
nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 925

a r t I C l e S

Timing is a fundamental component of sensory and motor processing,
learning, and cognition; however, the neural mechanisms underlying
temporal processing remain unknown1–3. On the scale of milliseconds
and seconds, a number of different mechanisms have been proposed
to underlie sensory and motor forms of timing, including internal
clocks that rely on a pacemaker and counter4, ramping firing rates5,6,
multiple oscillator models that rely on detecting the beats between
oscillators running with different periods7,8, and the stochasticity of
neural dynamics9. Although these models are not necessarily mutu-
ally exclusive, many of them focus primarily on simple temporal
tasks. For example, internal clock and ramping models are generally
proposed as mechanisms underlying the timing of single intervals
and are unlikely to contribute to complex temporal or spatiotemporal
motor processing such as tapping Morse code or generating cursive
handwriting. We focused on a more general framework that could
account for a wide range of temporal and spatiotemporal tasks in the
range of tens of milliseconds to a few seconds. Specifically, the idea
that motor timing relies on the dynamic changes in the pattern of
activity of neurons in recurrent neural networks1,10,11.

The first models to propose that time might be encoded in the
dynamic changes in the patterns of active neurons were developed in
the context of the cerebellum11,12. Subsequent models emphasized the
importance of dynamic patterns of activity in a population of neurons
for neural computations in general13–16. In this framework, the state
of a network at any given time can be represented by a point in a high-
dimensional space where each dimension corresponds to the activity
level of a neuron. The concatenation of these points over time forms
a ‘neural trajectory’. In contrast with conventional attractor models,
temporal and spatiotemporal computations in this ‘population clock’
framework arise from the voyage through state space, as opposed to
the arrival at any one given location. The advantage of computing with

neural trajectories is particularly obvious for tasks that require timing,
as time is implicitly encoded in the trajectory and can be read out by
downstream neurons. This framework is quite general because it can
account for both temporal and spatiotemporal processing, that is, the
generation of complex motor patterns. Furthermore, experimental
studies in different brain areas have identified time-varying popula-
tions of active neurons that encode time17–20.

At a theoretical level, the hypothesis that neural networks can
autonomously generate continuously changing patterns of activity
in a flexible and robust manner has been controversial. The main
challenge has been that recurrent neural networks operating in ‘high-
gain’ regimes in which recurrent connections are strong enough to
generate self-sustained patterns of activity are highly sensitive to noise
and are often formally chaotic21–27. Thus, although the dynamics in
these networks is potentially computationally powerful, the fact that
minute levels of noise can produce vastly different neural trajecto-
ries effectively abolishes their computational power because a given
pattern cannot be reliably reproduced across trials.

Building on two previous firing rate models28,29, we developed a
recurrent network model that produces complex, high-dimensional
trajectories that are highly resistant to noise. This robustness was
achieved by tuning the recurrent connections of the network. A power-
ful computational consequence of this approach is that a previously
chaotic trajectory becomes a locally stable channel or ‘dynamic attrac-
tor’ (meaning that even if the network is perturbed it can return to its
trained trajectory). We found that these stable neural trajectories can
markedly improve the ability of random recurrent networks (RRNs) to
tell time and generate complex motor patterns in the presence of high
levels of noise. Because our model is based on firing-rate units, the prob-
lem of chaotic behavior in spiking neural networks remains unsolved.
However, we found that it is possible to tame chaos in firing-rate

1Department of Neurobiology, University of California, Los Angeles, California, USA. 2Department of Psychology, University of California, Los Angeles, California,
USA. 3Brain Research Institute, University of California, Los Angeles, California, USA. 4Integrative Center for Learning and Memory, University of California,
Los Angeles, California, USA. 5Present addresses: Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina, and Consejo
Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. Correspondence should be addressed to D.V.B. (dbuono@ucla.edu).

Received 23 December 2012; accepted 20 April 2013; published online 26 May 2013; doi:10.1038/nn.3405

Robust timing and motor patterns by taming chaos in
recurrent neural networks
Rodrigo Laje1,5 & Dean V Buonomano1–4

The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical for anticipating the next ring of a
telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing
patterns of neural activity generated in recurrent neural networks. However, the relevant dynamic regimes of recurrent networks
are highly sensitive to noise; that is, chaotic. We developed a firing rate model that tells time on the order of seconds and
generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the
recurrent connections. The network operates in a dynamic regime that exhibits coexisting chaotic and locally stable trajectories.
These stable patterns function as ‘dynamic attractors’ and provide a feature that is characteristic of biological systems: the
ability to ‘return’ to the pattern being generated in the face of perturbations.

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3405
http://www.nature.com/natureneuroscience/

926  VOLUME 16 | NUMBER 7 | JULY 2013 nature neurOSCIenCe

a r t I C l e S

recurrent networks and that the resulting dynamics offers a new
neurocomputational framework based on dynamic attractors.

RESULTS
Innate training
The network model that we studied consists of randomly connected
nonlinear firing-rate units26,28,29. In this network, the connectivity is
represented by a recurrent weight matrix, WRec, drawn from a normal
distribution with a mean of zero and a s.d. scaled by a gain parameter, g.
For large networks, values of g > 1 generate increasingly complex
and chaotic patterns of self-sustained activity26. In all of our simula-
tions, the networks are in this high-gain chaotic regime (g ≥ 1.5)26,30.
Figure 1a provides an example of such an RRN (see Online Methods).
By adjusting the synaptic weights onto an output unit, we could train
the network to produce some desirable computation, such as a timed
response or a complex motor output10–12,28 (see below). The network
is spontaneously active (that is, it has self-sustaining activity) and
an external input at t = 0 ms (50-ms duration) temporarily kicks the
network into a delimited volume of state space, which can be defined
as the starting point of a neural trajectory. Across trials, even in the
absence of continuous noise, different initial conditions resulted in
a divergence of the trajectories (Fig. 1b). This divergence renders
the network useless from a computational perspective because the
patterns cannot be reproduced across trials. One approach to over-
come this problem has been to use tuned feedback to control the
dynamics of the network28,29. An alternate approach would be to alter
the weights of the RRN proper to decrease the sensitivity to noise;
this approach, however, has been limited by the challenges inherent
in changing the weights in recurrent networks. Specifically, given
that all weights are being used throughout the trajectory, plasticity
tends to markedly alter network dynamics, produce bifurcations
and not converge31.

It is important to note that, in the current ‘reservoir’ framework,
the precise pattern produced by the recurrent network is largely irrel-
evant; what matters is that it is complex and that these patterns can
be used by downstream units13,16,32. This means that, independent of
the ultimate desired output, there is really no specific desired target
activity pattern in the recurrent network. Thus, we reasoned that noise
sensitivity could be reduced by training the units in the network to
reproduce their ‘innate’ pattern of activity, rather than some trajec-
tory determined by the desired output. We define an innate trajectory
as one triggered by a given input in an untrained network (using an

arbitrary initial condition); we chose the innate trajectories in the
absence of noise, but they can also be chosen in the presence of noise
(see Online Methods). The approach is to tune the recurrent units to
do what they can already do. Toward this end, we trained recurrent
units to reproduce their innate activity profile using a supervised
learning rule to rapidly minimize the errors during a training trial
(see Online Methods)28,29. By training the RRN to reproduce its
innate trajectory over a 2.25-s period, it was possible to create a locally
stable transient channel (Fig. 1b), largely preserving the shape of the
original trajectory while turning it into an attracting one in the 2.25-s
window. Outside the training window, however, the trajectory rap-
idly diverges. Once the RRN generates stable trajectories, the output
can be trained to produce a timed response at 2 s (Fig. 1b). This
timed response is now robust to differences in initial conditions, noise
and large perturbations in the recurrent network (see below for a
more detailed analysis). Figure 1c shows an example in which the
pretraining and trained RRN are perturbed with a 10-ms pulse from
a second input unit. Despite this perturbation, the trained network
can recover and return to the innate trajectory and generate a timed
response at approximately 2 s.

In the above example, the timing that generated the late response
is encoded in the neural dynamics of the network. This same high-
dimensional dynamics can be used to generate arbitrary spatio-
temporal patterns that are highly resistant to noise and perturbations.
To illustrate this, we first trained the RRN to robustly reproduce two
different innate activity patterns in the same manner described above
and then trained two output units to generate handwritten words.
Two distinct brief inputs (50-ms duration) were used to stimulate an
RRN in the absence of noise to generate the two innate trajectories
for training the RRN. After training the RRN on both trajectories,
two output units (representing x and y axes) were trained and then
tested (in the presence of continuous noise) to produce the words
“chaos” and “neuron” in response to inputs 1 and 2, respectively
(Fig. 2a and Supplementary Matlab Routines). One notable feature
of creating locally stable trajectories is that they function as dynamic
attractors: even relatively large perturbations to the RRN can be
self-corrected. This feature can be seen by perturbing the network
activity after the trajectory has already been initiated (Fig. 2b). We
perturbed the network using a 10-ms pulse of an additional input

a

Time (s)

R
ec

ur
re

nt
 u

ni
ts

0 0.5 1.0 1.5 2.0

25

50

75

0

0

0

0

0

0 1
Time (s)

2 3

0 1
Time (s)

2 3

0 1
Time (s)

2 3

0 1
Time (s)

2 3

2

2

0

0

1

1

–2

–2

100

Pre-training Post-training

F
iri

ng
 r

at
e
r

O
ut

pu
t

O
ut

pu
t

Input

Recurrent
units

Output

b Trained

c

window Outside

Figure 1 Complexity without chaos. (a) A random recurrent network
(left) in the chaotic regime is stimulated by a brief input pulse (small
black rectangle at t = 0, right) to produce a complex pattern of activity
in the absence of noise. Right, color-coded raster plot of the activity of
100 of 800 recurrent units. Color-coded activity ranges from −1 (blue)
to 1 (red). (b) Time series of three sample recurrent units (top) and the
output unit (bottom). In the pre-training (left), the blue traces comprised
the innate trajectory subsequently used for training. The divergence of
the blue and red lines demonstrates that two different initial conditions
(before the input) lead to diverging trajectories before training, even in
the absence of ongoing noise. After training (right), however, the time
series are reproducible during the trained window (2.25 s, shaded area).
That is, despite different initial conditions, the blue and red lines trace
very similar paths while still diverging outside of the trained window.
The output unit was trained to pulse after 2 s. (c) Five different runs of
the network above, perturbed with a 10-ms pulse at t = 0.5 s (dashed
line) from an additional input unit randomly connected to the recurrent
network. The trained network (right) robustly reproduces the trained
trajectory, recovering from the perturbation resulting in the timed
response of the output unit at t = 2 s.

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 927

a r t I C l e S

unit randomly connected to all units in the
RRN with an input amplitude of 0.2, injected
at t = 300 ms (approximately the time of the
“h” and “e” during the “chaos” and “neuron”,
respectively). Despite the obvious effect of
the perturbation on the state of the recurrent
network (as evidenced by the altered output), the network returned to
the original trajectory over the course of a few hundred milliseconds,
resulting in increasingly clear writing.

Computational power of innate training
To characterize the computational power of the innate training, we
quantified the timing capacity of the network by determining the
maximal delay after the input that the network could produce (Fig. 3).
The target output function was flat (nonzero) with a simple pulsed
response at different delays after the 50-ms input. A network of 800
neurons (g = 1.5) reliably learned a 5,000-ms delay (note that estimates
of timing capacity must be interpreted in the context of the time con-
stant of the units, 10 ms), but not a 6,000-ms delay, reflecting the finite
memory of such networks28,33 (Fig. 3a and Supplementary Matlab
Routines). To quantify this, we parametrically varied the delay and
compared the performance of the innate training approach to two
additional architectures (Fig. 3b) using the same set of ten initial
networks for all architectures. Together, the three architectures were
the current approach (innate training), in which recurrent plasticity
in the RRN was directed at the innate trajectory, an echo-state/FORCE
approach (echo state), in which the output feeds back onto the RRN
and only the connections from the recurrent to output units were

plastic28,29, and an RRN with recurrent plasticity (fair recurrent plas-
ticity), which provided a control for the amount of plastic connections
involved in the training; thus, as in the innate training architecture,
the weights of 60% of recurrent units were adjusted according to
the error in the output unit29. Both training and testing in this task
occurred with random initial conditions and in the presence of con-
tinuous noise (noise s.d., I0 = 0.001). The innate training of the recur-
rent connections markedly improved the maximal time delay of the
network (defined as the time delay at which performance decays to
0.5), producing, on average, a fivefold improvement (Fig. 3b).

All of the networks were trained for 30 training trials of the RRN
(Fig. 3). To examine the effects of the number of training trials on
performance, we also carried out the same analysis over 10 and
20 training trials. We found that there was a trade-off between the
duration of the training window, the number of training loops, and
performance; shorter windows required fewer training trials to
achieve maximal performance (Supplementary Fig. 1).

The observed timing capacity of approximately 5 s (for a network
of 800 neurons) raises the question of what determines this limit.
There are a number of factors contributing to this capacity, including
the intrinsic richness of the RRN patterns (related to g), noise levels
and ability of the output unit to readout these patterns. However, it

–0.4
–0.4

a

b

–0.3

–0.2

0.2

0.05
Time (s)

1.371

0.05
Time (s)

1.371 0.05
Time (s)

1.283

0.05
Time (s)

Perturbation

1.283

0

–0.4

–0.2

0.2

0

–0.2 –0.1 0

y

y

y

x

x

x

0.1 0.2 0.3

–0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 –0.4–0.6

–0.4

In1

In2
–0.6

–0.2 0 0.40.2

Figure 2 Generation and stability of complex
spatiotemporal motor patterns. (a) Blue traces
represent ten test trials in response to input 1
(In1, left) or input 2 (In2, right) after training;
the background gray line shows the output
target. These test trials were run over different
initial conditions in the presence of continuous
noise (0.001) in all of the 800 recurrent units.
Time is represented by uniformly placed colored
circles (∆t ≅ 18 ms). (b) Test trials run under
the same initial condition in the presence of
continuous noise, but with the addition of a
perturbation at 300 ms (open square). The
perturbation was produced by an additional
10-ms input pulse (not diagrammed) with an
amplitude of 0.2.

a b
Input

Input Output Target

Innate
training

1.0

Echo state Fair
recurrent
plasticity

Innate

P
er

fo
rm

an
ce

 (
R

2) Echo state
Fair

Rec.
units

Output
(pre-training)

Output
(post-training)

Output
(unsuccessful)

0

0

1

0

0

2

1

1

1

20

–1

2 4
Time (s)

6

0.8

0.6

0.4

0.2

0
0 1 2 3 4

Interval (s)
5 6 7 8

Figure 3 Improved timing capacity. (a) An input
pulse (black trace) triggers a chaotic innate neural
trajectory, displayed as a color-coded raster plot
(only 20 of 800 units shown). The linear readout
unit receives input from all the recurrent units (blue
trace), showing irregular pre-training activity. After
the RRN is trained to the innate trajectory (training
window defined by dashed lines), the readout unit
is trained to reproduce a flat target with a pulse at
a given interval (green trace, 5-s duration in this
example). An unsuccessful simulation from a 6-s
interval training is also included as an example.
(b) Performance across different architectures. Ten
RRNs were trained in each of the three displayed
architectures, parametrically varying the delay.
The performance (goodness of reproduction) is
quantified by the Pearson correlation coefficient R2
between target and actual output (green and blue
traces in a); mean ± s.e.m. across networks.

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

928  VOLUME 16 | NUMBER 7 | JULY 2013 nature neurOSCIenCe

a r t I C l e S

is possible to obtain an empirical upper bound on the ‘raw’ encoding
capacity of the network by performing the same analysis shown in
Figure 3b in the absence of any noise and with an untrained recur-
rent network (Supplementary Fig. 2). These results reveal an upper
bound of approximately 20 s. This upper bound is, of course, essen-
tially useless from a computational perspective because the network
is chaotic. But it does provide an empirical ceiling for the temporal
encoding capacity of the model.

Cross-trial variability and timing precision
Implicit in the findings described above is that, after training, there
are different types of dynamics in the same network: while ongoing
activity (or trajectories triggered by untrained inputs) continues to
produce chaotic trajectories, the trained trajectories exhibit locally
stable patterns of activity. Recent experimental studies have also
revealed different types of dynamics in the same network. For exam-
ple, it has been shown that cross-trial variability of neural activity is
quenched in response to stimulus onset34; that is, the variability of
neural ongoing or background activity is substantially larger than that
observed after a stimulus or during a behavioral task. We therefore
quantified the cross-trial variance before and after the brief 50-ms
input in the trained and untrained networks. In addition, to push
the envelope in terms of how much noise the network can handle,
we increased the noise levels during training and testing (as well as
the number of training trials). The variance was calculated over eight
test trials for each of the 800 units over a time period starting 500 ms
before the stimulus. The target delay was 1,000 ms (and the training
window was 1,300 ms). In the presence of continuous very high levels
of noise (I0 = 1.5), each of the recurrent units exhibited substantial
jitter, reminiscent of the membrane voltage fluctuations observed
in vivo, resulting in a high cross-trial variance before stimulation
(t < 0; Fig. 4a). Nevertheless, in response to the input, the trained
network was still able to robustly generate an appropriately timed
output, and, as expected, this robustness reflected a marked decrease
in the variance of the activity after the stimulus onset (Fig. 4a).

Psychophysical studies have carefully characterized the precision
of timed motor responses (see Discussion). The variance of timed
motor responses in the range of up to a few seconds is generally well
captured by a linear relationship with t2, known as the generalized

Weber’s law. To characterize the variance signature of the model, we
trained the output units to generate several consecutive responses at
intervals of 250 ms. The relationship between variance of the peak
response and t2 was well fit by a linear function (R > 0.9 in each of five
networks tested; Fig. 4b). These results establish that stable RRNs can
account for Weber’s law. We stress, however, that, depending on the
noise levels and intervals being trained, nonlinear relationships are
also observed (see Discussion).

Noise analysis, suppression of chaos and stimulus specificity
We next examined two critical issues relating to the stability and
dynamics of the trained recurrent networks. First, we performed a
parametric noise analysis to quantitatively characterize the response
of the trained networks in the presence of high levels of noise. To this
end, we continuously injected different levels of noise into all 800
units of the recurrent network. Second, we examined whether training
specifically altered the noise sensitivity of the trajectory elicited by
the trained input or whether training produced global changes of all
network trajectories. This question can be seen as addressing whether
learning (creating locally stable trajectories) is stimulus specific. Each
of ten different networks (N = 800, g = 1.8) was stimulated with two
different 50-ms long inputs. The neural trajectory produced by input
1 served as the innate training target (duration of 2 s) for recurrent
plasticity, whereas the trajectory triggered by input 2 served as a con-
trol to determine the effect of training on untrained trajectories. After
training, performance was quantified by examining the correlation
in the 2-s window between the trajectories elicited in the presence of
noise in relation to the trajectory in the absence of noise (reproduc-
ibility; see Online Methods). After training, the activity patterns in the
recurrent units were very similar in the absence and in the presence of
continuous noise at levels of I0 = 0.001 and 0.1, but not 1.0 (Fig. 5a).
The average data indicate that in the presence of noise amplitudes of
up to 0.1 performance in response to input 1 was essentially perfect
(Fig. 5b). In these simulations, the RRNs were trained for 20 trials
(noise amplitude during training I0 = 0.001). The reproducibility was
not substantially better with 30 training trials (Supplementary Fig. 3).
However, the sensitivity to noise could be even further decreased by
training in the presence of more noise for more trials (for example,
Fig. 4 and Supplementary Figs. 1 and 3).

Figure 4 Innate training decreases the neural
variance and results in Weber-like timing.
(a) Top, time traces of three sample units over
two different trials (blue and red; N = 800,
g = 1.5, pc = 0.25, 1.3-s training window).
Gaussian noise with a s.d. of I0 = 1.5 was
continuously injected into all recurrent units.
As in Figures 1 and 3, the output unit was
trained to generate a timed pulse (1,000 ms
after the onset of the 50-ms input pulse,
middle). Bottom, neural variance. The variance
of each unit was calculated over eight trials,
and then averaged over all 800 units. There
was a sharp decrease in variance produced by
the onset of the stimulus, which persisted over
many seconds before gradually ramping back
up to baseline (data not shown). The dashed
line shows the neural variance before training:
because the input clamps network activity,
stimulus onset also produced a decrease in the
variance, but it rapidly increased after stimulus offset. The mean s.d. across units at the input of the input pulse were 0.037 and 0.024, before and
after training, respectively. (b) Example of two simulations in which the output unit was trained to produce events at 250, 500, 750, 1,000 and
1,250 ms (top). Variance across trials was estimated by calculating the time of the peak of each response. The relationship between variance and t2
was well fit by a linear function (bottom). I0 = 1.0.

25

50

75

100

200

100

0
0.52 12 1.252 0.52 12 1.252

200

100

0

0 0.5 1.0
Time (s)

R = 0.92 R = 0.98

Time squared (s2) Time squared (s2)

Time (s)
1.5 0 0.5 1.0 1.5

b

O
ut

pu
t u

ni
t (

tr
ia

ls
)

V
ar

ia
nc

e

0

a

0

F
iri

ng
 r

at
e
r

0

0.4

0.2

0
–0.25 0 0.25 0.50 0.75

Time (s)
1.00

Pre-train
Post-train

1.25

1.0

0O
ut

pu
t

V
ar

ia
nc

e

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 929

a r t I C l e S

Training to the input 1 trajectory also improved the reproducibility
of input 2, but, in addition to the magnitude of the improvement,
there was a fundamental difference between the trained and untrained
trajectories. The increased reproducibility of both the trained and
untrained patterns does not imply that either of them was no longer

chaotic, but rather provides an estimate of how much two trajectories
overlap in a 2-s window in response to different levels of noise. Thus,
to formally characterize the behavior of the networks before and after
training, we quantified the divergence of trajectories by estimating
the largest Lyapunov exponent (λ), which provides a measure of the
rate of separation of two nearby points in state space, a standard way
to determine whether a dynamical system is chaotic. For each of the
ten networks, λ was numerically estimated for the trajectories elicited
by input 1 and input 2, both before and after training (Fig. 6) and
both inside and outside of the training window. Before training, both
trajectories exhibited positive exponents, indicative of exponential
divergence and, thus, chaotic dynamics. After training, the mean λ
across networks for input 1 was not significantly different from zero
(λ = 0.05 ± 0.45, P = 0.90), suggestive of local stability. The mean λ for
input 2 also decreased, but remained above zero (10 of 10 networks).
The dynamics in response to both inputs outside the training win-
dow (between t = 8 s and t = 10 s) exhibited chaotic dynamics (8 of
10 networks) or entered stable limit cycles (2 of 10). Which of these
regimes occurred was dependent in part on the initial structure of
the network and the extent of the training: lower initial values of λ
and/or more training loops were more likely to lead to a limit cycle
(data not shown). Notably, a 2 × 3 two-way ANOVA with repeated
measures (factors input and training) revealed a significant interac-
tion effect (F2,18 = 20.7, P = 2 × 10−5), meaning that λ post-training
was differentially affected by input 1.

These results indicate that the original innate trajectory was trans-
formed into a locally attracting trajectory, best described as a sta-
ble transient channel to the chaotic attractor (see Supplementary
Modeling for a discussion of other relevant chaotic phenomena).
Thus, in a local sense, the chaotic behavior of the trained trajec-
tory was ‘tamed’ by training. In contrast, the untrained trajectories
remained chaotic.

0 1 2

0

0

0

Time (s)

0 1 2

0

0

0

Time (s)

F
iri

ng
 r

at
e
r

0

10–3 10–2 10–1 100 101

1 2

0

0

0

Time (s)

Noise amplitude I0

F
iri

ng
 r

at
e
r

0 1 2

Post-train, In1Pre-train, In1

No noise

Noise
amp

I0 = 0.001

Noise
amp

I0 = 0.1

Noise
amp

I0 = 1.0

P
er

fo
rm

an
ce

1.00
Pre 1

F
iri

ng
 r

at
e
r

a

Time (s)

0 1 2
Time (s)

0 1 2
Time (s)

b

With noise

0.75

0.50

0.25

0

Post 1

Pre 2

Post 2

Figure 5 Robustness against noise. (a) Activity of three sample units in
the recurrent network at three different levels of noise. Blue indicates
template trajectory (no noise) and red indicates test trajectory (continuous
noise in each unit). The s.d. of the noise current I0 was 0.001, 0.1
and 1.0 (top to bottom; noise amplitudes as a fraction of total absolute
incoming synaptic weights to each unit averaged across units are
0.007%, 0.7% and 7%, respectively). (b) Average data from ten different
networks. Performance was measured as the averaged Pearson correlation
coefficient between template (blue) and test trajectories (red) for each
condition (after Fisher transformation), mean ± s.e.m. across networks.

Figure 6 Suppression of chaos. (a) Average logarithmic distance
between original and perturbed trajectories for each of ten networks
for the trajectories triggered by input 1 (the trained input) before and
after training. A straight portion with a positive slope indicates chaotic
dynamics; the value of the slope is the estimate for the largest Lyapunov
exponent (λ). After training, the original and perturbed trajectories no
longer diverged (except for one network). (b) The pre-training trajectories
triggered by both inputs displayed positive λ, indicative of chaotic
dynamics (input 1: λ = 7.12 ± 0.35, mean ± s.e.m. across the ten
networks, values significantly different from zero, t test P = 10−8; input 2:
λ = 7.29 ± 0.45, P = 4 × 10−8; all reported λ values have units of s−1).
After training, the trajectory triggered by input 1 was locally stable, as
indicated by a near zero mean λ (λ = 0.05 ± 0.45, P = 0.90); input 2,
however, still produced diverging trajectories as evidence by λ significantly above zero (λ = 3.05 ± 0.70, P = 0.0016). After training, the trajectories
outside the trained window had a positive mean λ in response to both inputs (input 1: λ = 2.75 ± 0.70, P = 0.0035; input 2: λ = 2.27 ± 0.60,
P = 0.0039), with some networks displaying chaotic activity (8 of 10) and some entering limit cycles (2 of 10). The interaction effect was significant
(F2,18 = 20.7, P = 2 × 10−5, a 2 × 3 two-way ANOVA with repeated measures, factors input and training). In addition to this stimulus-specific effect
of training, there was a global nonspecific effect of decreased divergence of trajectories after training, represented by a lower, although still positive,
λ for post-train input 2 and post-outside inputs 1 and 2.

8
a b

Pre-train (ln1)
Post-train (ln1)

6

4

2

A
ve

ra
ge

 lo
ga

rit
hm

ic
di

st
an

ce
 b

et
w

ee
n

tr
aj

ec
to

rie
s

Lo
ca

l l
ar

ge
st

 L
ya

pu
no

v
ex

po
ne

nt
 λ

 (s
–1

)

0

8

6

4

2

0–2

0 0.25 0.50 Pre-train Post-train

Input 1
Input 2

Post-outside1.00
Time (s)

0.75

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

930  VOLUME 16 | NUMBER 7 | JULY 2013 nature neurOSCIenCe

a r t I C l e S

In summary, while Figure 5b demonstrates an improvement in the
reproducibility of the untrained trajectory, Figure 6 establishes that
the untrained trajectory is still chaotic—that is, in response to a per-
turbation the trajectories will still diverge at an exponential rate. The
practical meaning of these results is that, in response to fairly large
perturbations, the trained trajectory exhibits the desirable feature of
being able to ‘find its way back’ after being perturbed, whereas, in
response to small or large perturbations, the untrained trajectory will
continue to diverge off on some new path (albeit at a slower rate than
before training), even though it can stay on track for a few seconds in
response to tiny perturbations (Supplementary Fig. 4).

Mechanisms: network structure after training
To characterize the relationship between the observed behavior and
the structure of the trained recurrent networks, we examined the
distribution of weights and the connectivity patterns before and after
training. The distribution of the nonzero recurrent weights changed
very consistently (Fig. 7a). Innate training led to a non-Gaussian dis-
tribution with long tails (note that the number of nonzero weights
does not change because training does not alter which units are con-
nected), meaning that the median absolute synaptic weight increased
(pre-train median ± mean absolute deviation from the median (MAD)
across 10 networks: 0.1358 ± 0.0004; post-train: 0.147 ± 0.001; paired
Wilcoxon sign-rank test, P = 0.002). Shuffling the weights (but not
the connections) of the recurrent matrix WRec after training left the
weight distribution untouched, but the stability properties of the
network were destroyed (Fig. 7b). Thus, it’s not simply the statistics
of the synaptic weights or the binary connectivity what defines the
network behavior. As an example of the importance of precise wir-
ing rather than the distribution, we found that post-training weights
from bidirectional connections were significantly stronger on aver-
age than those from unidirectional connections (in absolute value;
unidirectional median ± MAD across networks: 0.145 ± 0.001; bidi-
rectional: 0.161 ± 0.003; paired Wilcoxon sign-rank test, P = 0.002;
Supplementary Fig. 5). Notably, both the long-tailed weight distribu-
tion and the bidirectional versus unidirectional connectivity features
that we observed have been reported in the rat visual cortex35.

To explore the role of the connectivity structure of the trained
networks, we computed the distribution of local clustering coeffi-
cients that are associated with recurrency and self-sustained activity
(see Online Methods)36. The cyclic clustering coefficients provide a

 measure of the number of neuron triplets connected in a circular fash-
ion, weighted by their synaptic strengths. Innate training increased
the median cyclic clustering coefficients (pre-train median ± MAD
across networks: 0.01270 ± 0.00005; post-train: 0.0139 ± 0.0001; paired
Wilcoxon sign-rank test, P = 0.002) and made the distribution of the
clustering coefficients have a longer right tail and a non-Gaussian
distribution (Fig. 7c). Notably, innate training also resulted in an
increase in the non-cyclic clustering coefficients (Pre-train median ±
MAD across networks: 0.01280 ± 0.00005; Post-train: 0.0142 ±
0.0002; paired Wilcoxon sign-rank test P = 0.002; Fig. 7d), leading
to a stronger short-range feedforward structure.

To determine whether the observed dynamics reflected the specific
wiring signature of the trained networks, we calculated both cyclic
and non-cyclic clustering distributions after shuffling the weights
of the trained networks (Fig. 7c,d). Shuffling significantly altered
the distribution of the cyclic distribution more than that of the non-
cyclic coefficients (two-sample Kolmogorov-Smirnov test between
post-train and post-train shuffled for every network, P < 0.002 for all
cyclic distributions; P values of non-cyclic distributions ranged from
0.002 to 0.11), suggesting that the presence of cyclic clusters may have
be important for the ability of an RRN to generate complex, yet sta-
ble, neural trajectories. However, as noted above, an untrained input
can produce a chaotic trajectory after training; thus, it is clear that
some interaction between the input and the structure of the recurrent
network is involved in the resulting dynamics.

As an initial attempt to correlate the stable activity pattern with
the structure of the network, we examined the correlation between
all of the plastic recurrent weights Wij of a network and the correla-
tion in firing rates of the pre- and postsynaptic units ri and rj during
the trained innate trajectory (Supplementary Fig. 6). There was a
moderate correlation (R = 0.355 ± 0.005, P < 10−16 for each of five
networks examined) between the initial weights and the presynaptic-
postsynaptic correlations. Contrary to our expectations, there was
actually a small decrease in this correlation after training (R = 0.322 ±
0.005; P < 10−16 for each of the five networks). Overall, these results
indicate that the stability of the trained trajectory is not a simple
optimization of the weights on the basis of the mean correlation of
presynaptic-postsynaptic activity.

b

0

0

0

0

0

0

0 0.5 1.0 1.5

0 0.5 1.0 1.5

2.0

F
iri

ng
 r

at
e
r

2.0
Time (s)

F
iri

ng
 r

at
e
r

Post-train

Post-train shuffled
Run 1
Run 2

Nonzero recurrent weights

a

–1.0 –0.5 0 0.5 1.0

F
re

qu
en

cy
 (

lo
g) 104

102

100

Pre-train
Post-train

c Pre-train
Post-train
Post-train
shuffled

F
re

qu
en

cy

150

100

50

0

Cyclic clustering coefficients
0.010 0.014 0.018

d Pre-train
Post-train
Post-train
shuffled

F
re

qu
en

cy

300

Non-cyclic clustering coefficients

200

100

0
0.01 0.02 0.03

Figure 7 Effects of training on network structure. (a) Distribution of the
nonzero recurrent weights. Thin lines represent the distributions of the
weights of ten networks before (blue) and after (red) training. Thick lines
represent the averages across the ten networks. Pre-training: networks are
Gaussian by construction. Post-training: all networks are non-Gaussian
(Lilliefors test, P < 0.001 for each of the ten networks). Median absolute
synaptic weights significantly increased after training (pre-train median ±
MAD across ten networks, 0.1358 ± 0.0004; post-train, 0.147 ± 0.001;
paired Wilcoxon sign-rank test, P = 0.002). (b) Numerical simulation of one
trained network before and after shuffling the weights of its recurrent matrix
WRec (two runs each, without noise), showing that the stability properties of
the shuffled network are lost despite having the same weight distribution
and the same connectivity. (c) Distribution of local weighted cyclic
clustering coefficients. Training leads to an increase in the cyclic clustering
coefficients. Shuffling (green) of the weights of the post-train recurrent
matrix WRec significantly changed the cyclic clustering distribution
(two-sample Kolmogorov-Smirnov test between post-train and post-train
shuffled for every network, P < 0.002 for all cyclic distributions). Insets
reflect the possible circuit motifs in relation to a reference unit shown in
gray. (d) Distribution of local weighted non-cyclic clustering coefficients.
Training also increased the median non-cyclic clustering coefficients.

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 931

a r t I C l e S

DISCUSSION
Here we describe a robust and general mechanism by which
recurrent neural networks could encode time and generate complex
spatiotemporal patterns. The model builds on a number of previous
studies10,11,16,28,29, but is unique in the extent to which it behaves as
a dynamic attractor—that is, the network can return to and complete
a trained pattern even when the entire recurrent network is substan-
tially perturbed. Indeed, in the sense that previously chaotic trajec-
tories are turned into stable ones, it can be said that this approach
tames chaos. In addition to the locally stable nonperiodic trajectories,
the network exhibited coexisting chaotic trajectories. These features
are absent from previous models operating in the high-gain regime,
including those that used controlled feedback or that incorporated
recurrent plasticity driven by the output error (echo state and fair
recurrent plasticity architectures; Fig. 3)29. Here local stability was
achieved by tuning the weights of the recurrent network to repro-
duce an innate trajectory, effectively teaching the network to robustly
reproduce one of the arbitrary trajectories it can already generate.
The advantage of training on an innate trajectory is that it guarantees
that the network is attempting to learn an attainable trajectory. The
outcome of training is that the learned trajectories are locally stable
over many seconds, despite the fact that all of the units in the network
have a 10-ms time constant.

Implications for the neural mechanisms of timing
A long-standing and ongoing debate on the neural basis of tim-
ing relates to where in the brain temporal computations occur and
whether timing is a result of centralized (dedicated) or general (intrin-
sic) mechanisms3. Our view is that, precisely because timing is critical
to so many forms of processing, it is a general computation performed
by recurrent neural networks. For this reason, our model is presented
as a general computational framework of recurrent networks that
may be engaged in a number of different areas depending on the task
at hand. Indeed, this view is supported by a growing experimental
literature that suggests that a large number of different brain areas
are involved in timing. These areas include, but are not limited to,
the cerebellum, basal ganglia, hippocampus, and motor, frontal and
parietal cortex1,2,37–43.

Traditionally, the experimentally observed variance signature of
timed responses has been used as an important criterion to evalu-
ate models of timing. In a given task, timing variability is often well
described by Weber’s law, meaning that there is a constant ratio
between the s.d. of the response and the interval being timed2. For
motor timing on the scale of up to a few seconds, it is established
that variability is best accounted for by Weber’s generalized law, in
which the variance of the response is linearly related to time squared
(plus an additional variance term). The timing described here is well
captured by the generalized Weber function, but we emphasize that
this result is dependent on parameters (Fig. 4b). Specifically, vari-
ance can become either sub- or supralinear depending on the overall
level of noise and the timescale being examined; with very low noise
levels, the relationship tends to be sublinear, and, over time spans that
exceed the timing capacity of the network, the relationship becomes
supralinear. Nevertheless, it is relevant that the model can capture the
experimentally observed linear relationship between variance and
time squared.

When considering the neural mechanisms of timing, it is useful to
distinguish between sensory and motor timing tasks. In contrast with
sensory timing, motor timing requires the active internal generation of
events. For this reason, we propose that sensory and motor timing may
rely on networks operating in low-gain (no self-sustaining activity)

and high-gain regimes, respectively. Previous studies have demon-
strated that randomly connected recurrent networks in low-gain
regimes can discriminate temporal stimuli on the basis of hidden
states (for example, short-term synaptic plasticity)13,16,44. In our
model, timing arises entirely from the active state of neural networks.
For this reason, our framework is particularly relevant to motor tasks,
which require the active generation of temporal or spatiotemporal
patterns rather than the discrimination of the temporal features of
sensory stimuli.

Biological plausibility
Our results provide an existence proof that recurrent plasticity can
suppress the chaotic behavior of specific trajectories of recurrent net-
works. Nevertheless, it remains to be determined whether recurrent
neural networks in the brain operate in similar regimes. And if so,
how such regimes are achieved, given that the learning rule that we
used here is not biologically plausible.

Our work was inspired by a study that used the recursive least
square algorithm to tune the weights of the recurrent units onto the
output units29. Whether applied to the output or recurrent units, the
approach relies on a supervised ‘online’ tuning of the weights to mini-
mize the error between the actual firing rate of a unit and its target
rate. Although the approach is ‘delta rule like’ in that it minimizes an
error, it is computationally sophisticated and, as applied here, operates
on a unrealistically fast timescale; however, as previously noted, there
may be conditions under which more plausible rules can be used29.

In addition, there is a separate target pattern that guides plasticity
for each unit in the network in our implementation: a highly implau-
sible biological scenario. Nevertheless, in one sense, the rule is more
biologically plausible than traditional supervised learning rules: the
rule does not require an external teacher to figure out the correct
target pattern because the target trajectory is the innate internally
generated trajectory. Thus, more realistic versions of this approach
may be viable because which trajectories are ‘burned in’ is largely
irrelevant, what matters is that networks settle on one (or a few) of
the immense set of possible innate trajectories.

It is important to stress that our work was based on simple fir-
ing-rate units, as opposed to spiking units. Chaos control and
chaos suppression in spike-based models present a more complex
problem21,23–25 and our work does not directly speak to solving the
problem of chaos in spiking networks. An initial step toward trans-
lating the current work to spiking models will be to first create spik-
ing networks that exhibit the complex balanced dynamic regimes
similar to the untrained firing-rate networks studied here. Although
this has not yet been achieved, recent advances in understanding
the dynamics of recurrent spiking networks45 and the generation of
simple trajectories in spiking recurrent networks46 have taken steps
in this direction.

Structure and mechanisms underlying stable trajectories
The presence of stable trajectories in an otherwise chaotic state space
raises important questions in neuroscience and nonlinear systems as
to why some network architectures exhibit this dynamic regime. In
linear recurrent networks, the structure of the network, as analyzed
through a number of techniques, including eigen and Schur decom-
positions, provides valuable keys to understand the dynamics of such
systems47. However, predicting the behavior of a continuous-time
nonlinear network from its connectivity matrix is still not possible in
the general case. In addition, a key observation is that the interaction
between the input connectivity and recurrent weights is important
for the manner in which the network responds to external stimuli;

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

932  VOLUME 16 | NUMBER 7 | JULY 2013 nature neurOSCIenCe

a r t I C l e S

as shown here, the same network can respond very differently to dif-
ferent inputs after training (Figs. 2–6). Steps toward understanding
this interaction and the dynamics in response to external inputs have
been taken for both discrete-time linear networks33 and continuous-
time nonlinear networks30, but it remains impossible in continuous
nonlinear networks to predict the modes of activity or describe why
some trajectories are locally stable and others are not.

Despite the limitations in mathematically analyzing and pre-
dicting the dynamics of nonlinear networks, it is interesting that
analysis of the connectivity patterns and network structure revealed
highly reproducible, non-random signatures in the recurrent weight
matrices. For example, innate training produced a robust increase in
the median absolute weight, resulting in a non-Gaussian long-tailed
weight distribution (Fig. 7a).

After training, there were global changes in the entire family of tra-
jectories generated by the RRN. The untrained trajectories diverged at
a slower rate, but were still not stable in the sense that they could not
return to their original path after a perturbation. The changes cap-
tured by the statistics and structure of the connectivity matrix likely
contribute to the global changes in the untrained trajectories, but not
the trajectory specific training effects, as these are specific to a small
subset of trajectories and, at some level, must rely on the creation of
specific basins of attraction around the trained trajectories.

Conclusions and experimental predictions
In our model, recurrent cortical circuits would exhibit preferred or
learned neural trajectories. That is, although spontaneously active
networks exhibit complex, but unstable, trajectories, trained stimuli
elicit preferred stable trajectories that can last many seconds and are
highly robust to noise. The presence of these two modes of activity is
consistent with experimental evidence34, and we found (Fig. 4) that
the networks studied here reproduce the experimentally observed
decrease in neural variance in response to stimulus onset. An experi-
mentally testable prediction is that the magnitude of the variance drop
and its duration is stimulus specific and dependent on learning. That
is, the decrease in variance in response to overtrained stimuli will be
larger and longer lasting than that to novel or irrelevant stimuli.

Our results demonstrate that, in principle, recurrent plasticity can
locally suppress chaos and substantially enhance the computational
power of recurrent networks. A phenomenon observed here is that of
dynamic attractors (locally stable transient channels), which account
for the ability of a network to not only generate complex patterns (for
example, the hand-writing patterns of Fig. 2), but to be able to return
to the pattern in response to large perturbations. To the best of our
knowledge, this is the first description of a high-dimensional nonlinear
system capable of this level of robustness. The demonstration of how to
create stable trajectories suggests a previously unknown neural compu-
tational framework. Specifically, an influential theory in neuroscience
has been that some computations are instantiated by the activity of
neural networks converging to steady-state patterns that represent
fixed-point attractors in neural state space48,49. In contrast with these
standard attractor models, in our framework (dynamic attractor com-
puting), computations arise from the voyage through stable channels
in state space rather than the arrival at any one given location.

It has often been suggested that neural circuits may operate on the
edge of chaos, referring to a dynamic regime that offers desirable com-
putational features while avoiding chaotic behavior. But theoretical
and experimental studies have shown that the brain does exhibit full-
blown chaotic regimes21–25,50, and experimental evidence and com-
mon sense also tell us that neural circuits can generate reproducible
neural trajectories that are critical for sensory and motor processing.

Our results reconcile these observations and suggest that, rather than
operating on the edge of chaos, the same network can produce both
locally stable and chaotic trajectories.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary information is available in the online version of the paper.

AcknoWledgMentS
We thank A. Garfinkel and R. Huerta for helpful discussions and comments
on the manuscript. This work was supported by the US National Institutes
of Health (NS077340), the National Science Foundation (II-1114833), the
Pew Charitable Trusts, and Consejo Nacional de Investigaciones Científicas
y Técnicas (Argentina).

AUtHoR contRIBUtIonS
R.L. and D.V.B. designed the experiments and wrote the code, and R.L. performed
most of the simulations and data analysis. R.L. designed and performed the
stability and structural experiments. D.V.B. conceived of the approach, and
R.L. and D.V.B. wrote the paper.

coMPetIng FInAncIAl InteReStS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Mauk, M.D. & Buonomano, D.V. The neural basis of temporal processing. Annu.
Rev. Neurosci. 27, 307–340 (2004).

2. Buhusi, C.V. & Meck, W.H. What makes us tick? Functional and neural mechanisms
of interval timing. Nat. Rev. Neurosci. 6, 755–765 (2005).

3. Ivry, R.B. & Schlerf, J.E. Dedicated and intrinsic models of time perception. Trends
Cogn. Sci. 12, 273–280 (2008).

4. Church, R.M., Meck, W.H. & Gibbon, J. Application of scalar timing theory to
individual trials. J. Exp. Psychol. Anim. Behav. Process. 20, 135–155 (1994).

5. Durstewitz, D. Self-organizing neural integrator predicts interval times through
climbing activity. J. Neurosci. 23, 5342–5353 (2003).

6. Simen, P., Balci, F., de Souza, L., Cohen, J.D. & Holmes, P. A model of interval
timing by neural integration. J. Neurosci. 31, 9238–9253 (2011).

7. Miall, C. The storage of time intervals using oscillating neurons. Neural Comput. 1,
359–371 (1989).

8. Matell, M.S., Meck, W.H. & Nicolelis, M.A. Interval timing and the encoding of
signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci. 117,
760–773 (2003).

9. Ahrens, M.B. & Sahani, M. Observers exploit stochastic models of sensory change
to help judge the passage of time. Curr. Biol. 21, 200–206 (2011).

10. Buonomano, D.V. & Laje, R. Population clocks: motor timing with neural dynamics.
Trends Cogn. Sci. 14, 520–527 (2010).

11. Medina, J.F. & Mauk, M.D. Computer simulation of cerebellar information processing.
Nat. Neurosci. 3 (suppl.), 1205–1211 (2000).

12. Buonomano, D.V. & Mauk, M.D. Neural network model of the cerebellum: temporal
discrimination and the timing of motor responses. Neural Comput. 6, 38–55
(1994).

13. Buonomano, D.V. & Merzenich, M.M. Temporal information transformed into a
spatial code by a neural network with realistic properties. Science 267, 1028–1030
(1995).

14. Durstewitz, D. & Deco, G. Computational significance of transient dynamics in
cortical networks. Eur. J. Neurosci. 27, 217–227 (2008).

15. Rabinovich, M., Huerta, R. & Laurent, G. Transient dynamics for neural processing.
Science 321, 48–50 (2008).

16. Buonomano, D.V. & Maass, W. State-dependent computations: spatiotemporal
processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).

17. Hahnloser, R.H.R., Kozhevnikov, A.A. & Fee, M.S. An ultra-sparse code
underlies the generation of neural sequence in a songbird. Nature 419, 65–70
(2002).

18. Long, M.A., Jin, D.Z. & Fee, M.S. Support for a synaptic chain model of neuronal
sequence generation. Nature 468, 394–399 (2010).

19. Crowe, D.A., Averbeck, B.B. & Chafee, M.V. Rapid sequences of population activity
patterns dynamically encode task-critical spatial information in parietal cortex.
J. Neurosci. 30, 11640–11653 (2010).

20. Li, J.X. & Lisberger, S.G. Learned timing of motor behavior in the smooth eye
movement region of the frontal eye fields. Neuron 69, 159–169 (2011).

21. London, M., Roth, A., Beeren, L., Hausser, M. & Latham, P.E. Sensitivity
to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature 466, 123–127 (2010).

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3405
http://www.nature.com/doifinder/10.1038/nn.3405
http://www.nature.com/doifinder/10.1038/nn.3405
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 933

a r t I C l e S

22. Izhikevich, E.M. & Edelman, G.M. Large-scale model of mammalian thalamocortical
systems. Proc. Natl. Acad. Sci. USA 105, 3593–3598 (2008).

23. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

24. Brunel, N. Dynamics of networks of randomly connected excitatory and inhibitory
spiking neurons. J. Physiol. Paris 94, 445–463 (2000).

25. Banerjee, A., Series, P. & Pouget, A. Dynamical constraints on using precise spike
timing to compute in recurrent cortical networks. Neural Comput. 20, 974–993
(2008).

26. Sompolinsky, H., Crisanti, A. & Sommers, H.J. Chaos in random neural networks.
Phys. Rev. Lett. 61, 259–262 (1988).

27. Monteforte, M. & Wolf, F. Dynamic flux tubes form reservoirs of stability in neuronal
circuits. Phys. Rev. X 2, 041007 (2012).

28. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304, 78–80 (2004).

29. Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic
neural networks. Neuron 63, 544–557 (2009).

30. Rajan, K., Abbott, L.F. & Sompolinsky, H. Stimulus-dependent suppression of chaos
in recurrent neural networks. Physical Rev. E Stat. Nonlin. Soft Matter Phys. 82,
011903 (2010).

31. Doya, K. in Proc. IEEE Int. Symp. Circuits and Syst. 2777–2780 (1992).
32. Jaeger, H., Maass, W. & Principe, J. Special issue on echo state networks and liquid

state machines. Neural Netw. 20, 287–289 (2007).
33. Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems.

Proc. Natl. Acad. Sci. USA 105, 18970–18975 (2008).
34. Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread

cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).
35. Song, S., Sjostrom, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom

feature of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e66 (2005).
36. Watts, D.J. & Strogatz, S.H. Collective dynamics of ‘small-world’ networks.

Nature 393, 440–442 (1998).
37. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time

in the macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

38. Bueti, D., Lasaponara, S., Cercignani, M. & Macaluso, E. Learning about
time: plastic changes and interindividual brain differences. Neuron 75, 725–737
(2012).

39. Coull, J. & Nobre, A. Dissociating explicit timing from temporal expectation with
fMRI. Curr. Opin. Neurobiol. 18, 137–144 (2008).

40. Merchant, H., Zarco, W., Pérez, O., Prado, L. & Bartolo, R. Measuring time
with different neural chronometers during a synchronization-continuation task.
Proc. Natl. Acad. Sci. USA 108, 19784–19789 (2011).

41. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally generated
cell assembly sequences in the rat hippocampus. Science 321, 1322–1327
(2008).

42. Ivry, R.B., Keele, S.W. & Diener, H.C. Dissociation of the lateral and medial
cerebellum in movement timing and movement execution. Exp. Brain Res. 73,
167–180 (1988).

43. Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M. & Mauk, M.D. Timing
mechanisms in the cerebellum: testing predictions of a large-scale computer
simulation. J. Neurosci. 20, 5516–5525 (2000).

44. Buonomano, D.V. Decoding temporal information: a model based on short-term
synaptic plasticity. J. Neurosci. 20, 1129–1141 (2000).

45. Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced
cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505
(2012).

46. Liu, J.K. & Buonomano, D.V. Embedding multiple trajectories in simulated recurrent
neural networks in a self-organizing manner. J. Neurosci. 29, 13172–13181
(2009).

47. Goldman, M.S. Memory without feedback in a neural network. Neuron 61, 621–634
(2009).

48. Hopfield, J.J. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

49. Wang, X.J. Synaptic reverberation underlying mnemonic persistent activity. Trends
Neurosci. 24, 455–463 (2001).

50. Skarda, C.A. & Freeman, W.J. How brains make chaos in order to make sense of
the world. Behav. Brain Sci. 10, 161–173 (1987).

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCe doi:10.1038/nn.3405

ONLINE METHODS
network equations. The network dynamics of the model is described by26,28

t dx
dt

x W r W y I

z W

i
i

j

N

ij j
j

ij j i

j

N

ij

= − + + +

=

= =

=

∑ ∑

∑

1 1

2

1

Rec In noise

Outrrj

where ri = tanh(xi) represents the activity level, often referred to as the firing rate
(even though it takes on negative values) of recurrent unit xi (i = 1, …, N). The
variable y represents the input units (i = 1,2), and z is the output. N = 800 is the
network size (number of recurrent units) and τ = 10 ms is the unit time constant.
The recurrent connectivity is represented by the sparse N × N matrix WRec, with
nonzero initial values randomly chosen from a Gaussian distribution with zero
mean and s.d., g p Nc/ , where g is the synaptic strength scaling coefficient, and
pc = 0.1 is the connection probability between units (pc = 0.25 was used because
it enhanced resistance to noise; Fig. 4). As with previous studies, in the high-gain
regime, we used g values in the range of 1.5 (Figs. 2 and 4) to 1.8 (Figs. 1, 3 and
5–7)29,30; performance was very similar across a wide range of g values, whereas
higher values tended to generate more complex trajectories and require more
training. The activity of the network was readout by z through the 1 × N output
connectivity matrix WOut, with initial values drawn from a Gaussian distribution
with zero mean and s.d., 1/ N . The input weight vector, WIn, is drawn from a
Gaussian distribution with zero mean and unit variance. The values of y are 0,
except during an input pulse comprising a step with 50-ms duration and ampli-
tude of 5 (except for Fig. 2, where the amplitude was 2). In the case of multiple
inputs, values of both inputs were zero, except during the time window in which
one input was briefly turned on in a given trial. A noise current is included as a
N × 1 random vector Inoise drawn from a Gaussian distribution with a s.d. of I0
and a zero mean. I0 was constant during a trial and equal to 0.001 unless stated
otherwise (training was successful with s.d. as high as 0.1, as in Fig. 4; however,
many more training trials are need to converge).

In the control simulations when feedback from the output unit was present
(echo-state architecture), an additional feedback term was included in equation (1),
leading to

t dx
dt

x W r W y W z I

z

i
i

j

N

ij j
j

ij j i
Fb

i

j

N

= − + + + +

=

= =

=

∑ ∑

∑

1 1

2

1

Rec In noise

WW rij j
Out

This equation represents the traditional echo-state architecture28,51. It is the same
as equation (1), except for the presence of the feedback term WFb·z, where WFb
is a length N vector with elements drawn from a uniform distribution between
−1 and 1. In this architecture, only the WOut weights were plastic, and obeyed the
same learning rule for all architectures (see below)29. It is possible that the poor
performance of the echo state architecture (Fig. 3) was poor because the feedback
was flat throughout most of the trial. Thus, we ran additional simulations with
a separate feedback unit that learned its innate output pattern. Performance was
still substantially worse than that of innate training architecture.

Recurrent learning rule, innate training. The key step to the approach defined
here is to train the recurrent network dynamics to generate a pattern that
the RRN is already capable of producing, as opposed to the conventional strat-
egy of training it to produce a pattern based on the desired output. We refer
to the target pattern as the innate trajectory and define it as the trajectory gen-
erated in the absence of noise and starting from an arbitrary initial condition;
there are of course a vast number of potential innate trajectories, and there is
nothing special about any of them except that they clearly fall in the domain of
trajectories that the network can generate. The innate trajectory could be chosen
in the presence of noise; here, the innate trajectory was generated in the absence of
noise by a specific input simply because it allows for a fairly standardized defini-
tion. In all results presented here, the target (innate) trajectory of the recurrent
network was chosen in the absence of noise. Choosing the innate trajectories
in the presence of noise yielded similar results (under the conditions tested;

(1)(1)

(2)(2)

Supplementary Fig. 7). However, choosing a foreign trajectory (that is, training
a network on the innate trajectory of another network) did not produce effec-
tive training (at least over the 30 training trials examined). We did not address
the problem of what constitutes an achievable or an optimal target trajectory.
Rather, given that the precise structure of the stable target trajectory is largely
irrelevant, we provide a practical choice of a recurrent target by using an innate
pattern; this approach guarantees that the target falls in the domain of possible
trajectories for the network.

The learning rule used to train the plastic recurrent units is based on the
recursive least squares (RLS) rule52, which we implemented according to the
FORCE (first-order reduced and controlled error) algorithm29. The rule was
applied to a subset of the recurrent synapses in the network; similar performance
was observed in the range of 60–95% (most simulations presented here imposed
the condition that all the synapses onto 60% of the units were plastic). The weight
update for the synapses (plastic) onto recurrent unit i was

W t W t t e t P t r tij ij i
k i

jk
i

k
Rec Rec

B
() () () () ()

()
= − −

∈
∑∆

where B(i) is the subset of recurrent units presynaptic to unit i, and ei represents
the individual error of unit i defined by

e t r t R ti i i() () ()= −

where ri(t) is the activity of unit i before the weight update, and Ri(t) is the innate
target activity of that unit. The innate activity Ri(t) is recorded before the train-
ing begins by letting the network evolve in time under the same conditions that
will be used during training (same input brief input, but in the absence of noise).
Pi (one for each recurrent plastic unit i) is a square matrix that estimates the
inverse of the correlation matrix of the presynaptic inputs to element i (B(i)),
and is updated by

P t P t t
P t t r t r t P

jk
i

jk
i m i n i jm

i
m n nk

i

() ()
() (() ()() ()= − −
−∈ ∈∑ ∑

∆
∆B B tt t

r t P t t r tm i n i m mn
i

n

−

+ −∈ ∈∑ ∑
∆

∆

)

()() ()() ()1 B B

training procedure. Harvest an innate trajectory by letting the network evolve
according to equation (1) in response to the input in the absence of noise;
record the activity Ri(t) for all recurrent units in the training window defined by
[toff:tend], where toff is the offset time of the input pulse and tend is the end point of
the training window. Train the recurrent plastic weights with the innate algorithm
as defined by equations (3–5) (the network evolves according to equation (1)) in
the presence of noise and with random initial conditions for a number of training
loops (training generally converges in between a few loops and a few dozen loops,
depending on the duration of the training window); Inoise is Gaussian with zero
mean and s.d. I0. After training the recurrent units, the readout unit can also be
trained using previously proposed algorithms in the interval [toff:tend]. Test (run)
the network with the trained (fixed) set of recurrent and readout weights, again
in the presence of noise and random initial conditions.

Over the course of training the total change in synaptic weights converges
to an asymptote, but generally does not reach zero because plasticity is driven
by noise. In the simulations shown here, a fixed number of training loops was
used. In the simulations in Figures 1–3 and 5–7, there were between 20 and 30
training trials, which led to fairly asymptotic performance in these networks
(Supplementary Fig. 3). In the high-noise simulations of Figure 4, hundreds of
training trials were used.

Recurrent weights learning rule for control architecture. The learning rule for
the recurrent units in the control simulations of fair recurrent plasticity architec-
ture (Fig. 3) was implemented as described previously29. The implementation
of this rule is fairly similar to the one used. The critical difference is that in fair
recurrent plasticity architecture, the error for each of the recurrent units was the
same backpropagated error from the output unit, as opposed to the local error
of each recurrent unit. A consequence of this difference is that in fair recurrent
plasticity architecture, training of the recurrent and output weights takes place
simultaneously. As in innate training architecture, the presynaptic weights to

(3)(3)

(4)(4)

(5)(5)

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCedoi:10.1038/nn.3405

60% of recurrent units were plastic. As for the innate training (equation (3)), the
weight update postsynaptic recurrent unit i is

W t W t t e t P t r tij ij
k i

jk
i

k
Rec Rec

B
() () () () ()

()
= − −

∈
∑∆

but here, in contrast with equation (3), the error signal is the same for all recur-
rent plastic units, and was equal to the error signal for the readout unit (see also
equation (9))

e t W t t r t f t
j

j j() ()() ()= − −∑ out ∆

where f(t) is the target function of the output unit. Pi is a square matrix (one for
each recurrent plastic unit i, with each dimension equal to the number of units
in B(i)29. Its update rule is the same as in equation (5).

Readout weights learning rule (all architectures). The learning rule for the
readout unit in all the results shown here was the same RLS/FORCE algorithm
used in previous studies28,29,52. The readout weight update is defined as

W t W t t e t P t r ti i
j

ij j
Out Out() () () () ()= − − ∑∆

where the error, e(t), is defined as in equation (7).
The weight update occurs at times separated by the small time interval ∆t,

which may be larger than the time step δt for the numerical integration of equa-
tion (1) (or equation (2) in the case of echo state architecture) (we used δt = 1
ms and ∆t = 2 ms). Note that WOut enters equation (9) with non-updated value,
that is, it is evaluated at the earlier time t – ∆t rather than at t. P is a running
estimate of the inverse of the correlation matrix of the network rates r plus a
regularization term

P t P t t
P t t r t r t P t t

rij ij
m n jm m n nj

m n m
() ()

() ()() ()

(
= − −

− −

+
∑ ∑

∑ ∑
∆

∆ ∆

1 tt P t t r tmn n) ()()− ∆

The only difference between equations (5) and 9 is that in equation (5), each
matrix Pi is specific to a subset of presynaptic recurrent units to recurrent post-
synaptic unit i, whereas in equation (9) a single matrix P refers to all presynaptic
recurrent units (which all contact the output unit).

output target functions. The handwritten targets used in Figure 2 were obtained
using custom Matlab code and a Wacom Bamboo Pen Tablet. x and y pen posi-
tions were originally sampled at approximately 50 Hz, then low-pass filtered and
resampled with interpolation to 1 kHz (corresponding to the time step of 1 ms
used for all simulations). In Figure 3, the readout target function, f(t), is defined
by a constant value with a Gaussian pulse at time tdelay (0.25, 0.5, 1, 2, 3, …, 8 s),
where t = 0 corresponds to the offset of the input.

noise analysis. Network performance in the presence of noise (Fig. 5) was quan-
tified by estimating the correlation between two trajectories from two different
runs for each network within each condition: a template trajectory without noise
and a test trajectory with noise. A high correlation indicates a high degree of
reproducibility. We first calculated the Pearson correlation coefficient between
the two trajectories for each recurrent unit, then averaged across units (after
Fisher transformation), and then averaged across networks. Correlation was
calculated for the duration of the trained window only (0 – 2 s). Model and test
trajectories had the same pre-stimulus initial conditions. Noise was continuously
injected into all units in the recurrent network only after input was off, with a
Gaussian distribution with zero mean and s.d. I0 (equation (1)). Noise amplitude
is to be compared to total absolute incoming synaptic weights to a unit (averaged
across units); i.e., comparing the average sizes of the second and fourth terms
on the right-hand side of equation (1). A noise amplitude I0 = 1.0 in Figure 5
corresponds to 7% of the average total absolute incoming synaptic weight.

largest lyapunov exponent (lle) estimates. We estimated the local LLE (λ, also
known as finite-time LLE) in a manner similar to that described previously28 with

(6)(6)

(7)(7)

(8)(8)

(9)(9)

some improvements described elsewhere53,54 (see Supplementary Fig. 8). We
computed the distance between perturbed and unperturbed trajectories in state
space as a function of time, then found an interval in which the log(distance) ver-
sus time plot is linear with a well-defined slope. To this end, the network was first
run with random initial conditions and no noise to get a fiducial trajectory x(t) in
800-dimensional state space. Ten segments of 1,000-ms duration were extracted
from the fiducial trajectory, which served as the unperturbed trajectories. The
first segment x1(t) started 100 ms after the input went off, at state x(100); the
second x2(t), third x3(t), etc. segments started 100 ms after the previous, at states
x(200), x(300), etc. The perturbed trajectories were obtained as follows. Each
segment was perturbed at its initial time point (for instance, for the first segment,
the state x(100) was perturbed) by a uniform-noise vector of size 10−7 and then
the network was run for 1,000 ms; the perturbation was performed ten times,
leading to ten perturbed trajectories yij(t) for each unperturbed segment xi(t).
We then computed the average di(t) of the Euclidean distances between each of
the ten perturbed trajectories and the unperturbed trajectory (for each of the ten
segments) in 800-dimensional state space as a function of time (0–1,000 ms):

d t t t t t ti i i i i i i() () () ()(|| () || || () || ||= − + − +…+ −1
10 1 2 10x y x y x y (() ||)t

We then normalized it to the initial distance (0 ms), that is, the size of the
perturbation, computed the logarithm and averaged across all segments:

h t d t d
i

i i() log[()/ ()]=
=
∑1

10
0

1

10
. This procedure was repeated ten times for each

of the ten networks. We visually searched for a portion in which all ten repeti-
tions have a linear shape with a well-defined slope of at least 300-ms duration in
100–900-ms range; the average slope of the linear fits was the local LLE estimate
for each network at each condition (pre-training, post-training, post-training
outside the trained interval). In Figure 6a, for visualization purposes, we plot the

average of the ten repetitions for each network: 1
10

h t()repetitions∑ . In the condi-

tion post-training outside the trained interval, the fiducial trajectory started 8 s
after the input went off (6 s after the end of the training window). Note that any
trajectory not converging to a fixed point will have at least one zero Lyapunov
exponent (in the direction of the flow); if the trajectory is stable, then it will be
the largest Lyapunov exponent, all other exponents being negative.

network structure: clustering coefficients. Local clustering coefficients were
calculated using the generalization to directed, weighted networks proposed pre-
viously55. Cyclic clustering coefficients correspond previous findings (c.f. Table 1
of ref. 55); non-cyclic clustering coefficients pool all ‘middlemans’, ‘ins’ and ‘outs’.
Cyclic and non-cyclic clusters are mutually exclusive: they sum up to the total
number of undirected clusters. The values of the (weighted) clustering coefficients,
however, are not restricted. As these definitions assume a positive-definite weight
matrix WRec, all clustering coefficients were calculated based on the absolute values
of the weights. All self-connections were excluded from the calculation. Shuffling
of the weights was performed by keeping the binary connectivity and randomly
reassigning all nonzero weights; thus, for each network, all three conditions (pre-
train, post-train, and post-train shuffled) have the same binary connectivity.

Statistics. All error bars and measures of dispersion represent s.e.m unless
otherwise noted (for example, MAD). All P values are two tailed.

Parameter values for Figures. Figures 1 and 5–7, and Supplementary Figures 3–7:
N = 800, g = 1.8, pc = 0.1; 20 training loops; noise amplitude I0 = 0.001 unless
noise was parametrically varied (Fig. 5). Perturbation in Figure 1c: input ampli-
tude = 5, input duration 50 ms. For these figures, a set of ten networks working
as seeds was defined; all training and testing procedures were applied to this
same set of networks.

Figure 3, and Supplementary Figures 1 and 2: N = 800, g = 1.5, pc = 0.1; 30
training loops; noise amplitude I0 = 0.001. Input amplitude = 5, input duration
50 ms. To make a controlled comparison across architectures, a second set of ten
seed networks was defined; all training and testing procedures were applied to
this same set of networks. Figure 2: N = 800, g = 1.5, pc = 0.1; 30 training loops.
Input amplitude = 2, input duration 50 ms. Figure 4a: N = 800, g = 1.5,

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neurOSCIenCe doi:10.1038/nn.3405

pc = 0.25; 500 training loops; noise amplitude I0 = 1.5. Input amplitude = 5, input
duration 50 ms.

51. Jaeger, H. The “echo state” approach to analysing and training recurrent neural
networks. GMD Report No. 148 (German National Research Center for Computer
Science) (2001).

52. Haykin, S. Adaptive Filter Theory (Prentice Hall, 2002).
53. Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time

series. Phys. Lett. A 185, 77–87 (1994).
54. Boffetta, G., Lacorata, G., Radaelli, G. & Vulpiani, A. Detecting barriers to transport:

a review of different techniques. Physica D 159, 58–70 (2001).
55. Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E Stat. Nonlin. Soft

Matter Phys. 76, 026107 (2007).

np
g

©
 2

01
3

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

	Robust timing and motor patterns by taming chaos in recurrent neural networks
	RESULTS
	Innate training
	Computational power of innate training
	Cross-trial variability and timing precision
	Noise analysis, suppression of chaos and stimulus specificity
	Mechanisms: network structure after training

	DISCUSSION
	Implications for the neural mechanisms of timing
	Biological plausibility
	Structure and mechanisms underlying stable trajectories
	Conclusions and experimental predictions

	Methods
	ONLINE METHODS
	Network equations.
	Recurrent learning rule, innate training.
	Training procedure.
	Recurrent weights learning rule for control architecture.
	Readout weights learning rule (all architectures).
	Output target functions.
	Noise analysis.
	Largest Lyapunov exponent (LLE) estimates.
	Network structure: clustering coefficients.
	Statistics.
	Parameter values for Figures.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Complexity without chaos.
	Figure 2 Generation and stability of complex spatiotemporal motor patterns.
	Figure 3 Improved timing capacity.
	Figure 4 Innate training decreases the neural variance and results in Weber-like timing.
	Figure 5 Robustness against noise.
	Figure 6 Suppression of chaos.
	Figure 7 Effects of training on network structure.

	Button 2:
	Page 1: Off

