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Timing is a fundamental component of sensory and motor processing, 
learning, and cognition; however, the neural mechanisms underlying 
temporal processing remain unknown1–3. On the scale of milliseconds 
and seconds, a number of different mechanisms have been proposed 
to underlie sensory and motor forms of timing, including internal 
clocks that rely on a pacemaker and counter4, ramping firing rates5,6, 
multiple oscillator models that rely on detecting the beats between 
oscillators running with different periods7,8, and the stochasticity of 
neural dynamics9. Although these models are not necessarily mutu-
ally exclusive, many of them focus primarily on simple temporal 
tasks. For example, internal clock and ramping models are generally 
proposed as mechanisms underlying the timing of single intervals 
and are unlikely to contribute to complex temporal or spatiotemporal 
motor processing such as tapping Morse code or generating cursive 
handwriting. We focused on a more general framework that could 
account for a wide range of temporal and spatiotemporal tasks in the 
range of tens of milliseconds to a few seconds. Specifically, the idea 
that motor timing relies on the dynamic changes in the pattern of 
activity of neurons in recurrent neural networks1,10,11.

The first models to propose that time might be encoded in the 
dynamic changes in the patterns of active neurons were developed in 
the context of the cerebellum11,12. Subsequent models emphasized the 
importance of dynamic patterns of activity in a population of neurons 
for neural computations in general13–16. In this framework, the state 
of a network at any given time can be represented by a point in a high-
dimensional space where each dimension corresponds to the activity 
level of a neuron. The concatenation of these points over time forms 
a ‘neural trajectory’. In contrast with conventional attractor models, 
temporal and spatiotemporal computations in this ‘population clock’ 
framework arise from the voyage through state space, as opposed to 
the arrival at any one given location. The advantage of computing with 

neural trajectories is particularly obvious for tasks that require timing, 
as time is implicitly encoded in the trajectory and can be read out by 
downstream neurons. This framework is quite general because it can 
account for both temporal and spatiotemporal processing, that is, the 
generation of complex motor patterns. Furthermore, experimental 
studies in different brain areas have identified time-varying popula-
tions of active neurons that encode time17–20.

At a theoretical level, the hypothesis that neural networks can 
autonomously generate continuously changing patterns of activity 
in a flexible and robust manner has been controversial. The main 
challenge has been that recurrent neural networks operating in ‘high-
gain’ regimes in which recurrent connections are strong enough to 
generate self-sustained patterns of activity are highly sensitive to noise 
and are often formally chaotic21–27. Thus, although the dynamics in 
these networks is potentially computationally powerful, the fact that 
minute levels of noise can produce vastly different neural trajecto-
ries effectively abolishes their computational power because a given  
pattern cannot be reliably reproduced across trials.

Building on two previous firing rate models28,29, we developed a 
recurrent network model that produces complex, high-dimensional 
trajectories that are highly resistant to noise. This robustness was 
achieved by tuning the recurrent connections of the network. A power-
ful computational consequence of this approach is that a previously 
chaotic trajectory becomes a locally stable channel or ‘dynamic attrac-
tor’ (meaning that even if the network is perturbed it can return to its 
trained trajectory). We found that these stable neural trajectories can 
markedly improve the ability of random recurrent networks (RRNs) to 
tell time and generate complex motor patterns in the presence of high 
levels of noise. Because our model is based on firing-rate units, the prob-
lem of chaotic behavior in spiking neural networks remains unsolved. 
However, we found that it is possible to tame chaos in firing-rate  
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Robust timing and motor patterns by taming chaos in 
recurrent neural networks
Rodrigo Laje1,5 & Dean V Buonomano1–4

The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical for anticipating the next ring of a 
telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing 
patterns of neural activity generated in recurrent neural networks. However, the relevant dynamic regimes of recurrent networks 
are highly sensitive to noise; that is, chaotic. We developed a firing rate model that tells time on the order of seconds and 
generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the 
recurrent connections. The network operates in a dynamic regime that exhibits coexisting chaotic and locally stable trajectories. 
These stable patterns function as ‘dynamic attractors’ and provide a feature that is characteristic of biological systems: the  
ability to ‘return’ to the pattern being generated in the face of perturbations.
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recurrent networks and that the resulting dynamics offers a new  
neurocomputational framework based on dynamic attractors.

RESULTS
Innate training
The network model that we studied consists of randomly connected 
nonlinear firing-rate units26,28,29. In this network, the connectivity is 
represented by a recurrent weight matrix, WRec, drawn from a normal 
distribution with a mean of zero and a s.d. scaled by a gain parameter, g.  
For large networks, values of g > 1 generate increasingly complex 
and chaotic patterns of self-sustained activity26. In all of our simula-
tions, the networks are in this high-gain chaotic regime (g ≥ 1.5)26,30.  
Figure 1a provides an example of such an RRN (see Online Methods). 
By adjusting the synaptic weights onto an output unit, we could train 
the network to produce some desirable computation, such as a timed 
response or a complex motor output10–12,28 (see below). The network 
is spontaneously active (that is, it has self-sustaining activity) and 
an external input at t = 0 ms (50-ms duration) temporarily kicks the 
network into a delimited volume of state space, which can be defined 
as the starting point of a neural trajectory. Across trials, even in the 
absence of continuous noise, different initial conditions resulted in 
a divergence of the trajectories (Fig. 1b). This divergence renders 
the network useless from a computational perspective because the 
patterns cannot be reproduced across trials. One approach to over-
come this problem has been to use tuned feedback to control the 
dynamics of the network28,29. An alternate approach would be to alter  
the weights of the RRN proper to decrease the sensitivity to noise; 
this approach, however, has been limited by the challenges inherent 
in changing the weights in recurrent networks. Specifically, given 
that all weights are being used throughout the trajectory, plasticity 
tends to markedly alter network dynamics, produce bifurcations  
and not converge31.

It is important to note that, in the current ‘reservoir’ framework, 
the precise pattern produced by the recurrent network is largely irrel-
evant; what matters is that it is complex and that these patterns can 
be used by downstream units13,16,32. This means that, independent of 
the ultimate desired output, there is really no specific desired target 
activity pattern in the recurrent network. Thus, we reasoned that noise 
sensitivity could be reduced by training the units in the network to 
reproduce their ‘innate’ pattern of activity, rather than some trajec-
tory determined by the desired output. We define an innate trajectory 
as one triggered by a given input in an untrained network (using an 

arbitrary initial condition); we chose the innate trajectories in the 
absence of noise, but they can also be chosen in the presence of noise 
(see Online Methods). The approach is to tune the recurrent units to 
do what they can already do. Toward this end, we trained recurrent 
units to reproduce their innate activity profile using a supervised 
learning rule to rapidly minimize the errors during a training trial  
(see Online Methods)28,29. By training the RRN to reproduce its 
innate trajectory over a 2.25-s period, it was possible to create a locally 
stable transient channel (Fig. 1b), largely preserving the shape of the 
original trajectory while turning it into an attracting one in the 2.25-s 
window. Outside the training window, however, the trajectory rap-
idly diverges. Once the RRN generates stable trajectories, the output 
can be trained to produce a timed response at 2 s (Fig. 1b). This 
timed response is now robust to differences in initial conditions, noise  
and large perturbations in the recurrent network (see below for a 
more detailed analysis). Figure 1c shows an example in which the 
pretraining and trained RRN are perturbed with a 10-ms pulse from 
a second input unit. Despite this perturbation, the trained network 
can recover and return to the innate trajectory and generate a timed 
response at approximately 2 s.

In the above example, the timing that generated the late response 
is encoded in the neural dynamics of the network. This same high-
dimensional dynamics can be used to generate arbitrary spatio-
temporal patterns that are highly resistant to noise and perturbations. 
To illustrate this, we first trained the RRN to robustly reproduce two 
different innate activity patterns in the same manner described above 
and then trained two output units to generate handwritten words. 
Two distinct brief inputs (50-ms duration) were used to stimulate an 
RRN in the absence of noise to generate the two innate trajectories 
for training the RRN. After training the RRN on both trajectories, 
two output units (representing x and y axes) were trained and then 
tested (in the presence of continuous noise) to produce the words 
“chaos” and “neuron” in response to inputs 1 and 2, respectively 
(Fig. 2a and Supplementary Matlab Routines). One notable feature 
of creating locally stable trajectories is that they function as dynamic 
attractors: even relatively large perturbations to the RRN can be 
self-corrected. This feature can be seen by perturbing the network 
activity after the trajectory has already been initiated (Fig. 2b). We 
perturbed the network using a 10-ms pulse of an additional input 
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Figure 1 Complexity without chaos. (a) A random recurrent network 
(left) in the chaotic regime is stimulated by a brief input pulse (small 
black rectangle at t = 0, right) to produce a complex pattern of activity 
in the absence of noise. Right, color-coded raster plot of the activity of 
100 of 800 recurrent units. Color-coded activity ranges from −1 (blue) 
to 1 (red). (b) Time series of three sample recurrent units (top) and the 
output unit (bottom). In the pre-training (left), the blue traces comprised 
the innate trajectory subsequently used for training. The divergence of 
the blue and red lines demonstrates that two different initial conditions 
(before the input) lead to diverging trajectories before training, even in 
the absence of ongoing noise. After training (right), however, the time 
series are reproducible during the trained window (2.25 s, shaded area). 
That is, despite different initial conditions, the blue and red lines trace 
very similar paths while still diverging outside of the trained window. 
The output unit was trained to pulse after 2 s. (c) Five different runs of 
the network above, perturbed with a 10-ms pulse at t = 0.5 s (dashed 
line) from an additional input unit randomly connected to the recurrent 
network. The trained network (right) robustly reproduces the trained 
trajectory, recovering from the perturbation resulting in the timed  
response of the output unit at t = 2 s.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neurOSCIenCe  VOLUME 16 | NUMBER 7 | JULY 2013 927

a r t I C l e S

unit randomly connected to all units in the 
RRN with an input amplitude of 0.2, injected 
at t = 300 ms (approximately the time of the 
“h” and “e” during the “chaos” and “neuron”, 
respectively). Despite the obvious effect of 
the perturbation on the state of the recurrent 
network (as evidenced by the altered output), the network returned to 
the original trajectory over the course of a few hundred milliseconds, 
resulting in increasingly clear writing.

Computational power of innate training
To characterize the computational power of the innate training, we 
quantified the timing capacity of the network by determining the 
maximal delay after the input that the network could produce (Fig. 3). 
The target output function was flat (nonzero) with a simple pulsed 
response at different delays after the 50-ms input. A network of 800 
neurons (g = 1.5) reliably learned a 5,000-ms delay (note that estimates  
of timing capacity must be interpreted in the context of the time con-
stant of the units, 10 ms), but not a 6,000-ms delay, reflecting the finite 
memory of such networks28,33 (Fig. 3a and Supplementary Matlab 
Routines). To quantify this, we parametrically varied the delay and 
compared the performance of the innate training approach to two 
additional architectures (Fig. 3b) using the same set of ten initial 
networks for all architectures. Together, the three architectures were 
the current approach (innate training), in which recurrent plasticity 
in the RRN was directed at the innate trajectory, an echo-state/FORCE 
approach (echo state), in which the output feeds back onto the RRN 
and only the connections from the recurrent to output units were 

plastic28,29, and an RRN with recurrent plasticity (fair recurrent plas-
ticity), which provided a control for the amount of plastic connections 
involved in the training; thus, as in the innate training architecture, 
the weights of 60% of recurrent units were adjusted according to 
the error in the output unit29. Both training and testing in this task 
occurred with random initial conditions and in the presence of con-
tinuous noise (noise s.d., I0 = 0.001). The innate training of the recur-
rent connections markedly improved the maximal time delay of the 
network (defined as the time delay at which performance decays to 
0.5), producing, on average, a fivefold improvement (Fig. 3b).

All of the networks were trained for 30 training trials of the RRN 
(Fig. 3). To examine the effects of the number of training trials on 
performance, we also carried out the same analysis over 10 and  
20 training trials. We found that there was a trade-off between the 
duration of the training window, the number of training loops, and 
performance; shorter windows required fewer training trials to 
achieve maximal performance (Supplementary Fig. 1).

The observed timing capacity of approximately 5 s (for a network 
of 800 neurons) raises the question of what determines this limit. 
There are a number of factors contributing to this capacity, including 
the intrinsic richness of the RRN patterns (related to g), noise levels 
and ability of the output unit to readout these patterns. However, it 
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Figure 2 Generation and stability of complex 
spatiotemporal motor patterns. (a) Blue traces 
represent ten test trials in response to input 1 
(In1, left) or input 2 (In2, right) after training; 
the background gray line shows the output 
target. These test trials were run over different 
initial conditions in the presence of continuous 
noise (0.001) in all of the 800 recurrent units. 
Time is represented by uniformly placed colored 
circles (∆t ≅ 18 ms). (b) Test trials run under 
the same initial condition in the presence of 
continuous noise, but with the addition of a 
perturbation at 300 ms (open square). The 
perturbation was produced by an additional 
10-ms input pulse (not diagrammed) with an 
amplitude of 0.2.
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is possible to obtain an empirical upper bound on the ‘raw’ encoding 
capacity of the network by performing the same analysis shown in 
Figure 3b in the absence of any noise and with an untrained recur-
rent network (Supplementary Fig. 2). These results reveal an upper 
bound of approximately 20 s. This upper bound is, of course, essen-
tially useless from a computational perspective because the network 
is chaotic. But it does provide an empirical ceiling for the temporal 
encoding capacity of the model.

Cross-trial variability and timing precision
Implicit in the findings described above is that, after training, there 
are different types of dynamics in the same network: while ongoing 
activity (or trajectories triggered by untrained inputs) continues to 
produce chaotic trajectories, the trained trajectories exhibit locally 
stable patterns of activity. Recent experimental studies have also 
revealed different types of dynamics in the same network. For exam-
ple, it has been shown that cross-trial variability of neural activity is 
quenched in response to stimulus onset34; that is, the variability of 
neural ongoing or background activity is substantially larger than that 
observed after a stimulus or during a behavioral task. We therefore 
quantified the cross-trial variance before and after the brief 50-ms 
input in the trained and untrained networks. In addition, to push 
the envelope in terms of how much noise the network can handle, 
we increased the noise levels during training and testing (as well as 
the number of training trials). The variance was calculated over eight 
test trials for each of the 800 units over a time period starting 500 ms 
before the stimulus. The target delay was 1,000 ms (and the training 
window was 1,300 ms). In the presence of continuous very high levels 
of noise (I0 = 1.5), each of the recurrent units exhibited substantial 
jitter, reminiscent of the membrane voltage fluctuations observed  
in vivo, resulting in a high cross-trial variance before stimulation  
(t < 0; Fig. 4a). Nevertheless, in response to the input, the trained 
network was still able to robustly generate an appropriately timed 
output, and, as expected, this robustness reflected a marked decrease 
in the variance of the activity after the stimulus onset (Fig. 4a).

Psychophysical studies have carefully characterized the precision 
of timed motor responses (see Discussion). The variance of timed 
motor responses in the range of up to a few seconds is generally well 
captured by a linear relationship with t2, known as the generalized 

Weber’s law. To characterize the variance signature of the model, we 
trained the output units to generate several consecutive responses at 
intervals of 250 ms. The relationship between variance of the peak 
response and t2 was well fit by a linear function (R > 0.9 in each of five 
networks tested; Fig. 4b). These results establish that stable RRNs can 
account for Weber’s law. We stress, however, that, depending on the 
noise levels and intervals being trained, nonlinear relationships are 
also observed (see Discussion).

Noise analysis, suppression of chaos and stimulus specificity
We next examined two critical issues relating to the stability and 
dynamics of the trained recurrent networks. First, we performed a 
parametric noise analysis to quantitatively characterize the response 
of the trained networks in the presence of high levels of noise. To this 
end, we continuously injected different levels of noise into all 800 
units of the recurrent network. Second, we examined whether training 
specifically altered the noise sensitivity of the trajectory elicited by 
the trained input or whether training produced global changes of all 
network trajectories. This question can be seen as addressing whether 
learning (creating locally stable trajectories) is stimulus specific. Each 
of ten different networks (N = 800, g = 1.8) was stimulated with two 
different 50-ms long inputs. The neural trajectory produced by input 
1 served as the innate training target (duration of 2 s) for recurrent 
plasticity, whereas the trajectory triggered by input 2 served as a con-
trol to determine the effect of training on untrained trajectories. After 
training, performance was quantified by examining the correlation 
in the 2-s window between the trajectories elicited in the presence of 
noise in relation to the trajectory in the absence of noise (reproduc-
ibility; see Online Methods). After training, the activity patterns in the 
recurrent units were very similar in the absence and in the presence of 
continuous noise at levels of I0 = 0.001 and 0.1, but not 1.0 (Fig. 5a). 
The average data indicate that in the presence of noise amplitudes of 
up to 0.1 performance in response to input 1 was essentially perfect 
(Fig. 5b). In these simulations, the RRNs were trained for 20 trials 
(noise amplitude during training I0 = 0.001). The reproducibility was 
not substantially better with 30 training trials (Supplementary Fig. 3). 
However, the sensitivity to noise could be even further decreased by 
training in the presence of more noise for more trials (for example, 
Fig. 4 and Supplementary Figs. 1 and 3).

Figure 4 Innate training decreases the neural 
variance and results in Weber-like timing.  
(a) Top, time traces of three sample units over 
two different trials (blue and red; N = 800, 
g = 1.5, pc = 0.25, 1.3-s training window). 
Gaussian noise with a s.d. of I0 = 1.5 was 
continuously injected into all recurrent units.  
As in Figures 1 and 3, the output unit was 
trained to generate a timed pulse (1,000 ms  
after the onset of the 50-ms input pulse, 
middle). Bottom, neural variance. The variance 
of each unit was calculated over eight trials, 
and then averaged over all 800 units. There 
was a sharp decrease in variance produced by 
the onset of the stimulus, which persisted over 
many seconds before gradually ramping back 
up to baseline (data not shown). The dashed 
line shows the neural variance before training: 
because the input clamps network activity, 
stimulus onset also produced a decrease in the 
variance, but it rapidly increased after stimulus offset. The mean s.d. across units at the input of the input pulse were 0.037 and 0.024, before and 
after training, respectively. (b) Example of two simulations in which the output unit was trained to produce events at 250, 500, 750, 1,000 and  
1,250 ms (top). Variance across trials was estimated by calculating the time of the peak of each response. The relationship between variance and t2  
was well fit by a linear function (bottom). I0 = 1.0.
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Training to the input 1 trajectory also improved the reproducibility 
of input 2, but, in addition to the magnitude of the improvement, 
there was a fundamental difference between the trained and untrained 
trajectories. The increased reproducibility of both the trained and 
untrained patterns does not imply that either of them was no longer 

chaotic, but rather provides an estimate of how much two trajectories 
overlap in a 2-s window in response to different levels of noise. Thus, 
to formally characterize the behavior of the networks before and after 
training, we quantified the divergence of trajectories by estimating 
the largest Lyapunov exponent (λ), which provides a measure of the 
rate of separation of two nearby points in state space, a standard way 
to determine whether a dynamical system is chaotic. For each of the 
ten networks, λ was numerically estimated for the trajectories elicited 
by input 1 and input 2, both before and after training (Fig. 6) and 
both inside and outside of the training window. Before training, both 
trajectories exhibited positive exponents, indicative of exponential 
divergence and, thus, chaotic dynamics. After training, the mean λ 
across networks for input 1 was not significantly different from zero 
(λ = 0.05 ± 0.45, P = 0.90), suggestive of local stability. The mean λ for 
input 2 also decreased, but remained above zero (10 of 10 networks). 
The dynamics in response to both inputs outside the training win-
dow (between t = 8 s and t = 10 s) exhibited chaotic dynamics (8 of 
10 networks) or entered stable limit cycles (2 of 10). Which of these 
regimes occurred was dependent in part on the initial structure of 
the network and the extent of the training: lower initial values of λ 
and/or more training loops were more likely to lead to a limit cycle 
(data not shown). Notably, a 2 × 3 two-way ANOVA with repeated 
measures (factors input and training) revealed a significant interac-
tion effect (F2,18 = 20.7, P = 2 × 10−5), meaning that λ post-training 
was differentially affected by input 1.

These results indicate that the original innate trajectory was trans-
formed into a locally attracting trajectory, best described as a sta-
ble transient channel to the chaotic attractor (see Supplementary 
Modeling for a discussion of other relevant chaotic phenomena). 
Thus, in a local sense, the chaotic behavior of the trained trajec-
tory was ‘tamed’ by training. In contrast, the untrained trajectories 
remained chaotic.
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Figure 6 Suppression of chaos. (a) Average logarithmic distance 
between original and perturbed trajectories for each of ten networks 
for the trajectories triggered by input 1 (the trained input) before and 
after training. A straight portion with a positive slope indicates chaotic 
dynamics; the value of the slope is the estimate for the largest Lyapunov 
exponent (λ). After training, the original and perturbed trajectories no 
longer diverged (except for one network). (b) The pre-training trajectories 
triggered by both inputs displayed positive λ, indicative of chaotic 
dynamics (input 1: λ = 7.12 ± 0.35, mean ± s.e.m. across the ten 
networks, values significantly different from zero, t test P = 10−8; input 2:  
λ = 7.29 ± 0.45, P = 4 × 10−8; all reported λ values have units of s−1). 
After training, the trajectory triggered by input 1 was locally stable, as 
indicated by a near zero mean λ (λ = 0.05 ± 0.45, P = 0.90); input 2, 
however, still produced diverging trajectories as evidence by λ significantly above zero (λ = 3.05 ± 0.70, P = 0.0016). After training, the trajectories 
outside the trained window had a positive mean λ in response to both inputs (input 1: λ = 2.75 ± 0.70, P = 0.0035; input 2: λ = 2.27 ± 0.60,  
P = 0.0039), with some networks displaying chaotic activity (8 of 10) and some entering limit cycles (2 of 10). The interaction effect was significant 
(F2,18 = 20.7, P = 2 × 10−5, a 2 × 3 two-way ANOVA with repeated measures, factors input and training). In addition to this stimulus-specific effect  
of training, there was a global nonspecific effect of decreased divergence of trajectories after training, represented by a lower, although still positive,  
λ for post-train input 2 and post-outside inputs 1 and 2.
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In summary, while Figure 5b demonstrates an improvement in the 
reproducibility of the untrained trajectory, Figure 6 establishes that 
the untrained trajectory is still chaotic—that is, in response to a per-
turbation the trajectories will still diverge at an exponential rate. The 
practical meaning of these results is that, in response to fairly large 
perturbations, the trained trajectory exhibits the desirable feature of 
being able to ‘find its way back’ after being perturbed, whereas, in 
response to small or large perturbations, the untrained trajectory will 
continue to diverge off on some new path (albeit at a slower rate than 
before training), even though it can stay on track for a few seconds in 
response to tiny perturbations (Supplementary Fig. 4).

Mechanisms: network structure after training
To characterize the relationship between the observed behavior and 
the structure of the trained recurrent networks, we examined the 
distribution of weights and the connectivity patterns before and after 
training. The distribution of the nonzero recurrent weights changed 
very consistently (Fig. 7a). Innate training led to a non-Gaussian dis-
tribution with long tails (note that the number of nonzero weights 
does not change because training does not alter which units are con-
nected), meaning that the median absolute synaptic weight increased 
(pre-train median ± mean absolute deviation from the median (MAD) 
across 10 networks: 0.1358 ± 0.0004; post-train: 0.147 ± 0.001; paired 
Wilcoxon sign-rank test, P = 0.002). Shuffling the weights (but not 
the connections) of the recurrent matrix WRec after training left the 
weight distribution untouched, but the stability properties of the 
network were destroyed (Fig. 7b). Thus, it’s not simply the statistics 
of the synaptic weights or the binary connectivity what defines the 
network behavior. As an example of the importance of precise wir-
ing rather than the distribution, we found that post-training weights 
from bidirectional connections were significantly stronger on aver-
age than those from unidirectional connections (in absolute value; 
unidirectional median ± MAD across networks: 0.145 ± 0.001; bidi-
rectional: 0.161 ± 0.003; paired Wilcoxon sign-rank test, P = 0.002; 
Supplementary Fig. 5). Notably, both the long-tailed weight distribu-
tion and the bidirectional versus unidirectional connectivity features 
that we observed have been reported in the rat visual cortex35.

To explore the role of the connectivity structure of the trained 
networks, we computed the distribution of local clustering coeffi-
cients that are associated with recurrency and self-sustained activity 
(see Online Methods)36. The cyclic clustering coefficients provide a 

 measure of the number of neuron triplets connected in a circular fash-
ion, weighted by their synaptic strengths. Innate training increased 
the median cyclic clustering coefficients (pre-train median ± MAD 
across networks: 0.01270 ± 0.00005; post-train: 0.0139 ± 0.0001; paired 
Wilcoxon sign-rank test, P = 0.002) and made the distribution of the 
clustering coefficients have a longer right tail and a non-Gaussian 
distribution (Fig. 7c). Notably, innate training also resulted in an 
increase in the non-cyclic clustering coefficients (Pre-train median ±  
MAD across networks: 0.01280 ± 0.00005; Post-train: 0.0142 ± 
0.0002; paired Wilcoxon sign-rank test P = 0.002; Fig. 7d), leading 
to a stronger short-range feedforward structure.

To determine whether the observed dynamics reflected the specific 
wiring signature of the trained networks, we calculated both cyclic 
and non-cyclic clustering distributions after shuffling the weights 
of the trained networks (Fig. 7c,d). Shuffling significantly altered 
the distribution of the cyclic distribution more than that of the non-
cyclic coefficients (two-sample Kolmogorov-Smirnov test between 
post-train and post-train shuffled for every network, P < 0.002 for all 
cyclic distributions; P values of non-cyclic distributions ranged from 
0.002 to 0.11), suggesting that the presence of cyclic clusters may have 
be important for the ability of an RRN to generate complex, yet sta-
ble, neural trajectories. However, as noted above, an untrained input 
can produce a chaotic trajectory after training; thus, it is clear that 
some interaction between the input and the structure of the recurrent  
network is involved in the resulting dynamics.

As an initial attempt to correlate the stable activity pattern with 
the structure of the network, we examined the correlation between 
all of the plastic recurrent weights Wij of a network and the correla-
tion in firing rates of the pre- and postsynaptic units ri and rj during  
the trained innate trajectory (Supplementary Fig. 6). There was a 
moderate correlation (R = 0.355 ± 0.005, P < 10−16 for each of five 
networks examined) between the initial weights and the presynaptic-
postsynaptic correlations. Contrary to our expectations, there was 
actually a small decrease in this correlation after training (R = 0.322 ±  
0.005; P < 10−16 for each of the five networks). Overall, these results 
indicate that the stability of the trained trajectory is not a simple 
optimization of the weights on the basis of the mean correlation of 
presynaptic-postsynaptic activity.
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Figure 7 Effects of training on network structure. (a) Distribution of the 
nonzero recurrent weights. Thin lines represent the distributions of the 
weights of ten networks before (blue) and after (red) training. Thick lines 
represent the averages across the ten networks. Pre-training: networks are 
Gaussian by construction. Post-training: all networks are non-Gaussian 
(Lilliefors test, P < 0.001 for each of the ten networks). Median absolute 
synaptic weights significantly increased after training (pre-train median ± 
MAD across ten networks, 0.1358 ± 0.0004; post-train, 0.147 ± 0.001; 
paired Wilcoxon sign-rank test, P = 0.002). (b) Numerical simulation of one  
trained network before and after shuffling the weights of its recurrent matrix  
WRec (two runs each, without noise), showing that the stability properties of 
the shuffled network are lost despite having the same weight distribution 
and the same connectivity. (c) Distribution of local weighted cyclic 
clustering coefficients. Training leads to an increase in the cyclic clustering 
coefficients. Shuffling (green) of the weights of the post-train recurrent 
matrix WRec significantly changed the cyclic clustering distribution  
(two-sample Kolmogorov-Smirnov test between post-train and post-train 
shuffled for every network, P < 0.002 for all cyclic distributions). Insets 
reflect the possible circuit motifs in relation to a reference unit shown in 
gray. (d) Distribution of local weighted non-cyclic clustering coefficients. 
Training also increased the median non-cyclic clustering coefficients.
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DISCUSSION
Here we describe a robust and general mechanism by which  
recurrent neural networks could encode time and generate complex 
spatiotemporal patterns. The model builds on a number of previous 
studies10,11,16,28,29, but is unique in the extent to which it behaves as 
a dynamic attractor—that is, the network can return to and complete 
a trained pattern even when the entire recurrent network is substan-
tially perturbed. Indeed, in the sense that previously chaotic trajec-
tories are turned into stable ones, it can be said that this approach 
tames chaos. In addition to the locally stable nonperiodic trajectories, 
the network exhibited coexisting chaotic trajectories. These features 
are absent from previous models operating in the high-gain regime, 
including those that used controlled feedback or that incorporated 
recurrent plasticity driven by the output error (echo state and fair 
recurrent plasticity architectures; Fig. 3)29. Here local stability was 
achieved by tuning the weights of the recurrent network to repro-
duce an innate trajectory, effectively teaching the network to robustly 
reproduce one of the arbitrary trajectories it can already generate. 
The advantage of training on an innate trajectory is that it guarantees 
that the network is attempting to learn an attainable trajectory. The 
outcome of training is that the learned trajectories are locally stable 
over many seconds, despite the fact that all of the units in the network 
have a 10-ms time constant.

Implications for the neural mechanisms of timing
A long-standing and ongoing debate on the neural basis of tim-
ing relates to where in the brain temporal computations occur and 
whether timing is a result of centralized (dedicated) or general (intrin-
sic) mechanisms3. Our view is that, precisely because timing is critical 
to so many forms of processing, it is a general computation performed 
by recurrent neural networks. For this reason, our model is presented 
as a general computational framework of recurrent networks that 
may be engaged in a number of different areas depending on the task 
at hand. Indeed, this view is supported by a growing experimental 
literature that suggests that a large number of different brain areas 
are involved in timing. These areas include, but are not limited to, 
the cerebellum, basal ganglia, hippocampus, and motor, frontal and 
parietal cortex1,2,37–43.

Traditionally, the experimentally observed variance signature of 
timed responses has been used as an important criterion to evalu-
ate models of timing. In a given task, timing variability is often well 
described by Weber’s law, meaning that there is a constant ratio 
between the s.d. of the response and the interval being timed2. For 
motor timing on the scale of up to a few seconds, it is established 
that variability is best accounted for by Weber’s generalized law, in 
which the variance of the response is linearly related to time squared 
(plus an additional variance term). The timing described here is well 
captured by the generalized Weber function, but we emphasize that 
this result is dependent on parameters (Fig. 4b). Specifically, vari-
ance can become either sub- or supralinear depending on the overall 
level of noise and the timescale being examined; with very low noise 
levels, the relationship tends to be sublinear, and, over time spans that 
exceed the timing capacity of the network, the relationship becomes 
supralinear. Nevertheless, it is relevant that the model can capture the 
experimentally observed linear relationship between variance and 
time squared.

When considering the neural mechanisms of timing, it is useful to 
distinguish between sensory and motor timing tasks. In contrast with 
sensory timing, motor timing requires the active internal generation of 
events. For this reason, we propose that sensory and motor timing may 
rely on networks operating in low-gain (no self-sustaining activity)  

and high-gain regimes, respectively. Previous studies have demon-
strated that randomly connected recurrent networks in low-gain 
regimes can discriminate temporal stimuli on the basis of hidden 
states (for example, short-term synaptic plasticity)13,16,44. In our 
model, timing arises entirely from the active state of neural networks. 
For this reason, our framework is particularly relevant to motor tasks, 
which require the active generation of temporal or spatiotemporal 
patterns rather than the discrimination of the temporal features of 
sensory stimuli.

Biological plausibility
Our results provide an existence proof that recurrent plasticity can 
suppress the chaotic behavior of specific trajectories of recurrent net-
works. Nevertheless, it remains to be determined whether recurrent 
neural networks in the brain operate in similar regimes. And if so, 
how such regimes are achieved, given that the learning rule that we 
used here is not biologically plausible.

Our work was inspired by a study that used the recursive least 
square algorithm to tune the weights of the recurrent units onto the 
output units29. Whether applied to the output or recurrent units, the 
approach relies on a supervised ‘online’ tuning of the weights to mini-
mize the error between the actual firing rate of a unit and its target 
rate. Although the approach is ‘delta rule like’ in that it minimizes an 
error, it is computationally sophisticated and, as applied here, operates 
on a unrealistically fast timescale; however, as previously noted, there 
may be conditions under which more plausible rules can be used29.

In addition, there is a separate target pattern that guides plasticity 
for each unit in the network in our implementation: a highly implau-
sible biological scenario. Nevertheless, in one sense, the rule is more 
biologically plausible than traditional supervised learning rules: the 
rule does not require an external teacher to figure out the correct 
target pattern because the target trajectory is the innate internally 
generated trajectory. Thus, more realistic versions of this approach 
may be viable because which trajectories are ‘burned in’ is largely 
irrelevant, what matters is that networks settle on one (or a few) of 
the immense set of possible innate trajectories.

It is important to stress that our work was based on simple fir-
ing-rate units, as opposed to spiking units. Chaos control and 
chaos suppression in spike-based models present a more complex  
problem21,23–25 and our work does not directly speak to solving the 
problem of chaos in spiking networks. An initial step toward trans-
lating the current work to spiking models will be to first create spik-
ing networks that exhibit the complex balanced dynamic regimes 
similar to the untrained firing-rate networks studied here. Although 
this has not yet been achieved, recent advances in understanding  
the dynamics of recurrent spiking networks45 and the generation of 
simple trajectories in spiking recurrent networks46 have taken steps 
in this direction.

Structure and mechanisms underlying stable trajectories
The presence of stable trajectories in an otherwise chaotic state space 
raises important questions in neuroscience and nonlinear systems as 
to why some network architectures exhibit this dynamic regime. In 
linear recurrent networks, the structure of the network, as analyzed 
through a number of techniques, including eigen and Schur decom-
positions, provides valuable keys to understand the dynamics of such 
systems47. However, predicting the behavior of a continuous-time 
nonlinear network from its connectivity matrix is still not possible in 
the general case. In addition, a key observation is that the interaction 
between the input connectivity and recurrent weights is important 
for the manner in which the network responds to external stimuli; 
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as shown here, the same network can respond very differently to dif-
ferent inputs after training (Figs. 2–6). Steps toward understanding 
this interaction and the dynamics in response to external inputs have 
been taken for both discrete-time linear networks33 and continuous-
time nonlinear networks30, but it remains impossible in continuous 
nonlinear networks to predict the modes of activity or describe why 
some trajectories are locally stable and others are not.

Despite the limitations in mathematically analyzing and pre-
dicting the dynamics of nonlinear networks, it is interesting that 
analysis of the connectivity patterns and network structure revealed 
highly reproducible, non-random signatures in the recurrent weight  
matrices. For example, innate training produced a robust increase in 
the median absolute weight, resulting in a non-Gaussian long-tailed 
weight distribution (Fig. 7a).

After training, there were global changes in the entire family of tra-
jectories generated by the RRN. The untrained trajectories diverged at 
a slower rate, but were still not stable in the sense that they could not 
return to their original path after a perturbation. The changes cap-
tured by the statistics and structure of the connectivity matrix likely 
contribute to the global changes in the untrained trajectories, but not 
the trajectory specific training effects, as these are specific to a small 
subset of trajectories and, at some level, must rely on the creation of 
specific basins of attraction around the trained trajectories.

Conclusions and experimental predictions
In our model, recurrent cortical circuits would exhibit preferred or 
learned neural trajectories. That is, although spontaneously active 
networks exhibit complex, but unstable, trajectories, trained stimuli 
elicit preferred stable trajectories that can last many seconds and are 
highly robust to noise. The presence of these two modes of activity is 
consistent with experimental evidence34, and we found (Fig. 4) that 
the networks studied here reproduce the experimentally observed 
decrease in neural variance in response to stimulus onset. An experi-
mentally testable prediction is that the magnitude of the variance drop 
and its duration is stimulus specific and dependent on learning. That 
is, the decrease in variance in response to overtrained stimuli will be 
larger and longer lasting than that to novel or irrelevant stimuli.

Our results demonstrate that, in principle, recurrent plasticity can 
locally suppress chaos and substantially enhance the computational 
power of recurrent networks. A phenomenon observed here is that of 
dynamic attractors (locally stable transient channels), which account 
for the ability of a network to not only generate complex patterns (for 
example, the hand-writing patterns of Fig. 2), but to be able to return 
to the pattern in response to large perturbations. To the best of our 
knowledge, this is the first description of a high-dimensional nonlinear 
system capable of this level of robustness. The demonstration of how to 
create stable trajectories suggests a previously unknown neural compu-
tational framework. Specifically, an influential theory in neuroscience 
has been that some computations are instantiated by the activity of 
neural networks converging to steady-state patterns that represent 
fixed-point attractors in neural state space48,49. In contrast with these 
standard attractor models, in our framework (dynamic attractor com-
puting), computations arise from the voyage through stable channels 
in state space rather than the arrival at any one given location.

It has often been suggested that neural circuits may operate on the 
edge of chaos, referring to a dynamic regime that offers desirable com-
putational features while avoiding chaotic behavior. But theoretical 
and experimental studies have shown that the brain does exhibit full-
blown chaotic regimes21–25,50, and experimental evidence and com-
mon sense also tell us that neural circuits can generate reproducible 
neural trajectories that are critical for sensory and motor processing. 

Our results reconcile these observations and suggest that, rather than 
operating on the edge of chaos, the same network can produce both 
locally stable and chaotic trajectories.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
network equations. The network dynamics of the model is described by26,28

t dx
dt
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1
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Outrrj

where ri = tanh(xi) represents the activity level, often referred to as the firing rate 
(even though it takes on negative values) of recurrent unit xi (i = 1, …, N). The 
variable y represents the input units (i = 1,2), and z is the output. N = 800 is the 
network size (number of recurrent units) and τ = 10 ms is the unit time constant. 
The recurrent connectivity is represented by the sparse N × N matrix WRec, with 
nonzero initial values randomly chosen from a Gaussian distribution with zero 
mean and s.d., g p Nc/ , where g is the synaptic strength scaling coefficient, and 
pc = 0.1 is the connection probability between units (pc = 0.25 was used because 
it enhanced resistance to noise; Fig. 4). As with previous studies, in the high-gain 
regime, we used g values in the range of 1.5 (Figs. 2 and 4) to 1.8 (Figs. 1, 3 and 
5–7)29,30; performance was very similar across a wide range of g values, whereas 
higher values tended to generate more complex trajectories and require more 
training. The activity of the network was readout by z through the 1 × N output 
connectivity matrix WOut, with initial values drawn from a Gaussian distribution 
with zero mean and s.d., 1/ N . The input weight vector, WIn, is drawn from a 
Gaussian distribution with zero mean and unit variance. The values of y are 0, 
except during an input pulse comprising a step with 50-ms duration and ampli-
tude of 5 (except for Fig. 2, where the amplitude was 2). In the case of multiple 
inputs, values of both inputs were zero, except during the time window in which 
one input was briefly turned on in a given trial. A noise current is included as a 
N × 1 random vector Inoise drawn from a Gaussian distribution with a s.d. of I0 
and a zero mean. I0 was constant during a trial and equal to 0.001 unless stated 
otherwise (training was successful with s.d. as high as 0.1, as in Fig. 4; however, 
many more training trials are need to converge).

In the control simulations when feedback from the output unit was present 
(echo-state architecture), an additional feedback term was included in equation (1),  
leading to

t dx
dt
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This equation represents the traditional echo-state architecture28,51. It is the same 
as equation (1), except for the presence of the feedback term WFb·z, where WFb 
is a length N vector with elements drawn from a uniform distribution between 
−1 and 1. In this architecture, only the WOut weights were plastic, and obeyed the 
same learning rule for all architectures (see below)29. It is possible that the poor 
performance of the echo state architecture (Fig. 3) was poor because the feedback 
was flat throughout most of the trial. Thus, we ran additional simulations with 
a separate feedback unit that learned its innate output pattern. Performance was 
still substantially worse than that of innate training architecture.

Recurrent learning rule, innate training. The key step to the approach defined 
here is to train the recurrent network dynamics to generate a pattern that  
the RRN is already capable of producing, as opposed to the conventional strat-
egy of training it to produce a pattern based on the desired output. We refer  
to the target pattern as the innate trajectory and define it as the trajectory gen-
erated in the absence of noise and starting from an arbitrary initial condition;  
there are of course a vast number of potential innate trajectories, and there is 
nothing special about any of them except that they clearly fall in the domain of 
trajectories that the network can generate. The innate trajectory could be chosen 
in the presence of noise; here, the innate trajectory was generated in the absence of 
noise by a specific input simply because it allows for a fairly standardized defini-
tion. In all results presented here, the target (innate) trajectory of the recurrent 
network was chosen in the absence of noise. Choosing the innate trajectories 
in the presence of noise yielded similar results (under the conditions tested; 

(1)(1)

(2)(2)

Supplementary Fig. 7). However, choosing a foreign trajectory (that is, training 
a network on the innate trajectory of another network) did not produce effec-
tive training (at least over the 30 training trials examined). We did not address 
the problem of what constitutes an achievable or an optimal target trajectory. 
Rather, given that the precise structure of the stable target trajectory is largely 
irrelevant, we provide a practical choice of a recurrent target by using an innate 
pattern; this approach guarantees that the target falls in the domain of possible 
trajectories for the network.

The learning rule used to train the plastic recurrent units is based on the 
recursive least squares (RLS) rule52, which we implemented according to the 
FORCE (first-order reduced and controlled error) algorithm29. The rule was 
applied to a subset of the recurrent synapses in the network; similar performance 
was observed in the range of 60–95% (most simulations presented here imposed 
the condition that all the synapses onto 60% of the units were plastic). The weight 
update for the synapses (plastic) onto recurrent unit i was

W t W t t e t P t r tij ij i
k i

jk
i

k
Rec Rec

B
( ) ( ) ( ) ( ) ( )

( )
= − −

∈
∑∆

where B(i) is the subset of recurrent units presynaptic to unit i, and ei represents 
the individual error of unit i defined by

e t r t R ti i i( ) ( ) ( )= −

where ri(t) is the activity of unit i before the weight update, and Ri(t) is the innate 
target activity of that unit. The innate activity Ri(t) is recorded before the train-
ing begins by letting the network evolve in time under the same conditions that 
will be used during training (same input brief input, but in the absence of noise). 
Pi (one for each recurrent plastic unit i) is a square matrix that estimates the 
inverse of the correlation matrix of the presynaptic inputs to element i (B(i)), 
and is updated by

P t P t t
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∆

)

( )( ) ( )( ) ( )1 B B   

training procedure. Harvest an innate trajectory by letting the network evolve 
according to equation (1) in response to the input in the absence of noise; 
record the activity Ri(t) for all recurrent units in the training window defined by 
[toff:tend], where toff is the offset time of the input pulse and tend is the end point of 
the training window. Train the recurrent plastic weights with the innate algorithm 
as defined by equations (3–5) (the network evolves according to equation (1)) in 
the presence of noise and with random initial conditions for a number of training 
loops (training generally converges in between a few loops and a few dozen loops, 
depending on the duration of the training window); Inoise is Gaussian with zero 
mean and s.d. I0. After training the recurrent units, the readout unit can also be 
trained using previously proposed algorithms in the interval [toff:tend]. Test (run) 
the network with the trained (fixed) set of recurrent and readout weights, again 
in the presence of noise and random initial conditions.

Over the course of training the total change in synaptic weights converges 
to an asymptote, but generally does not reach zero because plasticity is driven 
by noise. In the simulations shown here, a fixed number of training loops was 
used. In the simulations in Figures 1–3 and 5–7, there were between 20 and 30 
training trials, which led to fairly asymptotic performance in these networks 
(Supplementary Fig. 3). In the high-noise simulations of Figure 4, hundreds of 
training trials were used.

Recurrent weights learning rule for control architecture. The learning rule for 
the recurrent units in the control simulations of fair recurrent plasticity architec-
ture (Fig. 3) was implemented as described previously29. The implementation 
of this rule is fairly similar to the one used. The critical difference is that in fair 
recurrent plasticity architecture, the error for each of the recurrent units was the 
same backpropagated error from the output unit, as opposed to the local error 
of each recurrent unit. A consequence of this difference is that in fair recurrent 
plasticity architecture, training of the recurrent and output weights takes place 
simultaneously. As in innate training architecture, the presynaptic weights to 

(3)(3)

(4)(4)

(5)(5)
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60% of recurrent units were plastic. As for the innate training (equation (3)), the 
weight update postsynaptic recurrent unit i is

W t W t t e t P t r tij ij
k i

jk
i

k
Rec Rec

B
( ) ( ) ( ) ( ) ( )

( )
= − −

∈
∑∆

but here, in contrast with equation (3), the error signal is the same for all recur-
rent plastic units, and was equal to the error signal for the readout unit (see also 
equation (9))

e t W t t r t f t
j

j j( ) ( )( ) ( )= − −∑ out ∆

where f(t) is the target function of the output unit. Pi is a square matrix (one for 
each recurrent plastic unit i, with each dimension equal to the number of units 
in B(i)29. Its update rule is the same as in equation (5).

Readout weights learning rule (all architectures). The learning rule for the 
readout unit in all the results shown here was the same RLS/FORCE algorithm 
used in previous studies28,29,52. The readout weight update is defined as

W t W t t e t P t r ti i
j

ij j
Out Out( ) ( ) ( ) ( ) ( )= − − ∑∆

where the error, e(t), is defined as in equation (7).
The weight update occurs at times separated by the small time interval ∆t, 

which may be larger than the time step δt for the numerical integration of equa-
tion (1) (or equation (2) in the case of echo state architecture) (we used δt = 1 
ms and ∆t = 2 ms). Note that WOut enters equation (9) with non-updated value, 
that is, it is evaluated at the earlier time t – ∆t rather than at t. P is a running 
estimate of the inverse of the correlation matrix of the network rates r plus a 
regularization term

P t P t t
P t t r t r t P t t
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m n jm m n nj

m n m
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(
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− −
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∆ ∆
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The only difference between equations (5) and 9 is that in equation (5), each 
matrix Pi is specific to a subset of presynaptic recurrent units to recurrent post-
synaptic unit i, whereas in equation (9) a single matrix P refers to all presynaptic 
recurrent units (which all contact the output unit).

output target functions. The handwritten targets used in Figure 2 were obtained 
using custom Matlab code and a Wacom Bamboo Pen Tablet. x and y pen posi-
tions were originally sampled at approximately 50 Hz, then low-pass filtered and 
resampled with interpolation to 1 kHz (corresponding to the time step of 1 ms 
used for all simulations). In Figure 3, the readout target function, f(t), is defined 
by a constant value with a Gaussian pulse at time tdelay (0.25, 0.5, 1, 2, 3, …, 8 s), 
where t = 0 corresponds to the offset of the input.

noise analysis. Network performance in the presence of noise (Fig. 5) was quan-
tified by estimating the correlation between two trajectories from two different 
runs for each network within each condition: a template trajectory without noise 
and a test trajectory with noise. A high correlation indicates a high degree of 
reproducibility. We first calculated the Pearson correlation coefficient between 
the two trajectories for each recurrent unit, then averaged across units (after 
Fisher transformation), and then averaged across networks. Correlation was 
calculated for the duration of the trained window only (0 – 2 s). Model and test 
trajectories had the same pre-stimulus initial conditions. Noise was continuously 
injected into all units in the recurrent network only after input was off, with a 
Gaussian distribution with zero mean and s.d. I0 (equation (1)). Noise amplitude 
is to be compared to total absolute incoming synaptic weights to a unit (averaged 
across units); i.e., comparing the average sizes of the second and fourth terms  
on the right-hand side of equation (1). A noise amplitude I0 = 1.0 in Figure 5 
corresponds to 7% of the average total absolute incoming synaptic weight.

largest lyapunov exponent (lle) estimates. We estimated the local LLE (λ, also 
known as finite-time LLE) in a manner similar to that described previously28 with 

(6)(6)

(7)(7)

(8)(8)

(9)(9)

some improvements described elsewhere53,54 (see Supplementary Fig. 8). We 
computed the distance between perturbed and unperturbed trajectories in state 
space as a function of time, then found an interval in which the log(distance) ver-
sus time plot is linear with a well-defined slope. To this end, the network was first 
run with random initial conditions and no noise to get a fiducial trajectory x(t) in 
800-dimensional state space. Ten segments of 1,000-ms duration were extracted 
from the fiducial trajectory, which served as the unperturbed trajectories. The 
first segment x1(t) started 100 ms after the input went off, at state x(100); the 
second x2(t), third x3(t), etc. segments started 100 ms after the previous, at states 
x(200), x(300), etc. The perturbed trajectories were obtained as follows. Each 
segment was perturbed at its initial time point (for instance, for the first segment, 
the state x(100) was perturbed) by a uniform-noise vector of size 10−7 and then 
the network was run for 1,000 ms; the perturbation was performed ten times, 
leading to ten perturbed trajectories yij(t) for each unperturbed segment xi(t). 
We then computed the average di(t) of the Euclidean distances between each of 
the ten perturbed trajectories and the unperturbed trajectory (for each of the ten 
segments) in 800-dimensional state space as a function of time (0–1,000 ms): 

d t t t t t ti i i i i i i( ) ( ) ( ) ( )(|| ( ) || || ( ) || ||= − + − +…+ −1
10 1 2 10x y x y x y (( ) ||)t

We then normalized it to the initial distance (0 ms), that is, the size of the 
perturbation, computed the logarithm and averaged across all segments: 

h t d t d
i

i i( ) log[ ( )/ ( )]=
=
∑1

10
0

1

10
. This procedure was repeated ten times for each 

of the ten networks. We visually searched for a portion in which all ten repeti-
tions have a linear shape with a well-defined slope of at least 300-ms duration in 
100–900-ms range; the average slope of the linear fits was the local LLE estimate 
for each network at each condition (pre-training, post-training, post-training 
outside the trained interval). In Figure 6a, for visualization purposes, we plot the 

average of the ten repetitions for each network: 1
10

h t( )repetitions∑ . In the condi-

tion post-training outside the trained interval, the fiducial trajectory started 8 s 
after the input went off (6 s after the end of the training window). Note that any 
trajectory not converging to a fixed point will have at least one zero Lyapunov 
exponent (in the direction of the flow); if the trajectory is stable, then it will be 
the largest Lyapunov exponent, all other exponents being negative.

network structure: clustering coefficients. Local clustering coefficients were 
calculated using the generalization to directed, weighted networks proposed pre-
viously55. Cyclic clustering coefficients correspond previous findings (c.f. Table 1 
of ref. 55); non-cyclic clustering coefficients pool all ‘middlemans’, ‘ins’ and ‘outs’. 
Cyclic and non-cyclic clusters are mutually exclusive: they sum up to the total 
number of undirected clusters. The values of the (weighted) clustering coefficients, 
however, are not restricted. As these definitions assume a positive-definite weight 
matrix WRec, all clustering coefficients were calculated based on the absolute values 
of the weights. All self-connections were excluded from the calculation. Shuffling 
of the weights was performed by keeping the binary connectivity and randomly 
reassigning all nonzero weights; thus, for each network, all three conditions (pre-
train, post-train, and post-train shuffled) have the same binary connectivity.

Statistics. All error bars and measures of dispersion represent s.e.m unless  
otherwise noted (for example, MAD). All P values are two tailed.

Parameter values for Figures. Figures 1 and 5–7, and Supplementary Figures 3–7:  
N = 800, g = 1.8, pc = 0.1; 20 training loops; noise amplitude I0 = 0.001 unless  
noise was parametrically varied (Fig. 5). Perturbation in Figure 1c: input ampli-
tude = 5, input duration 50 ms. For these figures, a set of ten networks working 
as seeds was defined; all training and testing procedures were applied to this 
same set of networks.

Figure 3, and Supplementary Figures 1 and 2: N = 800, g = 1.5, pc = 0.1; 30 
training loops; noise amplitude I0 = 0.001. Input amplitude = 5, input duration 
50 ms. To make a controlled comparison across architectures, a second set of ten 
seed networks was defined; all training and testing procedures were applied to 
this same set of networks. Figure 2: N = 800, g = 1.5, pc = 0.1; 30 training loops.  
Input amplitude = 2, input duration 50 ms. Figure 4a: N = 800, g = 1.5,  
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pc = 0.25; 500 training loops; noise amplitude I0 = 1.5. Input amplitude = 5, input 
duration 50 ms.
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