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This article shows the conditions under which endogeneity of a regressor variable
does not affect threshold nonlinearity tests. Inference on the values of the parameters
derived from standard statistics is also appropriate. Simulation techniques are used
to approximate the p-value of the test. Monte Carlo simulations confirm the validity
of Wald tests in the presence of endogeneity in the regressors.
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1. Introduction

Threshold models are simple yet efficient methods to capture nonlinearities in cross
section and time series models. They split the sample into classes based on the value
of observed variables according to threshold values. The theory of estimation and
inference in threshold models with exogenous regressors has been extensively studied
in the classical articles of Chan and Tong (1986), Chan (1993), and Hansen (1996,
1997, 2000). Consider a simple threshold nonlinear regression model

V= xlﬂl + I(Zz > 5)xtﬁ2 +u, (1)

where 0 is the threshold defined on the variable z over a compact set A C IR.
Nonlinearity tests are based on the hypothesis that H,, : 5, = 0. The most interesting
case is when the threshold value ¢ is not known and must be estimated. There
is an inherent statistical difficulty associated with this problem. For instance,
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conventional tests of the null of a linear model against the alternative have
nonstandard distribution, since the threshold parameter is not identified under the
null of linearity (see Hansen, 1996).

Caner and Hansen (2004) extended this test to make allowance for endogeneity
of x but assume that the threshold variable is exogenous, i.e., E[zu] = 0, and extend
Hansen’s (1996; 1997; 2000) results to this case. However, as the authors note, “it
may be desired to treat the threshold variable as endogenous (... ), [and this] would
be a substantially different model and would require a distinct estimator” (Caner
and Hansen, 2004, p. 814). Moreover, finding reliable instrumental variables may
be a futile task in empirical settings. In fact, in many applications the threshold
variable is z, = x,, such as in the self-exciting threshold autoregressive models where
X = Y1

Therefore, in this article we consider the model,

V= xlﬁl + I(X[ > 5)xzﬁ2 +u, (2)

where E[x,u,] # 0, i.e., x is an endogenous variable. In a standard linear model
with 5, = 0, the endogeneity of x will make the OLS estimator of f; inconsistent.
However, we show that this general endogeneity model, where the threshold variable
is the endogenous one, produces no distortions in the Hansen (1996, 1997, 2000)
threshold nonlinearity tests for a large family of joint distributions describing the
relationship between the explanatory variables and the error term. This is the
Pearson family of distributions that includes as particular cases the multivariate
Normal and #-Student distributions. The conclusion thus is that under these
conditions there is no need to pursue two-stage least squares instrumental variables
strategies to obtain correct size and power for these tests.

This article is organized as follows. Section 2 presents the effect of endogeneity
on threshold nonlinearity tests and derives the main asymptotic results. Section 3
reports Monte Carlo experiments. Section 4 concludes.

2. Wald Tests for Threshold Nonlinearity Under Endogeneity

Consider a sample of size n of {y,, x,, u,}I,, satisfying Eq. (2) and E[x,u,] # 0.
Define x;, = x, and x,, = I(x, > J)x, and x,(0) = (x;,, x5,)-
Consider the following assumptions.

Assumptions A1-A4.

Al. (y,, x,) is strictly stationary, ergodic and p-mixing, with p-mixing coefficients
satisfying > >_, p!/? < oo; u, is a martingale difference sequence with respect to
the sigma-algebra determined by the set of all available information up to time
t— 1

A2. ¢ lies in a compact set A C R, and = (f,, f,) € int B, with B compact and
convex;

A3. E[|x,|**€] < oo with | - | the absolute value function;

Ad. 130 x,(0))x,(8,) and 130 (x,(8))u,)(x,(3,)u,) converge almost surely
to E[x,(6,)x,(0,)] and E[(x,(,)u,)(x,(5,)u,)’], respectively, uniformly over
01, 0, € A. Further, assume that E[x,(0)x,(5)'] > 0 for all é € A.

These assumptions are common in the regime switching literature. Al and
A3 guarantee that the process is stationary and that the series satisfies Hansen’s
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(2000) Assumption 1.1. A2 imposes that ¢ lies on a compact set. This assumption
was used by Hansen (1996). A4 is equivalent to Assumption 3 in Hansen (1996)
and it guarantees that the probability limit of these expressions exists for every 9.
This assumption will be relevant for obtaining the asymptotic distribution of the
nonlinearity Wald test discussed later in the section. The assumption shows that the
empirical covariance function of the Wald test statistic converges uniformly almost
surely to the covariance function of a zero-mean Gaussian process.

Let the capital letters (Y, X,, X,, U) denote the sample vectors containing the n
observations for each variable. Simple OLS orthogonal projections algebra shows that

By = (XoM, X,) "' (X5M, Y), (3)
where M, = I, — X,(X;X,)"' X|. Using the definition of ¥ = X, + X,f8, + U gets
By = By + (X3M X5) ™ (X3 M, V). “4)

Consider now the last factor,

1 7 1 / 1 7 / —1 v/
—X)MU = —X,U — —X}X,(X|X)"' XU
n n n

-1
1 Z 1 Z 1 Z 1 Z
= ; gxzﬂ"t - (; ngtxlr) (; gxlzr> (; gxltut)

3 > Oy (1 Y10 > 6)x3> (1 Z) (1 ixtu,). )

Then, under assumptions Al-A4, the following convergence in probability
holds:

%XQMIU 5 E[xu|x > 8]P[x > 8] — E[x*| x > 0]P[x > S](E[x*]) ™' E[xu]

= P[x > 9] {E[xu |x >8] — E[x*|x > 5](E[x2])_1E[xu]} . (6)

The last expression determines whether the endogeneity in x has an effect on
the estimation of f3,, and thus, whether it affects a test for threshold nonlinearities.
Note that the last expression may indeed be close to zero for a broad range of (x, u)
bivariate distributions. For instance, if we assume that x and u follow a bivariate
normal distribution with zero means, unit variances, and correlation p(= E[xu]),
then, E[xu|x > 6] = pE[x*|x > &]. In this case,

E[xu|x > 6] = E[x*| x > 8](E[x*]) " E[xu]. (7)

In fact, this condition can be also satisfied for all bivariate random variables in
the Pearson family of distributions, such as the bivariate z-Student, where truncated
moments can be expressed this way and (7) is satisfied (see Lee, 1984, p. 847). In
practice, of course, the distribution of (x, ) is not known. However, condition (7)
is indeed satisfied for a large set of distributions.

Now, we turn to the analysis of the nonlinearity test. To do this we discuss
the effect of the endogeneity of x, in the variance of the parameter estimators. For
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simplicity, we concentrate on the univariate regression model and, in particular, on
p,. The variance of the parameter estimator is

/ -1 / ’ ’ / -1
V[ﬁBz]=E|:<X2AZIX2> (XleU)(XleU) <X2M1X2) :| (8)

n n

If we further assume homoscedasticity of the error term, this variance can be
estimated by

- (XM X\ 1
V,=(—212) =Y 9
with &, the residuals of regression Eq. (2).

The linearity of model (2) is reflected in the null hypothesis H,, : f, = 0. In order
to be able to implement this test under endogeneity of the regressor, condition (7)
needs to be satisfied. The null hypothesis H,, can be tested using a Wald type test
that reduces in the univariate case to a t-test. Thus, for the Wald test is

_ B

n

From the formulas above it follows that if ¢ is known and (7) holds, the t-test 1, is
asymptotically standard normal under H,,.

The most interesting case, however, is when the threshold value 6 is not known
and must be estimated. There is an inherent statistical difficulty associated with
this problem. For instance, conventional tests of the null of a linear model against
the alternative have nonstandard distributions because the threshold parameter is
not identified under the null of linearity (see Hansen, 1996). In order to test the
hypothesis we need to test the significance of the 8, parameter for every 6 € A (a
compact set on R). Consider f,(5) and V,(8), where the dependence on & is made
explicit. Now define the Wald statistic as

RCAC)
W(d) =n T =1 (9). (11)

n

W(.) is a process on ¢ and the test statistic is some functional of it, supremum and
exponential average tests are usually considered. The former method also provides
a candidate of the threshold parameter and the second defines an optimal test, as
discussed by Andrews and Ploberger (1994).

As in Hansen (1996), we approximate the asymptotic distribution of these tests
by simulation techniques. Under assumptions A1-A4 and H,, the distribution of
W(J) can be approximated by the distribution of an auxiliary process W*(0) =

W with S;(6) = &= Y0, I(x, > d)x,ii,v, the score function of (2),
where n is the residual sequence of this regression equation and (vys...,0,) 18
an i.i.d. vector of standard normal random variables. Then, under H,, «/nf3,(5) =
(X5M,X,/n)~'S:(8) + 0,(1). The auxiliary process W*(d) can be simulated by
obtaining independent vectors v to compute independent replicas of W*(9).

We have explored the case of a single regressor x, defining the threshold

nonlinearity. The above results can be generalized under certain conditions to the
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following multivariate regression model characterized by an endogenous variable,
x,, that also defines the threshold nonlinearity, and w,, a set of exogenous variables:

= x;ﬂl + w;?l + I(XZ > 5)xtﬂ2 + I(Xz > 5)11);“/2 +u,.

For simplicity, we assume that both x, and w, have zero mean, although the result
below can be also obtained if the model has a constant term. The nonlinearity test
is now H, : f, =y, = 0. The design matrix X is now defined as X, = (x, w, I(x, >
0)x, I(x, > d)w,) with partitions X, = (x,w,) X,, = (I(x, > 0)x, [(x, > 0)w,). For
simplicity define X, = (x; w,) and X, = (x, w,). The aim of the study is to show the
consistency of the OLS estimators of 5, and y,. From (4), it follows that the relevant
asymptotic conditions for the additional parameter y, consistency is

1 ! 1 ! ! - ! 0
XU I XX % (0).

1
— (XM = —
n( »M,U) n 0

The first term is a vector containing E[xu|x > 0]P[x > ] and E[wu|x >
O]P[x > §], that is,

1, » (E[xulx> ]P[x > J]
Pl (E[wu |x > 0]P[x > 5]) :

The second term contains three factors. The last one contains the covariance of
each covariate with the error term, which is given by the endogeneity/exogeneity of
the covariates. Given our assumptions

1, » (E[xu]
Define the probability limits of the matrices as

1 4 P aXX axw
Lo & (e )

wx ww

and
! - [7 bJ(X b)f'll/
n(X\X,) Lo <b b )

Then, the second term satisfies

1 / / -1 1 ! P (axxbxx + awawx)E[xu]
;XZXIH(X1X1) ZX] v= ((awxbxx + awwwa)E[xu] .

Therefore, the consistency condition becomes

E[xu|x > 0]P[x > d] — (a,,b,, + a,,b,,)E[xu] =0
Elwu|x > 0]P[x > ] — (ay, by, + aybu)E[xu] =0/

Two cases need to be considered here. First, assume that x and w
are independent, which (together with the zero mean condition) implies that
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Elwu|x > 6] = E[w|x > 0] * E[u|x > 6] = E[w] * E[u|x > d] =0and a,, = a,, =
b,. = 0. In this case, the first element in the above condition is that of the univariate
regression model, while the second is zero. Therefore the same conclusions drawn
for the univariate case apply: that is, the endogeneity in the threshold variable will
not affect the threshold nonlinearity tests under very general conditions on the
bivariate distribution of the endogenous variable and the error term. Second, if they
are not independent, then the endogeneity in x will have an effect in the estimation
of y,. For this case, the effect of endogeneity depends on the particular distribution
of the triple (x, w, u).

3. Monte Carlo Simulation Studies

This section implements the p-value transformation of Hansen (1996) for a
nonlinearity test under exogeneity and endogeneity. Consider the following data

Table 1
Bivariate normal
DGPI1 DGP2 DGP3 DGP4
o =0.10
n =100 sup 0.024 0.018 0.634 0.732
expave 0.114 0.132 0.882 0.928
n =200 sup 0.012 0.014 0.910 0.966
expave 0.118 0.122 0.988 1.000
n = 500 sup 0.008 0.014 1.000 1.000
expave 0.078 0.092 1.000 1.000
n = 1000 sup 0.016 0.008 1.000 1.000
expave 0.086 0.070 1.000 1.000
o* = 0.05
n =100 sup 0.014 0.012 0.534 0.668
expave 0.084 0.080 0.840 0.884
n =200 sup 0.010 0.006 0.874 0.952
expave 0.074 0.076 0.976 0.998
n = 500 sup 0.002 0.010 1.000 1.000
expave 0.026 0.052 1.000 1.000
n = 1000 sup 0.006 0.004 1.000 1.000
expave 0.062 0.044 1.000 1.000
o* = 0.01
n =100 sup 0.004 0.002 0.360 0.504
expave 0.026 0.024 0.646 0.744
n =200 sup 0.004 0.000 0.756 0.886
expave 0.018 0.022 0.894 0.960
n = 500 sup 0.000 0.000 1.000 1.000
expave 0.010 0.018 1.000 1.000
n = 1000 sup 0.002 0.002 1.000 1.000

expave 0.020 0.012 1.000 1.000
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generating processes:

DGP1: y, = x,, + uy,,
DGP2: y, = x,f, + uy,,
DGP3: y, = x,f, + I(x, > 0)x,, + uy,,
DGP4: y, = x,f, + I(x, > 0)x,5, + u,,.

111

The random errors u,, and u,, are i.i.d. and mutually independent. The regressor
x, is defined as x, = pu,, + /1 — p*w,, with w, an i.i.d. random variable mutually
independent of u;, and u,,. This implies that DGP1 and DGP3 are defined by
exogenous regressors and DGP2 and DGP4 by endogenous regressors. For DGP1
and DGP3 the error term u, is such that E[x,u,]=0 since E[uy,u,]=0, by

Table 2
Bivariate f,

Mixture of two ¢ distr with 2 dof

DGP1 DGP2 DGP3 DGP4

of =0.10
n =100 sup 0.046 0.126 0.998 0.496
expave 0.206 0.184 1.000 0.578
n =200 sup 0.022 0.096 1.000 0.504
expave 0.162 0.120 1.000 0.550
n =500 sup 0.014 0.098 1.000 0.608
expave 0.184 0.098 1.000 0.622
n = 1000 sup 0.016 0.076 1.000 0.682
expave 0.162 0.076 1.000 0.688

o =0.05
n =100 sup 0.028 0.112 0.992 0.466
expave 0.182 0.150 1.000 0.534
n =200 sup 0.018 0.082 1.000 0.460
expave 0.126 0.096 1.000 0.498
n = 500 sup 0.006 0.084 1.000 0.576
expave 0.164 0.092 1.000 0.594
n = 1000 sup 0.008 0.070 1.000 0.652
expave 0.138 0.074 1.000 0.658

o =0.01
n =100 sup 0.012 0.076 0.986 0.374
expave 0.094 0.094 0.996 0.434
n =200 sup 0.006 0.056 1.000 0.350
expave 0.072 0.058 1.000 0.384
n = 500 sup 0.004 0.062 1.000 0.478
expave 0.082 0.068 1.000 0.496
n = 1000 sup 0.004 0.042 1.000 0.574
expave 0.074 0.042 1.000 0.586
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construction. For DGP2 and DGP4, if p # 0 it follows that E[x,u,,] = paf,2 # 0 with

022 the variance of u,,, by construction of the regressor x,.

We consider three distributions. First, a multivariate normal case where
uy, Uy, w~ i.i.d. N(0, 1). Second, a multivariate t—Stpdent case where u,, u,, w ~
iid.t, and t;. In these cases, except for the t,, B, = f, +0,(1) because (7) is
satisfied. Finally, a mixture of distributions where u, u, ~ i.i.d. (3 — 3)/+/6 and
w ~ i.i.d. N(0, 1). In this case f8, # 8, + 0,(1) given that (7) is not satisfied. We set
pi =P, =1 and p =0.5. The support of the threshold parameter ¢ (defined above
as A) is set to cover 90% of the endogenous regressor domain. We use the supremum
and exponential average test statistics from the Wald-based p-value transformation
method discussed above, using 200 replications. We repeat the Monte Carlo
simulation 500 times in each case for sample sizes n = 100, 200, 500, 1000. Finally
we also consider three nominal sizes, o* = 0.10, 0.05, 0.01, and report the empirical
size for each case.

Table 1 reports the empirical size for the multivariate normal case. Note that
for both DGP1 and DGP2, the exponential average Wald tests achieve empirical

Table 3
Bivariate t,
DGP1 DGP2 DGP3 DGP4
o =0.10
n =100 sup 0.020 0.092 0.966 0.562
expave 0.160 0.154 0.994 0.668
n =200 sup 0.018 0.046 1.000 0.678
expave 0.156 0.082 1.000 0.750
n = 500 sup 0.022 0.028 1.000 0.836
expave 0.122 0.040 1.000 0.852
n = 1000 sup 0.016 0.036 1.000 0.904
expave 0.122 0.042 1.000 0.910
o* = 0.05
n =100 sup 0.016 0.070 0.954 0.492
expave 0.126 0.120 0.986 0.628
n =200 sup 0.014 0.034 1.000 0.626
expave 0.126 0.058 1.000 0.716
n = 500 sup 0.014 0.022 1.000 0.810
expave 0.092 0.028 1.000 0.826
n = 1000 sup 0.008 0.026 1.000 0.884
expave 0.080 0.032 1.000 0.892
o =0.01
n =100 sup 0.008 0.036 0.916 0.370
expave 0.058 0.060 0.966 0.468
n =200 sup 0.002 0.014 1.000 0.508
expave 0.040 0.030 1.000 0.558
n = 500 sup 0.002 0.012 1.000 0.734
expave 0.032 0.018 1.000 0.760
n = 1000 sup 0.000 0.016 1.000 0.828

expave 0.030 0.016 1.000 0.832
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size close to its nominal level, while the supremum Wald test produces considerably
small rejection rates. A more detailed look to the simulations shows that the
supremum test has a nonconservative size for all sample sizes and the exponential
average appears the closest to their nominal rejection probabilities. In line with
Andrews and Ploberger (1994) the latter method should be preferred to carry out
this type of tests. Moreover, the exponential average provides better power in DGP3
and DGP4, although both tests are consistent. In all cases, we observe that the
presence of endogeneity in x does not affect the tests for nonlinearities.

Tables 2 and 3 report the simulation results for the multivariate ¢, and t;
distributions, respectively. In the first case, the variance of f,(5) does not exist,
provided that this distribution has infinite second moments. The size distortions
produced by this distribution are of importance for small n, but they are considerably
reduced for large n. Better size results are observed for the #; case. As in the normal
case, the exponential average test appears the closest to their nominal levels.

Table 4 reports the simulation results for the mixture of distributions where
(7) is not satisfied. Note that even in this case, there are considerable differences

Table 4
Mixture of x5 and normal

DGPI DGP2 DGP3 DGP4

of =0.10
n =100 sup 0.018 0.244 0.628 0.962
expave 0.130 0.430 0.856 0.988
n =200 sup 0.020 0.430 0.902 1.000
expave 0.110 0.630 0.988 1.000
n =500 sup 0.016 0.840 1.000 1.000
expave 0.100 0.944 1.000 1.000
n = 1000 sup 0.016 0.988 1.000 1.000
expave 0.096 0.996 1.000 1.000

o =0.05
n =100 sup 0.006 0.186 0.554 0.920
expave 0.086 0.334 0.794 0.974
n =200 sup 0.010 0.352 0.854 1.000
expave 0.076 0.526 0.968 1.000
n = 500 sup 0.012 0.770 1.000 1.000
expave 0.078 0.886 1.000 1.000
n = 1000 sup 0.012 0.984 1.000 1.000
expave 0.068 0.992 1.000 1.000

o =0.01
n =100 sup 0.002 0.080 0.398 0.800
expave 0.018 0.162 0.618 0.890
n =200 sup 0.002 0.190 0.718 0.992
expave 0.028 0.292 0.898 0.996
n =500 sup 0.002 0.580 1.000 1.000
expave 0.018 0.680 1.000 1.000
n = 1000 sup 0.006 0.940 1.000 1.000

expave 0.018 0.964 1.000 1.000
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between DGP1 and DGP2. As expected, DGP2 produces unacceptable size
distortions, and the empirical rejection rates increase with n. This confirms the fact

that condition (7) is necessary for the validity of the threshold nonlinearity tests
based on (2).

4. Conclusion

This article shows that for the Pearson family of distributions endogeneity of the
regressor variable does not produce distortions of associated nonlinearity tests based
on self-exciting processes. Otherwise, the parameter estimator corresponding to
the nonlinear component is biased and inconsistent. We show via a Monte-Carlo
experiment this statistical phenomenon for different simulated processes.

The conclusions of this article suggest that nonlinearity tests can be performed
under the standard OLS with exogenous regressors paradigm under very general
conditions, and complements the results of Caner and Hansen (2004).
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