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Abstract

The magnetic order of the triangular lattice with antiferromagnetic interactions is described by

an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we

show how these Z2 vortices can be fitted into a local SU(2) gauge theory. We propose simple

Ansätzes for vortex configurations and calculate their energies using well-known results of the

Abelian gauge model. We comment on how Dzyaloshinskii-Moriya interactions could be derived

from a non-Abelian gauge theory and speculate on their effect on non trivial configurations.
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I. INTRODUCTION

Vortices play a central role in explaining many fundamental phenomena in Condensed

Matter and High Energy Physics. The first example of vortices in theories with local gauge

invariance was put forward by Abrikosov [1], who showed that for an intermediate range of

an external magnetic fields and in a certain region of the parameter space (correponding to

type II superconductors) the Ginzburg-Landau theory of superconductivity admits solutions

representing a lattice of vortices.

More than 15 years later, Nielsen and Olesen discussed the role of vortices in a relativistic

U(1) Higgs model and pointed out its relevance in String Theory in the context of High

Energy phenomena. The first attempt to extend the study of vortices to the case of non-

Abelian gauge groups can be found already in the pioneering paper of Nielsen and Olesen,

who showed how to embed the Abelian solution in the SU(2) non-Abelian case using two

non colinear scalar fields in the (three-dimensional) adjoint representation. It was soon

realized that the correct topological characterization of these configurations implies that the

topological charge is Z2, unlike the abelian case where this charge is Z. Topologically stable

non-Abelian vortex solutions were found in [3]-[5].

Many investigations followed these ideas, exploring the properties of this type of solutions

for generic SU(N) groups and generalizing the Yang-Mills gauge field dynamics to include

Chern-Simon like terms which are important in connection with the statistics of elementary

excitations [4],[7]. A second wave of attention to vortices in theories with non-Abelian gauge

invariance arose after the work in Refs. [9]-[11] where the authors studied the role of vortex-

like solutions in models that arise from the bosonic sector of N = 2 supersymmetric QCD

with the gauge group SU(N) × U(1) and Nf flavors of the fundamental matter multiplets

(see [11] for a complete list of references).

Vortices also play a prominent role as excitations in magnetic systems. In a field theo-

retical language, these vortices correspond to non trivial configurations (defects) in theories

with global gauge invariance. The best known example is that of vortices in the XY model

which correspond to topologically non-trivial solutions of U(1) sigma models and play a

fundamental role in the Kosterlitz-Thouless transition in two dimensional XY magnetic

systems.

It is also known that vortices with Z2 topological charge can appear as defects in antifer-
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romagnetic (AF) spin system in the triangular lattice since in that case the order parameter

manifold is SO(3) [12]. The magnetic behaviour in the AF triangular lattice can be described

by three order parameters (one for each of the three sub-lattices in which the triangular lat-

tice can be partitioned) which are themselves triplets. In a way that resembles what happens

in the XY model, a Kosterlitz-Thouless transition was shown to take place, although in the

triangular SO(3) case both low and high temperature phases have exponentially decaying

correlations.

More recently, different studies of the triangular AF model with extra interactions, includ-

ing Kitaev-like [13] or Dzyaloshinskii-Moriya (DM) terms [14], have shown ordered phases

in a magnetic field that resemble the well celebrated U(1) Abrikosov vortex lattice, but with

Z2 vortices instead. From a field theoretical point of view, the appearance of Z2 vortices

can be understood since the magnetic behaviour of the AF triangular lattice at low energies

can be described by a non-linear sigma model of an order parameter field in SO(3) [15].

The questions that naturally arise are: are these vortices allowed in a (corresponding)

local gauge theory? and how are they related to the Z2 vortices that were considered in the

High Energy literature?

In this work we show that the vortices of the AF magnetic system can be easily accom-

modated into a local gauge theory and that, in analogy with the minimal model containing

two triplets, there are two Ansätze that can be reduced to embeddings of the Abelian model.

Using results on the energetics of vortices of the Abelian model we are able to identify the

lowest energy one.

II. Z2 VORTICES

Let us start by recovering the main results of vortices in the Abelian Higgs model. The

Lagrangian density describing the system is,

L = −1

4
FµνF

µν +
1

2
(DµΦ)∗DµΦ− V (Φ) (1)

where Φ is a complex field, Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor and

Dµ = ∂µ + ieAµ is the covariant derivative. Here e is the charge of the scalar field (in the

Ginzburg Landau theory of superconductors this is twice the electric charge). The potential
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can be written as

V (Φ) = c4(Φ∗Φ)2 − c2Φ∗Φ (2)

As we are working in the symmetry breaking phase, we take c2 > 0. We work with axially

symmetric vortices, so we can ignore completely the z-dependence of the fields. We are also

interested in static solutions, so we can as well forget about the t-dependence. Then, we

look for configurations minimizing the energy density,

E =
1

4
FijFij +

1

2
(DiΦ)∗DiΦ + V (Φ) (3)

where latin indices i, j take values x, y. Making the Ansatz

Φ = einφf(r) A(r) = −eφ
a(r)

r
(4)

reduces the equations of motion to a system of coupled radial second order equations. The

energy (per unit length) functional becomes

EAb = 2π

∫
rdr(

1

2r2

(
da(r)

dr

)2

+
1

2

(
df(r)

dr

)2

+
1

r2

(
(n+ ea(r))f(r)

)2
+
λ

4
(f(r)2− η2)2 (5)

where we have introduced λ = 4c4 and η2 = c2/(2c4). Minimun energy configurations satisfy

d2a

dr2
− 1

r

da

dr
− e(n+ ea)f 2 = 0

d2f

dr2
+

1

r

df

dr
− (n+ ea)2

r2
f 2 + 2c2f − 4c4f

2 = 0 (6)

with boundary conditions,

f(0) = a(0) = 0 (7)

f(∞) =

√
c2

2c4

(8)

a(∞) = −n
e

(9)

When the particular relation of coupling constants 8c4 = e2 holds (λ = e2/2), known as the

Bogomolnyi point, this set of equations reduces to a simpler set of first order differential

equations [16]-[17]. At this point, the energy can be shown to satisfy a bound E = 2nπη2.

The Bogomolnyi point corresponds to the case in which the scalar mass m2
H = 2λη2 (inverse

of the coherence length) and the vector mass m2
v = e2η2 (inverse of the penetration length)

are equal (i.e. the limit between Type I and Type II superconductors)
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The simplest non-Abelian extension of the Abelian Higgs model is that in which the

gauge group is SU(2). The gauge fields Aµ then take values in the Lie algebra of SU(2),

Aµ = ~Aµ · ~σ/2. In order to have topologically stable vortices, at least two non collinear

scalars in the adjoint (3-dimensional) representation need to be included. Thus we consider

scalars Φa = ~Φa · ~σ/2 (a = 1,M) where (M ≥ 2),

L = −1

4
~Fµν ~F

µν +
1

2
Dµ

~ΦaD
µ~Φa − V (~Φa) (10)

where

~Fµν = ∂µ ~Aν − ∂ν ~Aµ + e ~Aµ × ~Aν (11)

Dµ
~Φa = ∂µ~Φa + e ~Aµ × ~Φa (12)

The choice of the symmetry breaking potential V (~Φa) will be discussed below.

The M = 2 (two-triplets) case is the best known in the literature. In this case, two

possible Ansäzte are known, the first one, originally proposed in [3], takes the form

~Φ1 = f(r)(− sinnθ, cosnθ, 0)

~Φ2 = f(r)(cosnθ, sinnθ, 0)

~Aθ = −(0, 0,
a(r)

r
) (13)

It was later realized that another simpler Ansatz could be made [6]-[7]

~Φ1 = f(r)(− sinnθ, cosnθ, 0)

~Φ2 = f(r)(0, 0, 1)

~Aθ = −(0, 0,
a(r)

r
) (14)

Although in principle one could consider arbitrary n, only vortices with odd n are topo-

logically non-trivial, this corresponding to a Z2 homotopy class. Also, vortices with n = ±1

have lower energies. Moreover, it has been shown in [8] that vortices corresponding to Ansatz

(14) have lower energy, hence those associated to Ansatz (13) are unstable (they will decay

into the former ones).

Vortices in the Abelian Higgs model can be considered as the local gauge counterpart of

the vortices of the XY model, characterized by the Hamiltonian,

H = −J
∑
<ij>

~Si · ~Sj (15)
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where the winding of the polar angle of the two dimensional spin ~S = Sx~ex + Sy~ey can

be associated with the winding of the complex scalar Φ = Φ1 + iΦ2. Unlike the case in

local gauge theories, vortices in the XY model have a logarithmically divergent energy

E ∼ log(L/a) where L represents a characteristics size of the system and a is the lattice

spacing.

More sophisticated vortex structures can appear in other magnetic systems. That is the

case of the antiferromagnetic Heisenberg model in the triangular lattice,

H = J
∑
<ij>

~Si · ~Sj (16)

where now ~S is a three-dimensional vector ~S = Sx~ex + Sy~ey + Sz~ez and ij denote neighbors

in the triangular lattice. Let us denote by A,B,C the corners of a plaquette ∆, then

H∆ = J(~SA · ~SB + ~SB · ~SC + ~SC · ~SA) (17)

or

H∆ = (~SA + ~SB + ~SC)2 − |~SA|2 − |~SB|2 − |~SC |2 (18)

Then, as the modulus of the spins are fixed, the minimum energy configuration is obtained

when

~SA + ~SB + ~SC = 0 (19)

Thus the vacuum determines a 120 degrees symmetry structure of the spin configuration

(see Fig II). As shown by Kawamura and S. Miyashita [12], vortices can appear as magnetic

excitations in such systems and they are characterized by a Z2 topological charge. They also

discuss two possible kind of vortex configurations. In both of them, vortices are coplanar in

each point, but

• In type I vortices, the 3 vectors are always in the same plane while they wind around

the vortex center.

• In type II vortices, one of the vectors is constant, while the other 2 wind around the

vortex center.

The energy of the vortex configurations presented in [12] where it is shown that Type II

vortices have lower energies.
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FIG. 1. Vacuum configuration for the AF triangular lattice. The three order parameters (denoted

with different colors and numbers) are coplanar and form a 120 structure in the triangular lattice

Inspired by these vortices in the antiferromgnetic triangular lattice, we consider the SU(2)

gauge model with three triplets field ~Φa, so M = 3 and a = 1, 2, 3. Each field ~Φa has three

components. In the gauge theory language, these are internal indices in the Lie Algebra

while in the magnetic model they refer to components in space. In order to impose on the

vacuum a 120 degrees symmetry structure, we take a potential of the form,

V C = λ1(~Φ1 · ~Φ1 − η2
1)2 + λ2(~Φ2 · ~Φ2 − η2

2)2 + λ3(~Φ1 · ~Φ1 − η2
3)2 + Vmix(~Φa) (20)

where

Vmix(~Φa) = µ2(~Φ1 + ~Φ2 + ~Φ3)2 + λ4(~Φ1 + ~Φ2 + ~Φ3)4 (21)

It is clear that if we take λi > 0, µ2 > 0 and η1 = η2 = η3 ≡ η, then the vacuum

corresponds to |Φi| = η2 and ~Φ1 + ~Φ2 + ~Φ3 = 0 (for this last condition that ensures the 1200

structure we do need µ2 > 0). The first term in Vmix is the analogous of the Heisenberg

interaction in antiferromagnets. We have included the term with λ4 as it is compatible

with renormalization and does not change the main results of our work. A possible vacuum

configuration is illustrated in Fig II, which is exactly the same than in the triangular lattice.

In order to find vortex configurations in the SU(2) gauge model, we need to solve the

field equations arising from Lagrangian (10),

Dα ~Fαµ = eDµ
~Φi × ~Φi (22)
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FIG. 2. Schematic top view of a Type I vortex. In this Ansatz the three triplets (blue, red, green)

are coplanar(in the XY plane) and wind around the core of the vortex (reprented as a disk).

DµD
µ~Φi = − δV

δ~Φi

(23)

The idea is to propose an Ansatz and determine whether the field equations reduce to

a simpler, self-consistent system of ordinary differential equations. Inspired by the (global)

vortices of the antiferromagnetic triangular lattice and the vortices of the SU(2), M = 2

model described above we propose the following Type I Ansazt,

~Φ1 = f(r)(− sinnθ, cosnθ, 0)

~Φ2 = f(r)(− sin(nθ +
2π

3
), cos(nθ +

2π

3
), 0)

~Φ3 = f(r)(− sin(nθ +
4π

3
), cos(nθ +

4π

3
), 0)

~Aθ = −(0, 0,
a(r)

r
) (24)

with n ∈ Z. Notice that this Ansatz implies that

~Φ1(r, θ) + ~Φ2(r, θ) + ~Φ3(r, θ) = 0 (25)

At each point, the three triplets are then at 120 degrees and they are always in the same

plane while they wind around the origin of the vortex (the origin). The main differences
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with Type I magnetic vortex are of course that now we have a gauge field which we have

chosen in the 3rd direction, and that the moduli of the triplets are constant only at infinity,

where they tend to a minimum of the potential. We have made a schematic representation

of the solutions in Fig. II.

Notice that no terms arising from Vmix appear in the field equations since δVmix/δΦi is a

polynomial in powers of (~Φ1 + ~Φ2 + ~Φ3) so that it vanishes. One then has

δV

δ~Φa

= 4λf(r)(f 2 − η2)~Φa (26)

so that the equations of motion for the scalar fields

�~Φa − 2e
a

r
~Φa − e2a

2

r2
~Φa = − δV

δ~Φa

(27)

reduce to the radial equation

f ′′ +
1

r
f ′ − 1

r2
(n+ ea)2f = 4λf(r)(f 2 − 1) (28)

which coincides, apart for a numerical factor in the r.h.s., with the radial equation for the

Abelian Higgs model scalar equation of motion.

Concerning the scalar current, once the Ansatz is inserted it takes the simple form

~Jθ = eDθ
~Φa × ~Φa = −e

r
f 2(n+ ea)(0, 0, 1) (29)

so that the gauge field radial equation of motion also reduces to the Abelian model one.

The conditions to ensure finite-energy configurations are

f(0) = 0 a(0) = 0

lim
r→∞

f(r) = η lim
r→∞

a(r) = −n
e

(30)

Finally, the energy of static configurations satisfying the Ansatz (24) is given by

E =

∫
d2x(

1

4
~Flm · ~Flm +

1

2
Dl
~Φi ·Dl

~Φi + V ) (31)

or

E =

∫
d2x(

1

2r2
(∂ra(r))2 +

3

2
(∂rf(r)2 +

1

r2
((n+ ea(r))f(r))2 + 3

λ

4
(f 2 − η2)2 (32)

Redefining r = κρ we end up with

E = 2π
1

κ2

∫
(

1

2ρ2
(∂ρa(ρ))2 +

3κ2

2
(∂ρh(ρ)2 +

1

ρ2
(n+ ea(ρ))2h(ρ))2 +

3κ4λ

4
(f 2 − η2)2 (33)
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FIG. 3. Three dimensional view of a Type II vortex. The three triplets (blue, red, yellow) are

tangent to cylinders that have the center at the core of the vortex. We have represented the region

of intense chromomagnetic field with a darker color

Thus, choosing κ2 = 1/3, the energy functional which we shall denote E(1) becomes, apart

from a factor, identical to the Abelian one, eq.(5), but with λ→ λ/3

E(I) = 3EAb(λ/3, e, n, η) (34)

We can next take an Anstaz inspired in the Type II vortices. We then consider ,

~Φ1 = (0, 0, η)

~Φ2 =
1

2
(
√

3f(r) sin(nθ),
√

3f(r) cos(nθ)),−η)

~Φ3 =
1

2
(−
√

3f(r) sin(nθ),−
√

3f(r) cos(nθ)),−η)

~Aθ = −(0, 0,
a(r)

r
) (35)

As before, Eqs (25) holds and the triplets are at 120 degrees. In this case the field ~Φ1

does not contribute to the energy and Dµ
~Φa is projected into the (1, 2) plane. Within this

Ansatz, for each point, the triplets live in the tangent plane of a cylinder with center at

the vortex core, and one of the triplets is everywhere constant (see Fig II). As before, one

can see that inserting the Ansatz in the equations of motion, reduce them to a system of
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coupled ordinary differential equations, which after scaling can be related to the Abelian

model ones. As for the energy, plugging the Ansatz into the energy functional one obtains

E =

∫
d2x(

1

2r2
(∂ra(r))2 +

3

4
(∂rf(r)2 +

1

r2
((n+ ea(r))f(r))2 + 2

λ

4
(f 2 − η2)2 (36)

which, after the rescaling r = κρ becomes

E = 2π
1

κ2

∫
(

1

2ρ2
(∂ρa(ρ))2 +

3κ2

4
(∂ρh(ρ)2 +

1

ρ2
(n+ ea(ρ))2h(ρ))2 +

2κ4λ

4
(f 2 − η2)2 (37)

Thus, choosing,

κ2 = 2/3 (38)

one finally gets

E = 2π
3

2

∫
(

1

2ρ2
(∂ρa(ρ))2 +

1

2
(∂ρh(ρ)2 +

1

ρ2
(n+ ea(ρ))2h(ρ))2 +

2λ

9
(f 2 − η2)2 (39)

leading to

E(II) =
3

2
EAb(

8

9
λ, e, n, η) (40)

In order to compare the energies of these two Ansätzes we can borrow some results from

the Abelian model. First, the energy is an increasing function of n. As in the M = 2

case, there is only one class of topologically non-trivial configurations, we consider n = ±1.

Second, a simple dimensional analysis shows that

EAb(λ, e, η) = η2ε(λ/e2) (41)

Now, as it is well known, for generic values of λ/e2 there is no analytical result for ε(λ/e2)

except at the Bogomolny point, for which ε(1/2) = 2π. For other λ/e2 values, a numeri-

cal calculations is required. We can use the accurate result of the variational calculation

presented in [18]

ε = 2.38π

(
λ

e2

)α
(42)

with α = 0.195.... . Using this value for the case at hand we find for the ratio of EI and

EII energies as given by eqs. (34),(40)

E(I)

E(II)
= 1.65.... (43)

Then, as in the global case [19] and in the SU(2) gauge theory with two Higgs scalar model

discussed in [6], the Ansatz containing one “constant” Higgs scalar leads to the solution

having the lowest energy.
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Note that the first term in the energy integral (33) can be interpreted as the radial

component of magnetic field defined as ,

B ≡ 1

2
εijk

~Φ3

η
· ~Fjk = ∂ra(r)/r (44)

In view of the boundary conditions (9) the resulting vortex magnetic magnetic flux FB is

quantized in units of 2π/e,

FB ≡
∫
d2xB = −2π

e
n , n ∈ Z (45)

Since the invariant group of the vacuum associated to Ansätzes (24) and (35) is Z2, the

relevant homotopy group is Π1(SU(2)/Z2) = Z2. The corresponding topological charges can

be calculated via the Wilson loop

Q =
1

2
Tr exp

(
i

∮
C∞

Aµdx
µ

)
(46)

with Tr the SU(2) trace and C∞ a closed curve at infinity. Both in the case of Type I and

type II vortices this gives

Q =
1

2
Tr exp

(
i

2

∮
S1

dθa(r=∞, θ)σ3

)
=

1

2
Tr exp (iπnσ3) = (−1)n (47)

Hence we conclude that there are two topologically inequivalent configurations, the ”trivial”

Q = 1 ones (n = 2k) and those with Q = −1 for the ”non-trivial” ones (n = 2k + 1).

Notice that the fact of being topologically non trivial does not ensure stability. Indeed we

have shown that the type I Ansatz is topological non trivial but unstable towards decay into

Type II Ansatz.

Following Kawamura and Miyashita [12] we can also define the vector chirality

~κ =
2

3
√

3
(Φ̌1 × Φ̌2 + Φ̌2 × Φ̌3 + Φ̌3 × Φ̌1) (48)

with

Φ̌i =
Φi

|Φi|
(49)

For type I vortices, this gives

~κ = (0, 0, 1) (50)
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while for type II ones one has

~κ = (− cos θ, sin θ, 0) (51)

We see that in the type I vortex the chirality vector is fixed and perpendicular to the plane

where the 120 degrees structure lies while in the type II case vector ~κ rotates around the

vortex core.

III. CONCLUSIONS

In this work we have analyzed vortex solutions in a non-Abelian SU(2) gauge model with

three matter fields in the adjoint representation (triplets) being our original motivation to

determine whether the global vortices of the triangular antiferromagnetic lattice [12] can be

conveniently fitted into a local gauge theory. We have shown that this is indeed the case

and the vortex solutions that we have constructed share many similarities to those of the

minimal theory with two triplets that have been considered for many years in the context

of High Energy models.

Vortices in a local SU(2) gauge theory with M = 3 matter fields have also been recently

considered in the context of QCD [20]. Notice however that our model and Ansätses are

different: in [20] the triplets are perpendicular among them at each point and a different

potential is chosen. Our model bears also many similarities to those discussed in the case

of three-component superconductors, although in those systems the three order parameters

are complex fields (rather than triplets) and the gauge field is Abelian [21].

Coming back to the original motivation of the magnetic analogy, let us point out that the

antiferromagnetic triangular lattice has been recently the focus of attention in connection to

the existence of vortex and skyrmion lattices [13, 14]. As shown in numerical simulations of

the Heisenberg model in this lattice, the inclusion of Kitaev type and DM interactions can

induce vortex and skyrmion lattice phases in some region of the parameter space. In the

continuum description of the Heisenberg model in the square lattice and for certain choice

of the DM vectors, the DM interaction corresponds to a term in the energy of the form

EM = DεijkΦi∇jΦk (52)

where in the magnetic case, Φi correspond to the components of the order parameter living

in S2 [22].
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Notice that a term of this kind naturally arises in a theory with non-Abelian gauge fields.

Indeed, consider the covariant derivative energy density part of the energy functional,

Ecd = |(∇i
~Φ + e ~Ai × ~Φ)|2 (53)

Ecd = |∇i
~Φ|2 + |e ~Ai × ~Φ|2 + 2e∂i~Φ · ( ~Ai × ~Φ) (54)

The last term is

2e∇i
~Φ · ( ~Ai × ~Φ) = 2e∇iΦlεlmnAimΦn (55)

Thus, if we choose, Aim = γδim (in Aim the first subindex denote space index and the second

Lie Algebra component),

2e∇i
~Φ · ( ~Ai × ~Φ) = −2eγ∇iΦlεnilΦn (56)

This is exactly the Moriya term with D = −2γ. The second term in (54) is just an irrelevant

quadratic factor e2γ2ΦlΦl.

Thus, the Moriya term appears as a result of a constant SU(2) background vector poten-

tial. Notice that a constant vector potential is not trivial in a non-Abelian theory. Indeed,

for our purposes it is enough to take A11 = γ = A22, this giving a constant magnetic field

B33 = eγ2 which is in the third direction in the Lie Algebra and in the z-direction of space.

Thus a Moriya term can be incorporated choosing a constant chromomagnetic field (it is

the equivalent of the Landau problem for a non Abelian theory). Interestingly, a similar

argument is used to introduce Rashba interactions for triplets in the context of cold atoms

[23] where non-Abelian gauge fields can be engineered using laser beams.

Notice that the Moriya type term can be easily generalized to the case of a theory con-

taining three triplets (a = 1, 2, 3),

E (1)
M = D1εijkΦia∇jΦka (57)

One could also include a term of the form

E (2)
M = D2εijkεabcΦiaΦjbΦkc (58)

which preserves the global SO(3) invariance of the theory. Of course, one could combine

these two terms in a non Abelian Chern Simons type term if one were willing to interpret

~Φa as a vector field.
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Our work could be extended in many directions. One direct generalization would be to

include a non-Abelian Chern Simons term for the ~Ai field. Such term is interesting since

it alters the statistics of excitations and binds “chromoelectric” charge to the vortices. Is

is easy to show that the Ansätzes that we have presented work equally fine for this case,

although the analysis of the energetics of the different Ansätze might require some numerical

work.

Another interesting issue is to determine the role of terms like those in Eqs. (57)-(58)

in the properties of the solutions. If the magnetic analogy would carry through the local

gauge theory, then one would expect that this type of terms play a fundamental role in the

appearance of vortex and skyrmion lattices. We expect to report on these issues on a future

work.
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