mus = Calomys muscu-
linus; Mic.aus = Microcavia australis; Dol.pat = Dolichotis patagonum; Cte.men = Ctenomys mendocinus; Bos.tau = Bos taurus; Equ.cab = 
Equus caballus; Lyc.gri = Lycalopex griseus; Cone.chi = Conepatus chinga; Cha.vell = Chaetophractus vellerosus; Tup ruf = Tupinambis rufescens.
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On the other hand, attributes that significantly increased 
the odds of interactions were: the number of fruits on tree 
crown, number of interspecific neighbors, the cover variation 
of the high-height vegetation stratum and the litter cover at 
the habitat scale (Table 3). 

For ungrazed-lands, the graph model containing variables 
of tree size, fecundity, neighborhood and microhabitat was 
the one with the lowest BIC value (994). The selected model 
showed that, contrary to the grazed-lands graph, the number 
of fruits on the crown decreases the odds of plant–frugivore 
interactions by a factor of exp (–0.007903) = –1.008. 
Moreover, tree height increases the odds of interactions by 
1.01. In the ungrazed-lands graph, attributes that signifi-
cantly decreased the odds of plant–frugivore interactions 

were: number of fruits on crown, and mean and variation of 
vegetation cover beneath tree canopy (Table 3). Conversely, 
attributes that increased the odds of interactions were: tree 
height, the number of fruits on ground and the mean cover 
of bare ground beneath tree canopy. For the ungrazed-lands 
graph, neither the neighborhood nor habitat variables were 
significant in explaining the odds of tree–frugivore interac-
tions (Table 3).

Discussion

According to our hypothesis, individual plant–frugivore 
networks for grazed and ungrazed lands were structured by 
individual ecological traits and affected by anthropogenic 
modifications of habitat. Yet the number of interaction links 
did not differ between networks, and the frugivore species-
specific ranks in interaction intensity remained significantly 
consistent among the ungrazed and grazed landscapes. How-
ever, both networks were significantly modular, with the 
grazed network showing a higher number of modules than 
the ungrazed network. For grazed lands, variables describ-
ing individual tree traits, the neighborhood surrounding 
each tree, the microhabitat and the habitat at the mesoscale 
were the ones that best explained correlation between frugi-
vore visitation and plant traits. Nonetheless, no significant 
correlation of these variables was found for ungrazed plant–
frugivore interactions. Finally, we clearly identified ecological 
traits that explained individual network structures. Variation 
of individual traits and microhabitat variables was significant 
in explaining the structure of the bipartite networks. The 
sign and significance of the ecological parameters included in 
models differed between grazed and ungrazed-lands graphs. 
These results demonstrate that anthropogenic land uses 
together with individual traits heterogeneity influence the 
structure of mutualistic networks.

Individual plant–frugivore networks at different 
anthropogenic land uses

Assessing the impacts of drivers of global ecosystem changes 
on ecological interactions is crucial to better predict their 
consequences for communities and biodiversity maintenance 
and also for the supply of ecosystem services to human well-
beings (Tylianakis et al. 2008, Eckert et al. 2009, Kiers et al. 
2010). Thus, by examining the topology of interaction net-
works one can assess their susceptibility to be influenced by 
anthropogenic drivers (Tylianakis et al. 2010, Spiesman and 
Inouye 2013, Vanbergen  et  al. 2017). Taking into account 
this theoretical and practical approach, we found that the 
frugivore species that constitute the core of interactions did 
not differ between networks at grazed and ungrazed land 
uses, except of domestic species (cows and horses) that were 
present only at grazed lands. The species involved include 
a relatively limited assemblage of small- and medium-sized 
native mammals inhabiting the Prosopis flexuosa ecosystem. 

Table 2. Coefficients for the original sets of variables on the first 
canonical variable, testing the overall correlation between frugivore 
visitation and plant traits at grazed and ungrazed land uses. Only 
the first canonical variables had λ  1. SD = standard deviation.

Grazed land uses Ungrazed land uses

Original variable Canonical variable I
λ = 1.88 (46.3%)
R = 0.808***

Canonical variable I
λ = 1.45 (43.2%)
R = 0.769NS

Frugivore variables
G. griseoflavus –0.024 0.001
A. dolores 0.047 0.018
C. musculinus –0.072 –0.303
M. australis –0.004 0.019
D. patagonum 0.016 –0.200
L. griseus 0.010 –0.121
C. chinga 0.393 2.438
C. vellerosus –0.514 –0.110
T. rufescens 1.361 –0.054
B. taurus 0.033 –
E. caballus 0.115 –
C. mendocinus – 0.322

Plant variables
height –0.002 –0.001
crown fruits 0.008 0.002
ground fruits 0.001 0.002
no. inters. neighbours –0.045 –0.112
no. intras. neighbours –0.027 0.022
vegetative cover SD 0.279 0.113
bare ground cover –0.324 –1.749
bare ground SD –0.569 –
low height cover – –3.182
low height cover SD 1.101 –2.559
medium height cover –0.241 –
medium height  

cover SD
–1.079 0.555

high height cover –0.379 –0.273
H’ Shannon–Wiener –1.345 –
litter cover (habitat) 0.671 1.522
low height cover 

(habitat)
0.497 2.029

medium height cover 
(habitat)

– 0.661

high height cover 
(habitat)

0.917 –

***: F= 1.62; df = 176,761; p  0.0001. NS, non-significant.
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Moreover, the ranking of interaction importance of frugivore 
species remained consistent when comparing both land uses. 
Thus, the composition of the frugivore assemblage was not 
significantly affected by the land use evaluated. Nonethe-
less, the way frugivore interactions were structured and the 
ecological covariates that predict the observed network struc-
tures differed between land-use regimes. Previous research 
has documented significant effects of anthropogenic drivers 
on seed dispersal mutualisms (Markl et al. 2012), frequently 
associated to loss of species or drastic changes in mutualistic 
assemblages. Our results indicate that more subtle changes 
related to less severe disturbance regimes (e.g. grazing) may 
also trigger changes in interaction modes for individual trees 
giving rise to structural changes in the interaction networks. 
Despite not being addressed in this study, such changes in the 
interaction patterns between grazed and ungrazed areas likely 
affected the dispersal effectiveness in the two landscapes, as 
Prosopis recruitment has been documented to subtly depend 
on moderate levels of grazing (Brown and Archer 1989, 
Aschero and García 2012). 

When downscaling plant–frugivore interactions from 
species to individuals, we found networks were organized 
in modules of individual plants highly connected by frugi-
vore species and modularity increased at sites under a graz-
ing productive system, when compared to ungrazed lands. 
The effect of modularity in mutualistic networks has been 
referred to less cohesive networks, in which the probability of 

network fragmentation increases when connector species are 
removed (Melián and Bascompte 2004, Jordano et al. 2006). 
On the other hand, it has been proposed that disturbances 
are expected to highly affect and rapidly propagate through 
a non-modular than a modular network (Olesen et al. 2007, 
Gilarranz et al. 2017). Here, the grazed lands interaction net-
work was more modular than the ungrazed lands, probably as 
an effect of the domestic species introduced and the changes 
in habitat. A characteristic two-phase mosaic of vegetation 
encroachment dominates the grazed lands (Aguiar and Sala 
1999), while a more homogeneous scrubland is characteristic 
of the ungrazed areas (Tabeni et al. 2007). Furthermore, the 
majority of modules in the grazed areas were organized by 
only one frugivore species. This web organization may imply 
a more fragile interaction network in which any effect on 
only one frugivore species might affect the structure of the 
entire network. 

Studies at the community level found mutualistic net-
works to be less modular than antagonistic networks 
(Thébault and Fontaine 2010). Moreover, when focused on 
individuals, modularity was a topological pattern character-
izing plant-pollination (Dupont et al. 2014, Tur et al. 2014) 
and plant–frugivore networks when evaluated interactions 
between plants and multiple groups of seed-disperser animals 
(Donatti et al. 2011). However, studies including only a single 
group of seed-dispersers found networks to be highly nested 
and less modular (e.g. bats; Fortuna et al. 2010). Nonetheless, 

Table 3. Results of selected exponential random graph models (ERGMs) evaluating the effects of node (tree) characteristics underlying the 
interaction network graph structure (response variable) for the grazed and ungrazed land uses. The edges effect evaluates the influence of 
just the interaction patterns among individual Prosopis trees and frugivore species; then, additional effects of node-specific covariates are 
included. Significant effects suggest factors increasing or decreasing the probability of a tree to interact with the set of frugivore species. 
SE = standard error; NS = non-significant; SD = standard deviation.

Selected models Predictor variables Estimates SE p-value

Grazed-lands graph ~ edges 21.05 2.55 0.0001
tree height –0.02 0.002 0.0001
fruits on crown 0.005 0.001 0.0007
interspecific neighbours 0.16 0.06 0.01
intraspecific neighbours –0.39 0.08 0.0001
mean vegetation cover –4.72 0.62 0.0001
bare ground SD 1.56 1.34 NS
litter SD –5.21 1.59 0.001
low height stratum SD 2.15 1.14 0.06
medium height stratum SD 0.74 1.11 NS
high height stratum SD 4.33 1.09 0.0001
litter mean cover (habitat) 4.66 0.59 0.0001
low height stratum (habitat) –1.58 0.44 0.0004

Ungrazed-lands graph ~ edges –5.37 1.47 0.0003
tree height 0.01 0.001 0.0001
crown fruits –0.008 0.002 0.0001
ground fruits 0.008 0.002 0.0001
interspecific neighbours 0.04 0.03 NS
mean vegetation cover –2.72 0.39 0.0001
variation in vegetation cover –1.14 0.39 0.004
bare ground cover 2.38 0.53 0.0001
low height stratum SD 0.86 0.56 NS
medium height stratum –0.24 0.44 NS



1055

by focusing in one group of frugivore animals, mammals, we 
found modularity as a significant topological pattern of these 
individual-based plant–frugivore networks. Although we did 
not include ecological information of frugivore species in our 
analysis, modularity may be explained by the fact that the 
Prosopis frugivore assemblage is comprised by a taxonomi-
cally diverse group of mammals, from small rodents (100 
g, e.g. Graomys griseoflavus) to carnivorous species (Lycalopex 
griseus). Moreover, the modular pattern reflects variability of 
traits among conspecific trees and how these individual tree 
traits relate to the particular habitat requirements by the fru-
givores (Tabeni and Ojeda 2003). Thus, differences among 
trees in the extent and heterogeneity of the shrub cover in 
the neighborhood, as well as tree size and fruit crop size dif-
ferences set limits to the specific mammal species visiting the 
trees, with small-mammal species favoring high vegetation 
cover locations.

The frugivore species that interacted with a high number 
of Prosopis trees and formed single-species modules at both 
land uses were two rodent species, Microcavia australis and 
Akodon dolores. The other frugivore species reorganized their 
interactions according to their occurrence patterns at grazed 
or ungrazed land, thus, conforming species-specific modules 
or sharing modules with other frugivore species. For example, 
Microcavia australis is proposed as a mutualistic partner of  
P. flexuosa (legitimate disperser; Campos et al. 2017), instead 
of A. dolores, which is considered to maintain antagonistic 
frugivore interactions with Prosopis (largely a seed preda-
tor; Giannoni  et  al. 2013). Consistent with previous stud-
ies in the area (Miguel et al. 2017, Tabeni et al. 2017), we 
found that the rodent species G. griseoflavus is also a frequent 
frugivore visitor of Prosopis trees. This antagonistic partner 
(Giannoni et al. 2013) was included in modules with other 
frugivore species at both land use networks. Thus, interac-
tion patterns of Prosopis trees appear to be driven by the 
habitat and microhabitat differences in preference patterns 
of mammal species, with a prominent influence of the graz-
ing disturbances determining vegetation cover heterogeneity 
(Okin et al. 2015) that modulates these preferences. 

Context dependency of frugivore visitation to trees

Mutualistic interactions are dynamic over time and space 
(Chamberlain  et  al. 2014), and, specifically, the plant–
frugivore interaction is highly influenced by the biotic 
and abiotic context in which it takes place (Carlo 2005, 
Rodríguez-Rodríguez et al. 2017). Here we found that traits 
related with tree size and fecundity, neighborhood, micro-
habitat physiognomy immediately surrounding individual 
trees and larger-scale habitat variables strongly correlated with 
frugivore visitation to trees at grazed lands. Nonetheless, this 
pattern of plant–frugivore traits correlation was not found 
at ungrazed land uses. In spite of previous studies did not 
find an effect of grazing on the spatial organization of vegeta-
tion mosaics (Cipriotti and Aguiar 2005), we detected, in 
grazed land, two distinct patterns of microhabitat surround-
ings at Prosopis trees that accounted for the pattern of fru-

givore visitation. On one hand, microhabitats characterized 
by a high cover of bare ground and of the medium and high 
height vegetation stratum beneath tree canopies were nega-
tively correlated with frugivore visitation. On the other hand, 
the variation of vegetation cover and the low-height vegeta-
tion stratum beneath tree canopies, besides to the cover of 
the low and medium height vegetation stratum at the habitat 
near trees were positively correlated with frugivore visitation. 
These results indicate that trees growing in a more complex 
microhabitat received less visits by frugivores compared with 
that growing in more open spaces. The resulting patterns 
reflect a heterogeneous landscape, with different tree physiog-
nomies and surroundings that influence frugivore visitation 
to trees. However, at adjacent ungrazed lands other different 
ecological and/or abiotic variables, not evaluated here, may 
influence and explain visits by frugivores. Long-term grazing 
exclusion not only favors more homogenous shrub cover, but 
also influences Prosopis recruitment (Brown and Archer 1989, 
Aschero and García 2012) and thus modifies conditions for 
interactions with specific frugivores.

Similar to previous studies (Carlo 2005, Dupont  et  al. 
2014) we found that intraspecific trait variation among trees 
significantly explained correlations between plant and frugi-
vore variables sets when considering grazed lands. Moreover, 
the neighborhood surrounding each Prosopis tree together 
with variables describing the microhabitat and the habitat 
characterizing grazed fields were also influential on the 
canonical variables describing the multivariate habitat physi-
ognomy. The influence of microhabitat and habitat on fru-
givore visitation only at grazed lands is an interesting result 
that may respond to the fact that the grazing activity by large 
herbivores modifies the structure of vegetation at different 
spatial scales, altering the habitat required by other animal 
species (Tabeni and Ojeda 2003, Tabeni et al. 2007), which in 
turn could affect frugivore visitation to plants (Campos et al. 
2016). This influence of vegetation physiognomy of the 
trees growing place and its immediate surroundings, driv-
ing frugivore visitation patterns, is especially evident in 
heterogeneous landscapes with prominent forest edges and 
two-phase mosaics of open grassland (Jordano and Schupp 
2000, Carlo et al. 2007, Morales et al. 2012).

Ecological correlates underlying plant–frugivore 
networks

Results of ERG models showed that different sets of ecological 
variables explained the probability of node interactions (indi-
vidual trees–frugivore species) at grazed and ungrazed land 
uses. This modeling approach was a useful tool to explain and 
recognize ecological traits that have molded the structures of 
individual plant–frugivore networks at different context of 
land uses. Traditionally, network analysis has been focused 
on detecting and describing structural patterns of interaction 
webs such as nestedness, modularity and connectance within 
a highly descriptive framework (Bascompte and Jordano 
2014) and on recognizing the most likely ecological and evo-
lutionary traits in predicting such patterns (Vázquez  et  al. 
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2009). To the best of our knowledge, this is the first attempt 
to apply this predictive, modeling framework to the analysis 
of complex networks of ecological interactions (Kolaczyk and 
Csárdi 2014). 

Variation in individual traits among conspecifics is recog-
nized as an important force in structuring interaction net-
works (Olesen et al. 2010, Donatti et al. 2011, Dupont et al. 
2014). Particularly, crop yield is an intrinsic plant trait that 
influences disperser activity (Jordano and Schupp 2000, 
Blendinger and Villegas 2011). In accordance with this, our 
results showed that fecundity (number of fruits produced) 
was a significant individual trait that increased the strength 
of plant–frugivore interactions at both ungrazed and grazed 
lands networks. However, other individual variables included 
in analysis, such as tree height, had a contrary effect in both 
network graphs. Thus, while at grazed-lands network taller 
plants decreased the odds of Prosopis–frugivore interactions, 
at ungrazed-lands network taller plants increased the odds of 
interaction. One possible interpretation of this result may be 
that older and taller trees are found in the ungrazed site, sup-
ported by previous studies that described a higher density of 
adult Prosopis plants at ungrazed lands compared with grazed 
woodlands (Aschero and Vázquez 2009). 

Composition and neighborhood density are also influ-
encing and previously-studied aspects of frugivore inter-
action with plants (Carlo 2005, Morales  et  al. 2012). Our 
results showed that for Prosopis trees at grazed lands, being 
in an interspecific neighborhood has a positive effect on their 
interaction with frugivores compared to growing sites with 
an intraspecific neighborhood. Moreover, intraspecific neigh-
borhoods (i.e. more conspecific plants) significantly decreased 
the odds of plant–frugivore interactions, supporting previous 
findings of a negative effect of conspecific neighborhoods on 
disperser activity (Carlo et al. 2007). Nonetheless, and similar 
to other studies (Blendinger and Villegas 2011), the neigh-
borhood density surrounding each focal tree at the ungrazed 
network was not a significant predictor variable in models. 
Interaction networks at ungrazed lands may respond more to 
individual local traits (i.e. fecundity, tree height and micro-
habitat physiognomy) whose effect disappears when consid-
ering wider neighborhoods and habitat scales. According to 
variables describing the microhabitat in which individual 
trees was growing, we found that the likelihood of grazed-
network Prosopis–frugivore interaction increased with varia-
tion in plant cover at the high stratum (1.1 to 1.4 m) and 
decreased with high vegetation cover beneath the tree canopy. 
On the other hand, at the ungrazed network, the odds of fru-
givore interaction with trees increased with high bare ground 
cover beneath tree canopy and decreased with the vegetation 
cover beneath tree crown. Only at grazed-lands the habitat 
variables were significant predictors in the network models; 
while the cover of litter increased the odds of nodes interac-
tion, the cover of the low height stratum decreased the inter-
actions. 

Our results indicate that at grazed lands, smaller trees 
producing high quantity of fruits, with low vegetation cover 
beneath its canopy, surrounded by interspecific neighbors 

and with less cover of the low height stratum in the near 
landscape, significantly increased their probability of interac-
tion with frugivores. However, taller trees with high density 
of fruits on ground, and high bare ground cover beneath tree 
crowns were the Prosopis tree traits that increased the odds of 
interaction with frugivores at ungrazed lands. An interesting 
future issue will be to assess how robust in time interaction 
networks are (i.e. the temporal component of interspecific 
interactions; Valverde et  al. 2016), considering variation in 
local animal population abundances and fruit crops through 
years. In addition, the comparison of plant–frugivore inter-
actions across habitat chronosequences or gradients of graz-
ing intensity may help to understand critical transitions and 
shifts in interactions with specific frugivores after a given 
level of encroachment. Our results with Prosopis indicate that 
small to large mammals would vary their interaction strength 
along this type of gradient.

Conclusions

Anthropogenic land uses influence not only the topological 
patterns of plant–frugivore mutualistic networks but also the 
frugivore visitation to Prosopis trees through modification of 
vegetation structure and habitat complexity and the effect 
of tree traits. Furthermore, individual conspecific variation 
in traits significantly affected the structure of interaction 
networks, specifically in grazed lands. By using exponen-
tial random graph models (ERGMs) we move forward in 
identifying specific ecological traits at different scales (indi-
vidual, microhabitat and habitat) that explain the observed 
plant–frugivore networks. Future applications of this model-
ing framework may help to describe and predict individual 
trees that concentrate a large number of interactions with 
frugivore species. The approach might be especially useful 
in the context of anthropogenic land management and for 
spotting key trees for conservation within forest manage-
ment actions. Our individual-plant based approach suggests 
that effects of anthropogenic land uses at the individual tree 
level may scale-up to distinct modes of interaction reshaping 
higher levels of biological organization (Bolnick et al. 2011). 
Further research considering plant–frugivore mutualistic 
networks at the community scale are necessary to elucidate 
whether topological patterns found here are also observed or 
maintained at the species level. Along this line, explicit mod-
eling approaches like ERGMs and its variants are promissory, 
moving forward from more descriptive analyses of ecological 
networks.
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