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1. Introduction

In graph theory, there is a large family of optimization problems having relevant practical importance, besides its
theoretical interest. One of the most representative problem of this family is the Graph Coloring Problem (GCP), which arises
in many applications such as scheduling, timetabling, electronic bandwidth allocation and sequencing problems.

Given a simple graph G = (V , E), where V is the set of vertices and E is the set of edges, a coloring of G is an assignment
of colors to each vertex such that the endpoints of any edge have different colors. A k-coloring is a coloring that uses k colors.
Equivalently, a k-coloring can be defined as a partition of V into k subsets, called color classes, such that adjacent vertices
belong to different classes. Given a k-coloring, color classes are denoted by C1, . . . , Ck assuming that, for each i ∈ {1, . . . , k},
vertices in Ci are colored with color i. We can also define a k-coloring of G as a mapping c : V → {1, . . . , k} such that
c(u) ≠ c(v) for all (u, v) ∈ E. The GCP consists of finding the minimum number of colors such that a coloring exists. This
minimum number of colors is called the chromatic number of the graph G and is denoted by χ(G).

Some applications impose additional restrictions arising variations of GCP. For instance, in scheduling problems, itmay be
required to ensure the uniformity of the distribution of workload employees. The addition of these extra equity constraints
gives rise to the Equitable Coloring Problem (ECP). An equitable k-coloring (or just k-eqcol) of G is a k-coloring satisfying the
equity constraints, i.e.

|Ci| − |Cj|
 ≤ 1, for i, j ∈ {1, . . . , k} or, equivalently, ⌊n/k⌋ ≤ |Cj| ≤ ⌈n/k⌉ for each j ∈ {1, . . . , k}. The

equitable chromatic number of G, χeq(G), is the minimum k for which G admits a k-eqcol. The ECP consists of finding χeq(G).
The ECP was introduced in [17], motivated by an application concerning garbage collection [19]. Other applications of the

ECP concern load balancing problems in multiprocessor machines [6] and results in probability theory [18]. An introduction
to ECP and some basics results are provided in [11].
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Computing χeq(G) for arbitrary graphs is proved to be NP-hard and just a few families of graphs are known to be easy
such as complete n-partite, complete split, wheel and tree graphs [11]. In particular, if G has a universal vertex u, the
cardinality of the color classes of any equitable coloring in G is at most two and the color classes of exactly two vertices
correspond to a matching in the complement of G. In other words, the ECP is polynomial when G has at least one universal
vertex.

There exist some remarkable differences between GCP and ECP. Unlike GCP, a graph admitting a k-eqcol may not admit a
(k+1)-eqcol. This leads us to define the skip set of G, S (G), as the set of k ∈ {χeq(G), . . . , n} such that G does not admit any
k-eqcol. For instance, if G = K3,3, i.e. the complete bipartite graph with partitions of size 3, then G admits a 2-eqcol but does
not admit a 3-eqcol. Here, S (K3,3) = {3}. Computing the skip set of a graph is as hard as computing the equitable chromatic
number. If S (G) = ∅, we say that G is monotone. For instance, trees are monotone graphs [12].

Another drawback emerging fromECP is that the equitable chromatic number of a graph can be smaller than the equitable
chromatic number of one of its induced subgraphs. In particular, in an unconnected graph, equitable chromatic numbers of
each connected component are uncorrelated with the chromatic number of the whole graph.

On the other hand, some useful properties of GCP also hold for ECP. For example, it is known that G admits k-eqcols for
k ≥ ∆(G) + 1, where ∆(G) is the maximum degree of vertices in G. In [10] a polynomial time algorithm which produces a
(∆(G) + 1)-eqcol is presented.

The Integer linear programming (ILP) approach together with algorithms which exploit the polyhedral structure has
proved to be the best tool for dealingwith coloring problems. Althoughmany ILP formulations are known forGCP, as far aswe
know, just two of these models were adapted for ECP. One of them, given in [2], is based on the asymmetric representatives
model for the GCP [4]. Such a model employs an ordering on the vertices to remove permutation symmetries. The first
branch- and cut algorithm for the equitable coloring problem in the literature is based on this model [3]. The other one,
proposed by us in [14], is based on the classic color assignments to vertices model [1] with further improvements stated
in [16]. When compared to the model of [3], our model exhibit permutation symmetries that can be handled by considering
techniques presented in [9]. In addition, contrary to the model of [3], our model does not require any linearization of non-
linear inequalities.

The goal of this paper is to study the last model from a polyhedral point of view and determine families of valid
inequalities which can be useful in the context of an efficient cutting-plane algorithm.

The remainder of the paper is organized as follows.
In Sections 2 and 3, we study the facial structure of the polytope associated with the formulation given in [14]. We

introduce several families of valid inequalities which always define high dimensional faces. Section 4 is devoted to describe
a cutting-plane algorithm for solving ECP. We expose computational evidence for reflecting the improvement in the
performance when the cutting-plane algorithm uses the new inequalities as cuts. That algorithm is then used to reinforce
bounds on a Branch and Bound enumeration tree. At the end, a conclusion is presented.

Some definitions and notations will be useful in the following.
Given a graph G = (V , E) we consider V = {1, . . . , n}. The complement of G is denoted by G. We also denote by Kn

the complete graph of n vertices. The percentage of density of G is 100|E|

|V |(|V |−1)/2 . For instance, the percentage of density of any
complete graph is 100. Given u ∈ V , the degree of u is the number of vertices adjacent to u and is denoted by δ(u). For any
S ⊂ V ,G[S] is the graph induced by S and G− S is the graph obtained by the deletion of vertices in S, i.e. G− S = G[V\S]. In
particular, if S = {u} we just write G− u instead of G−{u}. A stable set is a set of vertices in G, no two of which are adjacent.
We denote by α(G) the stability number of G, i.e. the maximum cardinality of a stable set of G. Given S ⊂ V , we also denote
by α(S) the stability number of G[S]. We say that S is k-maximal if α(S) = k and for all v ∈ V\S, α(S ∪ {v}) = k + 1. In
particular, if S is 1-maximal, we say that S is amaximal clique. Given u ∈ V , the neighborhood of u,N(u), is the set of vertices
adjacent to u, and the closed neighborhood of u,N[u], is the set N(u) ∪ {u}. A vertex u ∈ V is a universal vertex if N[u] = V .
A matching of G is a subset of edges such that no pair of them has a common extreme point. Whenever it is clear from the
context, we will write χeq rather than χeq(G). The same convention also applies for other operators that depend on G such
as S and ∆.

Throughout the paper, we consider graphs with at least five vertices and one edge, and not containing universal vertices
nor Kn−1 as an induced subgraph. Thus, for a given graph Gwe assume that 2 ≤ χeq(G) ≤ n− 2. The remaining cases can be
solved in polynomial time.

2. The polytope ECP

A straightforward ILP model for GCP can be obtained by modeling colorings with two sets of binary variables: variables
xvj for v ∈ V and j ∈ {1, . . . , n} where xvj = 1 if and only if the coloring assigns color j to vertex v, and variables wj for
j ∈ {1, . . . , n} where wj = 1 if and only if color j is used in the coloring. The formulation is shown below:

n
j=1

xvj = 1, ∀ v ∈ V (1)

xuj + xvj ≤ wj, ∀ (u, v) ∈ E, 1 ≤ j ≤ n. (2)
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Constraints (1) assert that each vertex has to be colored by a unique color and constraints (2) ensure that two adjacent
vertices cannot share the same color. Hence, the chromatic number can be computed by minimizing

n
j=1 wj.

This formulation presents a disadvantage: the number of integer solutions (x, w) with the same value
n

j=1 wj is very
large. A technique widely used in combinatorial optimization to deal with this kind of problem is the concept of symmetry
breaking [13]. This technique is applied in [16], where the following constraints are added to the previous formulation in
order to remove (partially) symmetric solutions:

wj+1 ≤ wj, ∀ 1 ≤ j ≤ n − 1 (3)

which means that color j + 1 may be used only if color j is also used.
Given a partition of V into color classes, let us observe that permutations of colors between those sets yield symmetric

colorings. In [16], additional constraints are proposed in order to drop most of these colorings by sorting the color classes
by the minimum label of the vertices belonging to each set and only considering the coloring that assigns color j to the jth
color class. These constraints are

xvj = 0, ∀ 1 ≤ v < j ≤ n (4)

xvj ≤

v−1
u=j−1

xuj−1, ∀ 2 ≤ j ≤ v ≤ n. (5)

It is worth mentioning that a generalization and strengthening of these inequalities are introduced in [9] and its application
in a coloring problem is discussed in [8]. Since the techniques employed do not depend on the special structure of the GCP
under consideration, they can also be applied to the ECP.

On the other hand, even though the formulation consisting of constraints (1)–(5) eliminates a greater amount of
symmetrical solutions, many polyhedral properties depend on the labeling of vertices [16].

From now on, we represent colorings of G as binary vectors (x, w) satisfying constraints (1)–(3) and we call Coloring
Polytope, CP (G), to the convex hull of binary vectors (x, w) that represent colorings of G.

In order to characterize equitable colorings, we add the following constraints to the model:

xvj ≤ wj, ∀ v isolated, 1 ≤ j ≤ n (6)
v∈V

xvj ≥

n
k=j


n
k


wk − wk+1


, ∀ 1 ≤ j ≤ n − 1 (7)


v∈V

xvj ≤

n
k=j


n
k


wk − wk+1


, ∀ 1 ≤ j ≤ n − 1 (8)

where wn+1 is a dummy variable set to 0. Constraints (6) ensure that isolated vertices use enabled colors and (7)–(8) are
precisely the equity constraints. The Equitable Coloring Polytope ECP (G) is defined as the convex hull of binary vectors (x, w)
that represent equitable colorings of G, i.e. they satisfy constraints (1)–(3) and (6)–(8).

From now on, we present equitable colorings by using mappings, color classes or binary vectors, according to our
convenience.

We also workwith two useful operators over colorings. The first one is based on the fact that swapping colors in a k-eqcol
produces a k-eqcol indeed.

Definition 1. Let c be a k-eqcol of G with color classes C1, . . . , Ck and L = (j1, j2, . . . , jr) be an ordered list of different
colors in {1, . . . , k}. We define swapL(c) as the k-eqcol with color classes C ′

1, . . . , C
′

k which satisfies C ′

jt = Cjt+1 ∀ 1 ≤ t ≤

r − 1, C ′

jr = Cj1 and C ′

i = Ci ∀ i ∈ {1, 2, . . . , k}\{j1, j2, . . . , jr}.

The other operator takes a k-eqcol whose color classes have at most 2 vertices and returns a (k + 1)-eqcol.

Definition 2. Let c be a k-eqcol of G with ⌈n/2⌉ ≤ k ≤ n − 1 and v ≠ v′ such that c(v) = c(v′). We define intro(c, v) as a
(k + 1)-eqcol c ′ which satisfies c ′(v) = k + 1 and c ′(i) = c(i) ∀ i ∈ V\{v}.

Remark 3. Let us observe that colorings with n−1 and n colors are always equitable. Then, we can use Proposition 1 of [16]
to prove that the following n2

− χeq − |S | equitable colorings are affinely independent.

1. A (n − 1)-eqcol c such that Cn−1 has two vertices, namely u1 and u2.
2. swapn−1,j(c) for each j ∈ {1, . . . , n − 2}.
3. The n-eqcol c ′

= intro(c, u1).
4. swapn,j,j′(c ′) for each j, j′ ∈ {1, . . . , n − 1} such that j′ ≠ j.
5. swapn,j(c ′) for each j ∈ {1, . . . , n − 1}.
6. An arbitrary k-eqcol of G for each k ∈ {χeq, . . . , n − 2}\S .



416 I. Méndez-Díaz et al. / Discrete Applied Mathematics 164 (2014) 413–426

Theorem 4. The dimension of ECP is n2
− (χeq + |S | + 1) and a minimal equation system is defined by:

n
j=1

xvj = 1, ∀ v ∈ V , (9)

wj = 1, ∀ 1 ≤ j ≤ χeq, (10)

wj = wj+1, ∀ j ∈ S , (11)
v∈V

xvn = wn. (12)

Proof. FromRemark 3, dim(ECP ) ≥ n2
−(χeq+|S |+1). We only need to note that ECP ⊂ Rn2+n and that every equitable

coloring satisfies n + χeq + S + 1 mutually independent equalities given in (9)–(12). �

Let us analyze the faces of ECP defined by restrictions of the formulation. For non-negativity constraints and inequalities
(3) we adapt the proofs given in [16] for CP .

Theorem 5. Let v ∈ V and 1 ≤ j ≤ n. Constraint xvj ≥ 0 defines a facet of ECP .

Proof. We exhibit n2
− χeq − |S | − 1 affinely independent colorings that lie on the face of ECP defined by inequality

xvj ≥ 0. Let us consider the following cases:
Case j ≤ n−2. Let u1, u2 ∈ V\{v} be non adjacent vertices and let c be a (n−1)-eqcol such that c(v) ≠ j and Cn−1 = {u1, u2}.
We consider the set of colorings given by Remark 3 starting with c and choosing the arbitrary k-eqcols in item 6 satisfying
that vertex v is not painted with color j. It is clear that all these colorings, except swapn,j,c(v)(c ′) where c ′

= intro(c, u1), lie
in the face defined by the inequality.
Case j = n− 1. Let S be the set of n-eqcols and (n− 1)-eqcols presented in the previous case for j = n− 2. We consider the
colorings swapn−1,n−2(c̃) for each c̃ ∈ S and an arbitrary k-eqcol of G for each k ∈ {χeq, . . . , n − 2}\S .
Case j = n. Letu2 be a vertex not adjacent to v.We consider the set of colorings given byRemark 3 startingwith a (n−1)-eqcol
c such that Cn−1 = {v, u2}. It is clear that all these colorings, except intro(c, v), lie in the face defined by the inequality. �

Let 1 ≤ j ≤ n−1 andF be the face of ECP defined by constraint (3), i.e.wj+1 ≤ wj. Let us notice that, ifG does not admit
a j-eqcol, i.e. j ∈ {1, . . . , χeq − 1} ∪ S , then (3) is a linear combination of equations of the minimal system and, therefore,
F = ECP . In addition, if j = n − 1, the class of color n − 1 of every coloring (x, w) satisfying wn = wn−1 have at most one
vertex and, therefore, (x, w) verifies


v∈V xvn−1 = wn−1. Then, F is not a facet of ECP . For the remaining cases, we have

the following result.

Theorem 6. If G admits a j-eqcol and j ≤ n − 2, constraint wj+1 ≤ wj defines a facet of ECP .

Proof. Let us consider the set of colorings from Remark 3 but excluding the j-eqcol from item 6. Clearly, the remaining
colorings lie on the face and (3) defines a facet of ECP . �

The following theorems are related to the faces of ECP defined by the equity constraints.

Theorem 7. Let 1 ≤ j ≤ n − 1. Constraint
v∈V

xvj ≥

n
k=j


n
k


(wk − wk+1)

defines a facet of ECP .

Proof. Let u1, u2 be non adjacent vertices and let c be a (n − 1)-eqcol c such that Cn−1 = {u1, u2}. We consider the set
of colorings given by Remark 3 starting with c and choosing k-eqcols in item 6 satisfying |Cj| = ⌊n/k⌋ when k ≥ j. The
proposed colorings, except the (n − 1)-eqcol that satisfies Cj = {u1, u2}, lie on the face and therefore (7) defines a facet
of ECP . �

Let us observe that if 1 ≤ j ≤ n − 2, the face of ECP defined by (8) is not a facet. Indeed, every coloring (x, w) lying on
the face satisfies


v∈V xvn−1 = wn−1. For the case j = n − 1, the constraint (8) is


v∈V xvn−1 ≤ 2wn−1 − wn and we have

the following.

Theorem 8. The inequality


v∈V xvn−1 ≤ 2wn−1 − wn defines a facet of ECP .

Proof. Since n ≥ 5 and χeq(G) ≤ n − 2 there exist u1, u2, u3, u4, u5 ∈ V such that u1 is not adjacent to u2 and u3 is not
adjacent to u4. Let c be a (n− 1)-eqcol c such that c(u1) = c(u2) = n− 1. We consider the colorings from items 1, 3, 4, 5 in
Remark 3 together with the following ones.
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• The (n − 2)-eqcol ĉ such that ĉ(u1) = ĉ(u2) = c(u3), ĉ(u3) = c(u4) and ĉ(i) = c(i) ∀ i ∈ V\{u1, u2, u3}.
• swapj,c(u3)(ĉ) for each j ∈ {1, . . . , n − 2}\{c(u3), c(u4)}.
• swapĉ(u5),c(u4)(ĉ).
• An arbitrary k-eqcol of G for each k ∈ {χeq, . . . , n − 3}\S .

The proof for the affine independence of the previous n2
− χeq − |S | − 1 colorings is similar to the one for the colorings

generated in Remark 3. �

2.1. Valid inequalities from CP

Taking into account that valid inequalities for CP are also valid for ECP , in this section we analyze the faces of ECP
defined by facet-defining inequalities of CP .

One of the families of valid inequalities presented in [16] is the following. Given a vertex v and a color j, the (v, j)-block
inequality is

n
k=j xvk ≤ wj.

Let us observe that the (v, 1)-block inequality is always satisfied by equality since every coloring (x, w) verifies
constraints (1) and w1 = 1. Moreover, the (v, 2)-block inequality defines the same facet as inequality xv1 ≥ 0. For the
remaining cases we have the following.

Theorem 9. Let v ∈ V and 3 ≤ j ≤ n − 2. The (v, j)-block inequality defines a facet of ECP if and only if G admits a
(j − 1)-eqcol.

Proof. Let F be the face of ECP defined by the (v, j)-block inequality. To prove that F is a facet of ECP when G admits
a (j − 1)-eqcol, we can use the same affinely independent colorings proposed in the proof of Proposition 10 of [16], by
imposing them to be equitable colorings.

Now, let us suppose that G does not admit a (j − 1)-eqcol. We will prove that every equitable coloring lying on the face
satisfies xvj−1 = 0. Let (x, w) be a k-eqcol lying onF . If k ≤ j−2, clearly xvj−1 = 0. Otherwise,

n
k=j xvk = 1 since k ≠ j−1,

and then xvj−1 = 0. �

Let us consider other family of inequalities studied in [16]. Given S ⊂ V and a color j,


v∈S xvj ≤ α(S)wj is valid for CP .
The authors of [16] proved that, by applying a lifting procedure on this inequality for j ≤ n − α(S), we can get

v∈S

xvj +

v∈V

n−1
k=n−α(S)+1

xvk ≤ α(S)wj + wn−α(S)+1 − wn.

We will refer to it as the (S, j)-rank inequality.
Let us remark that, if S is not α(S)-maximal, i.e. if there exists v ∈ V\S such that α(S ∪ {v}) = α(S), the (S, j)-rank

inequality is dominated by the (S∪{v})-rank inequality. Then, from now on, we only consider (S, j)-rank inequalities where
S is α(S)-maximal.

When α(S) = 1, the (S, j)-rank inequality takes the form


v∈S xvj ≤ wj and is called (S, j)-clique inequality. If |S| = 1,
i.e. S = {v} for some v, the (S, j)-clique inequality is dominated by the (v, j)-block inequality. If |S| ≥ 2, Propositions 5 and
6 of [16] state that the (S, j)-clique inequality defines a facet of CP . The proof of these propositions can be easily adapted
to the equitable case allowing us to prove the following result.

Theorem 10. Let Q be a maximal clique of G with |Q | ≥ 2 and j ≤ n − 1. The (Q , j)-clique inequality defines a facet of ECP .

In Theorem33 of [15]we give sufficient conditions for the (S, j)-rank inequalities to define facets of ECP whenα(S) = 2.
Other valid inequalities can arise when α(S) = 2. Let Q be the set of vertices of S that are universal in G[S], i.e. Q =

{q ∈ S : S ⊂ N[q]}. If Q is not empty, we may apply a different lifting procedure that one used in [16], obtaining new valid
inequalities for CP and ECP .

Definition 11. The (S,Q , j)-2-rank inequality is defined for a given S ⊂ V such that S is 2-maximal, Q = {q ∈ S : S ⊂

N[q]} ≠ ∅ and j ≤ n − 1, as
v∈S\Q

xvj + 2

v∈Q

xvj ≤ 2wj. (13)

Lemma 12. The (S,Q , j)-2-rank inequality is valid for ECP .

Proof. If some vertex of Q uses color j, no one else in S can be painted with j. Therefore, the value of the l.h.s. in (13) is at
most 2 when color j is used. �

If |Q | = 1, the (S,Q , j)-2-rank inequality is dominated by another valid inequality presented in the next section (see
Remark 17).

In Theorem 34 and Corollary 35 of [15], we give sufficient conditions for the (S,Q , j)-2-rank inequalities to define facets
of ECP when |Q | ≥ 2.
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3. New valid inequalities for ECP

In this section, we present new families of valid inequalities for ECP which are not valid for CP .

3.1. Subneighborhood inequalities

The neighborhood inequalities defined in [16] for each u ∈ V and number j, i.e. α(N(u))xuj +


v∈N(u) xvj ≤ α(N(u))wj,
are valid inequalities for CP . Indeed, if S ⊂ N(u), α(S)xuj +


v∈S xvj ≤ α(S)wj is valid for CP . We can reinforce the latter

inequality in the context of ECP to obtain the following.

Definition 13. The (u, j, S)-subneighborhood inequality is defined for a given u ∈ V , S ⊂ N(u) such that S is not a clique and
j ≤ n − 1, as

γjSxuj +

v∈S

xvj +

n
k=j+1

(γjS − γkS)xuk ≤ γjSwj, (14)

where γkS = min{⌈n/χeq⌉, ⌈n/k⌉, α(S)}.

Lemma 14. The (u, j, S)-subneighborhood inequality is valid for ECP .

Proof. Let (x, w) be an r-eqcol of G. If r < j, both sides of (14) are equal to zero. If r ≥ j and xuj = 1, the value of the l.h.s. of
(14) is exactly γjS . On the other hand, if xuj = 0, the term


v∈S xvj contributes up to γrS and the term

n
k=j+1(γjS − γkS)xuk

contributes up to γjS − γrS regardless of the color assigned to u. Hence, the l.h.s. does not exceed γjS and (14) is valid. �

Subneighborhood inequalities always define faces of high dimension.

Theorem 15. Let F be the face defined by the (u, j, S)-subneighborhood inequality. Then,

dim(F ) ≥ dim(ECP ) −

⌈n/2⌉ − 1 − |S| + δ(u)


= o(dim(ECP )).

Proof. Let s1, s2 ∈ S be non adjacent vertices and let 1 ≤ r ≤ ⌈n/2⌉ − 1 such that r ≠ j. We propose at least
n2

− ⌈n/2⌉ − χeq − |S | + |S| − δ(u) + 1 affinely independent colorings lying on F .

• A n-eqcol c such that c(u) = j, c(s1) = n and c(s2) = r .
• swapn,j1,j2(c) for each j1, j2 ∈ {1, . . . , n − 1}\{j} such that j1 ≠ j2.
• swapc(s),n,j(c) for each s ∈ S\{s1}.
• swapn,j′(c) for each j′ ∈ {1, . . . , n − 1}.
• The (n − 1)-eqcol c ′ such that c ′(s1) = r and c ′(i) = c(i) ∀ i ∈ V\{s1}.
• swapj′,r(c ′) for each j′ ∈ {1, . . . , n − 1}\{j, r}.
• swapj,r,j′(c ′) for each j′ ∈ {1, . . . , n − 1}\{j, r} and, if j ≤ ⌈n/2⌉ − 1 then j′ ≥ ⌈n/2⌉.
• The (n − 1)-eqcol c ′′ such that c ′′(s1) = c(v), c ′′(v) = j and c ′′(i) = c(i) ∀ i ∈ V\{s1, v}, for each v ∈ V\N[u].
• If j ≥ χeq + 1, an arbitrary k-eqcol of G for each k ∈ {χeq, . . . , j − 1}\S .
• swapj,ĉ(u)(ĉ) where ĉ is a k-eqcol of G, for each k ∈


max{j, χeq}, . . . , n − 2


\S .

The proof for the affine independence of the previous colorings is similar to the one for the colorings generated in
Remark 3. �

Sufficient conditions for a (u, j, S)-subneighborhood inequality to be a facet-defining inequality of ECP are presented
in Theorem 36 of [15] for the case ⌈n/j⌉ ≤ ⌈n/χeq⌉ whereas the following result allows us to study the inequality for the
case ⌈n/j⌉ > ⌈n/χeq⌉.

Theorem 16. Let j such that ⌈n/j⌉ > ⌈n/χeq⌉, Fj be the face defined by the (u, j, S)-subneighborhood inequality and Fχeq be
the face defined by the (u, χeq, S)-subneighborhood inequality. Then, dim(Fj) = dim(Fχeq).

Proof. Clearly, if α(S) < ⌈n/χeq⌉, both inequalities coincide. So, let us assume that α(S) ≥ ⌈n/χeq⌉. Since ⌈n/j⌉ > ⌈n/χeq⌉,
j < χeq and wj = wχeq = 1. Then, both inequalities only differ in the coefficients of xvj and xvχeq for all v ∈ V . Moreover,
the coefficient of xvj in the (u, j, S)-subneighborhood is the same as the one of xvχeq in the (u, χeq, S)-subneighborhood, and
conversely.

Let d = dim(Fχeq) and d′
= dim(Fj). If c1, c2, . . . , cd+1 are affinely independent equitable colorings in Fχeq , colorings

swapj,χeq(c
i) for 1 ≤ i ≤ d + 1 are well defined and they are affinely independent too. Moreover, they lie on Fj. Therefore,

d ≤ d′.
To prove that d′

≤ d, we follow the same reasoning. �
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Remark 17. Let j ≤ n−1, S ⊂ V such that α(S) = 2 and Q = {v ∈ S : S ⊂ N[v]} = {q}. The (q, j, S\{q})-subneighborhood
inequality is

v∈S\{q}

xvj + 2xqj + xqn ≤ 2wj,

and dominates the (S,Q , j)-2-rank inequality. In Corollary 37 of [15]we give sufficient conditions for it to be a facet-defining
inequality of ECP .

3.2. Outside-neighborhood inequalities

Definition 18. The (u, j)-outside-neighborhood inequality is defined for a given u ∈ V such that N(u) is not a clique and
j ≤ ⌊n/2⌋, as

n
tj


− 1


xuj −


v∈V\N[u]

xvj +

n
k=tj+1

bjkxuk ≤

n
k=tj+1

bjk(wk − wk+1), (15)

where tj = max{j, χeq} and bjk = ⌊n/tj⌋ − ⌊n/k⌋.

Lemma 19. The (u, j)-outside-neighborhood inequality is valid for ECP .

Proof. Let (x, w) be an r-eqcol of G. If r < j, both sides of (15) are equal to zero. Let us assume that r ≥ j and Cj denotes the
color class j of (x, w). We divide the proof into two cases.
Case r = tj. The terms

n
k=tj+1 bjkxuk and

n
k=tj+1 bjk(wk − wk+1) vanish from the inequality so we only need to check that

(⌊n/tj⌋ − 1)xuj −


v∈V\N[u] xvj is a non positive value. If xuj = 0, the inequality holds. If xuj = 1,
v∈V\N[u]

xvj = |Cj\N[u]| ≥ ⌊n/tj⌋ − 1

and (15) holds.
Case r > tj. We need to check that the l.h.s. of (15) is at most bjr . If xuj = 0, then

n
k=tj+1 bjkxuk ≤ max{bjk : tj + 1 ≤ k ≤

r} = bjr and the inequality holds. If xuj = 1,
n

k=tj+1 bjkxuk = 0 and
v∈V\N[u]

xvj = |Cj\N[u]| ≥ ⌊n/r⌋ − 1

and (15) holds. �

In order to study the faces of ECP defined by outside-neighborhood inequalities, let us characterize the equitable
colorings that belong to those faces.

Remark 20. Let F be the face of ECP defined by the (u, j)-outside-neighborhood inequality and c be an r-eqcol. Let us
observe that if r < j, c always lies on F . For the case r ≥ j, let Cj be the color class j of c. Then, c lies on F if and only if the
following conditions hold.

• If c(u) = j then |Cj| = ⌊n/r⌋.
• If c(u) ≠ j then

– Cj ⊂ N(u) and

– if


n
r


<


n

max{j,χeq}


then c(u) ≥


n

⌊n/r⌋+1


+ 1.

Like the subneighborhood inequalities, outside-neighborhood inequalities define faces of high dimension.

Theorem 21. Let F be the face defined by the (u, j)-outside-neighborhood inequality. Then,

dim(F ) ≥ dim(ECP ) −

3n − ⌈n/2⌉ − |S | − χeq − 4 − δ(u)


= o(dim(ECP )).

Proof. Let v1 ∈ V\N[u], v2, v3 ∈ N(u) such that v2 is not adjacent to v3 and 1 ≤ r ≤ ⌊n/2⌋ such that r ≠ j. We propose
n2

+ ⌈n/2⌉ − 3n + 4 + δ(u) affinely independent solutions lying on F .

• A n-eqcol c such that c(u) = j, c(v1) = n, c(v2) = n − 1 and c(v3) = r .
• swapn,j1,j2(c) for each j1, j2 ∈ {1, . . . , n − 1}\{j} such that j1 ≠ j2.
• swapn,j,c(v)(c) for each v ∈ N(u).
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• swapj,r,j′(c) for each j′ ∈ {⌊n/2⌋ + 1, . . . , n − 1}.
• swapn,j′(c) for each j′ ∈ {1, . . . , n − 1}\{j}.
• The (n − 1)-eqcol c ′ such that c ′(v1) = r, c ′(v3) = n − 1 and c ′(i) = c(i) ∀ i ∈ V\{v1, v3}.
• swapj′,n−1(c ′) for each j′ ∈ {1, . . . , n − 2}.
• A (n − 2)-eqcol c ′′ such that c ′′(v1) = c ′′(u) = n − 2 and c ′′(v2) = c ′′(v3) = j.

The proof for the affine independence of the previous colorings is similar to the one for the colorings generated in
Remark 3. �

The following necessary condition for an outside-neighborhood inequality to define a facet of ECP will be helpful in the
design of the separation routine.

Theorem 22. If the (u, j)-outside-neighborhood inequality defines a facet of ECP then α(N(u)) ≥


n

max{j,χeq}


.

Proof. Let tj = max{j, χeq} andF be the face of ECP defined by the (u, j)-outside-neighborhood inequality. Let us suppose
that α(N(u)) < ⌊n/tj⌋. We will prove that every equitable coloring lying on F also satisfies the equality

j−1
l=1

xul + wj = 1. (16)

Since this equality cannot be obtained as a linear combination of the minimal equation system for ECP and the (u, j)-
outside-neighborhood equality, F is not a facet of ECP .

Let c be an r-eqcol that lies on F . Clearly, if r < j, wj = 0 and c(u) = l for some 1 ≤ l ≤ j − 1 and, consequently, the
equality (16) holds. If r ≥ j then wj = 1 and to see that (16) holds we only have to prove that xul = 0 for all l ≤ j − 1 or,
equivalently, c(u) ≥ j. According to Remark 20, if c(u) ≠ j then Cj ⊂ N(u) and thus α(N(u)) ≥ |Cj|. Observe that this fact
implies that ⌊n/r⌋ < ⌊n/tj⌋. Indeed, if ⌊n/r⌋ = ⌊n/tj⌋, |Cj| ≥ ⌊n/tj⌋ and it contradicts the assumption α(N(u)) < ⌊n/tj⌋.

Then, by Remark 20, c(u) ≥


n

⌊n/r⌋+1


+ 1 > j and (16) holds. �

For the case j ≥ χeq, we present sufficient conditions for the (u, j)-outside-neighborhood inequality to define a facet of
ECP in Theorem 38 of [15]. For the other case, we have the following result whose proof follows the same ideas than in
Theorem 16.

Theorem 23. Let j < χeq, Fj be the face defined by the (u, j)-outside-neighborhood inequality and Fχeq be the face defined by
the (u, χeq)-outside-neighborhood inequality. Then, dim(Fj) = dim(Fχeq).

3.3. Clique-neighborhood inequalities

Definition 24. The (u, j, k,Q )-clique-neighborhood inequality is defined for a given u ∈ V , a clique Q of G such that

Q ∩ N[u] = ∅ and numbers j, k verifying 3 ≤ k ≤ α(N(u)) + 1 and 1 ≤ j ≤


n

k−1


− 1, as

(k − 1)xuj +
n−2

l=


n
k−1



k −


n
l


xul + (k − 1)


xun−1 + xun


+


v∈N(u)∪Q

xvj

+


v∈V\{u}

(xvn−1 + xvn) ≤

n
l=j

bul(wl − wl+1), (17)

where

bul =

min{⌈n/l⌉, α(N(u)) + 1}, if j ≤ l ≤ ⌈n/k⌉ − 1
k, if ⌈n/k⌉ ≤ l ≤ n − 2
k + 1, if l ≥ n − 1.

Lemma 25. The (u, j, k,Q )-clique-neighborhood inequality is valid for ECP .

Proof. Let (x, w) be an r-eqcol of G. If r < j, both sides of (17) are zero. Let us assume that r ≥ j and observe that the r.h.s. of
(17) is bur . Let Cj, Cn−1 and Cn be the color class j, n − 1 and n of (x, w) respectively. We divide the proof into the following
cases.
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Case r ≤ ⌈n/k⌉ − 1. We have to prove that (x, w) verifies

(k − 1)xuj +


v∈N(u)∪Q

xvj ≤ bur = min


n
r


, α(N(u)) + 1


.

If xuj = 1,


v∈N(u) xvj = 0 and


v∈Q xvj ≤ 1. Since bur ≥ k, the inequality holds. If instead xuj = 0,


v∈N(u)∪Q xvj =

|Cj ∩ (N(u) ∪ Q )| ≤ min

⌈n/r⌉, α(N(u) ∪ Q )


≤ min


⌈n/r⌉, α(N(u)) + 1


.

Case ⌈n/k⌉ ≤ r ≤ n − 2. We have to prove that (x, w) verifies

(k − 1)xuj +
n−2

l=


n
k−1



k −


n
l


xul +


v∈N(u)∪Q

xvj ≤ k.

If xuj = 1,
n−2

l=⌈
n

k−1 ⌉
(k − ⌈n/l⌉)xul = 0 and


v∈N(u)∪Q xvj ≤ 1. Therefore, the inequality holds.

If instead xuj = 0,
n−2

l=⌈
n

k−1 ⌉
(k − ⌈n/l⌉)xul ≤ k − ⌈n/r⌉ and


v∈N(u)∪Q xvj ≤ |Cj| ≤ ⌈n/r⌉ and the inequality holds.

Case r ≥ n − 1. Let us first notice that |Cj| + |Cn−1| + |Cn| ≤ 3. We have to prove that (x, w) satisfies

L(x) +


v∈N(u)∪Q

xvj +


v∈V\{u}

(xvn−1 + xvn) ≤ k + 1

where

L(x) = (k − 1)xuj +
n−2

l=


n
k−1



k −


n
l


xul + (k − 1)


xun−1 + xun


.

Let us observe that L(x) ≤ k−1 and L(x) = k−1 if and only if u ∈ Cj∪Cn−1∪Cn. Then, if L(x) = k−1, since u ∈ Cj∪Cn−1∪Cn
we have


v∈N(u)∪Q xvj +


v∈V\{u}(xvn−1 + xvn) ≤ |Cj| + |Cn−1| + |Cn| − 1 ≤ 2, and the inequality holds.

If L(x) ≤ k − 2, the inequality holds since


v∈N(u)∪Q xvj +


v∈V\{u}(xvn−1 + xvn) ≤ |Cj| + |Cn−1| + |Cn| ≤ 3. �

Let us remark that, if Q is not maximal in G − N[u], the (u, j, k,Q )-clique-neighborhood inequality is dominated by a
(u, j, k,Q ′)-clique-neighborhood, with Q ′ a clique such that Q $ Q ′

⊂ G − N[u].
In order to analyze the faces of ECP defined by clique-neighborhood inequalities, we first explore the colorings that

belong to those faces.

Remark 26. Let F be the face of ECP defined by the (u, j, k,Q )-clique-neighborhood inequality and c be an r-eqcol. Let
us observe that, if r < j, c always lies on F . For the case r ≥ j, let Cj, Cn−1 and Cn be the color class j, n − 1 and n of c
respectively. Then, c lies on F if and only if the following conditions hold.

• If r ≤ ⌈n/k⌉ − 1 then:
– If c(u) = j then |Cj ∩ Q | = 1 and k = α(N(u)) + 1.

Otherwise, |Cj ∩ (N(u) ∪ Q )| = min{⌈n/r⌉, α(N(u)) + 1}.
• If ⌈n/k⌉ ≤ r ≤ n − 2 then:

– If c(u) = j then |Cj ∩ Q | = 1. Otherwise,
∗ |Cj ∩ (N(u) ∪ Q )| = ⌈n/r⌉ and

∗ if r ≥


n

k−1


then c(u) ≥


n

⌈n/r⌉


.

• If r ≥ n − 1 then:
– If c(u) ∈ {j, n − 1, n} then |Cj ∩ Q | + |Cn−1\{u}| + |Cn\{u}| = 2.

Otherwise, c(u) ≥ ⌈n/2⌉ and |Cj ∩ (N(u) ∪ Q )| + |Cn−1| + |Cn| = 3.

Clique-neighborhood inequalities also define high dimensional faces in ECP .

Theorem 27. Let F be the face defined by the (u, j, k,Q )-clique-neighborhood inequality. Then,

dim(F ) ≥ dim(ECP ) −

3n − |S | − χeq − ⌊n/2⌋ − δ(u) − |Q | − 4


= o(dim(ECP )).

Proof. Let v1, v2 ∈ N(u) be non adjacent vertices, and q ∈ Q . We propose n2
+ ⌊n/2⌋ + 4 − 3n + δ(u) + |Q | affinely

independent solutions lying on F .

• A n-eqcol c such that c(u) = j and c(q) = n.
• swapn,j1,j2(c) for each j1, j2 ∈ {1, . . . , n − 1}\{j} such that j1 ≠ j2.
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• swapn,j,c(v)(c) for each v ∈ (N(u) ∪ Q )\{q}.
• swapj′,j,n(c) for each j′ ∈ {⌈n/2⌉, . . . , n − 1}.
• swapj′,n(c) for each j′ ∈ {1, . . . , n − 1}.
• A (n − 1)-eqcol c ′ such that c ′(u) = j, c ′(v1) = c ′(v2) = n − 1.
• swapj,n−1(c ′).
• A (n − 2)-eqcol c ′′ such that c ′′(u) = c ′′(q) = j and c ′′(v1) = c ′′(v2) = n − 2.
• swapj′,n−2(c ′′) for each j′ ∈ {1, . . . , n − 3}\{j}.

The proof for the affine independence of the previous colorings is similar to the one for the colorings generated in
Remark 3. �

Sufficient conditions for the clique-neighborhood inequalities to define facets of ECP are presented in Theorem 39 and
Corollary 40 of [15].

3.4. S-color inequalities

Given a set of colors S, let us analyze how many vertices can be painted with colors from S. Let (x, w) be a k-eqcol and
dSk be the number of colors in S with non-empty color class in (x, w), i.e. dSk = |S ∩ {1, . . . , k}|. It is straightforward to
see that (x, w) has n − k⌊ n

k ⌋ classes of size ⌊
n
k ⌋ + 1 and k − (n − k⌊ n

k ⌋) classes of size ⌊
n
k ⌋. Then, the number of classes of

color in S having size ⌊
n
k ⌋ + 1 is at most min{dSk, n − k⌊ n

k ⌋}. Denoting by bSk = dSk⌊ n
k ⌋ + min{dSk, n − k⌊ n

k ⌋} we have that
j∈S |Cj| ≤ bSk, which motivates the following definition.

Definition 28. Let S ⊂ {1, . . . , n}. The S-color inequality is defined as
j∈S


v∈V

xvj ≤

n
k=1

bSk(wk − wk+1), (18)

where dSk = |S ∩ {1, . . . , k}| and bSk = dSk⌊ n
k ⌋ + min{dSk, n − k⌊ n

k ⌋}.

Lemma 29. The S-color inequality is valid for ECP .

Proof. Let (x, w) be a k-eqcol. If k < j, both sides of (18) are zero. If instead k ≥ j, the r.h.s. of (18) is bSk which is an upper
bound of


j∈S |Cj| =


j∈S


v∈V xvj. �

Remark 30. Let us present some useful facts about S-color inequalities.

1. Given S ⊂ {1, . . . , n − 1}, the (S ∪ {n})-color inequality can be obtained by adding the S-color inequality and Eq. (12)
from the minimal system. Then, both inequalities define the same face of ECP .

2. Constraints (7) and (8) are both S-color inequalities with S = {1, . . . , n − 1}\{j} and S = {j} respectively.
3. It is not hard to see that the (S, j)-rank inequality with α(S) = 2 and j ≥ ⌈n/2⌉, and (17) with k = 2 are both dominated

by the {j, n − 1}-color inequality.
4. If for every k such that G admits a k-eqcol, we have that either k divides n or n − k⌊ n

k ⌋ ≥ dSk, then the S-color inequality
is obtained by adding constraints (8), i.e.


v∈V xvj ≤

n
k=j⌈n/k⌉(wk − wk+1), for j ∈ S. Thus, an S-color inequality can

cut off a fractional solution of the linear relaxation of the formulation only if 2 ≤ |S\{n}| ≤ n − 3 and there exists
k ∈ {χeq, . . . , n − 1}\S such that 1 ≤ n − k⌊ n

k ⌋ ≤ dSk − 1.

The following result shows that S-color inequalities define faces of high dimension.

Theorem 31. Let S ⊂ {1, . . . , n} such that |S\{n}| ≥ 1 and let F be the face defined by the S-color inequality. Then,

dim(F ) ≥ dim(ECP ) − (n − |S\{n}| − 1) = o(dim(ECP )).

Proof. From Remark 30.1 we can assume w.l.o.g. that S ⊂ {1, . . . , n − 1}. Let u1, u2 be non adjacent vertices and c be a
(n − 1)-eqcol such that c(u1) = c(u2) = n − 1. We consider colorings from Remark 3 starting from c and choosing those
ones that lie in the face defined by (18). That is, by excluding the (n − 1)-eqcols that assign colors from {1, . . . , n − 1}\S
to u1 and u2 simultaneously, and by choosing k-eqcols where color classes from S should have as many vertices as possible,
for each k ∈ {χeq, . . . , n − 2}\S . Hence, we get n2

− χeq − |S | − n + 1 + |S| affinely independent colorings. �

Finally, sufficient conditions for the S-color inequalities to define facets of ECP are presented in Theorem 41 of [15].

4. Implementation and computational experience

We present computational results concerning the efficiency of valid inequalities studied in the previous sections when
they are used as cuts in a cutting-plane algorithm for solving ECP.
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The main elements of our implementation are described below.

4.1. Initialization

According to our computational experience reported in [14], the ILP formulation of ECP consisting of constraints (1)–(8)
performs much better than the one defining ECP , i.e. without (4)–(5). Since every valid inequality of ECP is also valid
for equitable colorings satisfying constraints (1)–(8), we use this tighter formulation for computational experiments, with
inequalities (5) handled as lazy constraints in the implementation. This means they are not part of the initial relaxation, but
they are added later as cuts whenever necessary.

We tested several criteria for labeling vertices and the one which has proved to be the best in practice is the following.
We first find amaximal cliqueQ . Denoting by q the size ofQ , we assign the first q natural numbers to vertices ofQ . The labels
of remaining vertices are assigned in decreasing order of degree, i.e. satisfying δ(v) ≥ δ(v + 1) for all v ∈ {q + 1, . . . , n}.

The maximal clique Q is generated through the repeated addition of a vertex into a partial clique. Initially, the vertices
are in decreasing order of their degrees. A sequential greedy heuristic is applied where the vertex to be added is chosen
among candidates vertices from the order list. We repeat the procedure n times. At the end of each iteration, the first vertex
in the list, which was used to initialize the clique, is removed and added to the end. Finally, we choose the largest obtained
clique and we break ties by taking that clique whose sum of degrees of its vertices is the greatest.

To find an initial upper bound χeq, we use the heuristic Naive presented in [11]. This allows us to eliminate variables xvj
and wj with j > χeq from the model.

In addition, a lower bound χeq is obtained by considering the maximum between the size of the maximal clique Q and
the value

max


n + 1

θ(G − N[v]) + 2


: v ∈ V


,

also proposed in [11], where θ(G) is the cardinal of a clique partition of G found greedily.
We also compute bounds of the stability number of N(u) for all u ∈ V (via heuristic procedures), which will be useful for

the separation routines. We denote the upper bound as α(N(u)) and the lower bound as α(N(u)).

4.2. Description of the cutting-plane algorithm

The design of the separation routines for each family of valid inequalities is described below. Given a fractional solution
(x∗, w∗) of the linear relaxation, we look for violated inequalities as follows.
• Clique and Block inequalities. They are handled in the same way as in [16].
• Clique-neighborhood inequalities. For each maximal clique Q we found during the clique separation procedure and for

each u ∈ V\

∪q∈Q N[q]


, j ∈ {1, . . . , χeq} and k such that

max{3, ⌈n/χeq⌉} ≤ k ≤ min

⌈n/j⌉, ⌈n/χeq⌉, α(N(u)) + 1


,

we verify whether (x∗, w∗) violates a weaker version of the (u, j, k,Q )-clique-neighborhood which consists of replacing
α(N(u)) by α(N(u)) to compute bul in Definition 24.

• 2-rank inequalities. For each j ∈ {1, . . . , χeq}, we find a pair of vertices v1 and v2 such that x∗

v1j
+x∗

v2j
has the highest value,

but less than 1, and we initialize S = {v1, v2} and Q = ∅. Then, we fill sets S and Q by adding vertices, one by one, with
the following rule. Let v be a vertex with largest fractional value of x∗

vj, adjacent to every vertex of Q and such that S∪{v}

is 2-maximal. If S ⊂ N[v] we add v to the set Q . Otherwise, we add it to S. When it is not possible to add more vertices
to S or Q , we check whether the (S,Q , j)-2-rank inequality cuts off (x∗, w∗).
We also implement an additionalmechanism that prevents from generating violated cutswith similar support. Each time
a (S,Q , j)-2-rank inequality is found (not necessarily violated by the fractional solution), we mark every vertex of S as
forbidden, to mean that those vertices cannot take part of upcoming (S,Q , j)-2-inequalities. The procedure is performed
over and over, until not more than 5 vertices are not forbidden. Then, we unmark all the forbidden vertices and start over
with the next value of j.

• S-color inequalities. We first find t such that 0 < wt < 1 and wt+1 = 0. If t does not exist (meaning that w∗
∈ Zn), we do

not generate any cut. Otherwise, we order in decreasing way the color classes j ∈ {1, . . . , t} according to the number of
fractional variables x∗, i.e. |{v : x∗

vj ∉ Zn
∀ v ∈ V }|. Then, for each s ∈ {2, . . . , t − 2} such that

s ≥ 1 + min{n − k⌊n/k⌋ : k ∈ {1, . . . , t} ∧ k does not divide n}

(see Remark 30.4), we scan S-color inequalities with |S| = s and S having the most fractional classes, looking for the
inequality that maximizes violation. Once the best S-color inequality is identified we check whether it cuts off (x∗, w∗).
The procedure given before allows us to produce only one inequality. In order to generate more inequalities we do the
following. Each time a S-color inequality is identified (regardless of the inequality is violated or not), we mark one color
class belonging to S as forbidden, to mean that it cannot take part of upcoming S-color inequalities. Then, we repeat the
procedure until only two color classes are not forbidden.
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Table 1
Strategies.

Strategy name Clique 2-rank Block S-color Sub-neighbor. Outside-neighbor. Clique-neighbor.

S1 •

S2 • •

S3 • • •

S4 • • • •

S5 • • • • •

S6 • • • • • •

S7 • • • • • • •

Table 2
Average of Time and Cuts for strategies S2–S7.

% density graph Time Cuts
S2 S3 S4 S5 S6 S7 S2 S3 S4 S5 S6 S7

30 77 75 74 82 82 98 2034 2053 2053 2093 2093 3203
50 241 248 248 267 267 252 3694 3796 3796 4065 4065 3944
70 648 601 632 700 738 735 6182 5805 5670 6306 6405 6377
90 720 763 612 658 610 610 5443 5493 5065 5187 5143 5143

• Subneighborhood and Outside-neighborhood inequalities. They are handled by enumeration: for each j ∈ {1, . . . , χeq} and u
such that α(N(u)) ≥ 3 (because vertices uwith α(N(u)) ≤ 2 lead to clique and 2-rank cuts), we check whether (x∗, w∗)
violates a weaker version of these inequalities, defined as follows. For the subneighborhood inequalities, we compute
ξk = min{⌈n/χeq⌉, ⌈n/k⌉, α(N(u))}, and then we consider inequalities of the form:

ξjxuj +


v∈N(u)

xvj +

n
k=j+1

(ξj − ξk)xuk ≤ ξjwj.

For the outside-neighborhood inequalities, we first check the condition of Theorem 22, i.e. α(N(u)) ≥ ⌊n/max{j, χeq}⌋

and then we use the inequality that results from replacing tj with max{j, χeq} in (15).

4.3. Performance of cuts at root node

In order to evaluate the quality of a cutting-plane algorithm, we analyze the increase of the lower bound when cuts are
added progressively to the LP-relaxation.

In this experiment, we compare the performance of seven strategies given in Table 1, where each one is a combination
of separation routines that determine the behavior of the cutting-plane algorithm.

The experiment was carried out on a server equipped with an Intel i5 2.67 GHz over Linux Operating System. The server
also has the well known general-purpose IP-solver CPLEX 12.2 which is used for solving linear relaxations. We consider 50
randomly generated graphs with 150 vertices and different densities of edges. For each graph and each strategy, we ran 30
iterations of the cutting-plane algorithm.

In order to compare the strategies involved, we call LBi to the objective value of the linear relaxation after the ith iteration
and we compute:

• Percentage of lower bound improvement: Impr = 100 ⌈LB30⌉−⌈LB0⌉
⌈LB0⌉

.
• Time elapsed up to reach the best lower bound, i.e. at iteration min{i : ⌈LBi⌉ = ⌈LB30⌉}. We denote it as Time.
• Number of cuts generated up to reach the best lower bound. We denote it as Cuts.

For graphs having 10% of density, all the strategies showed no improvement in the lower bound. For graphs having at
least 30% of density, all the strategies except S1 reaches the same bound in every instance, while S1 attains worse bounds.
In Fig. 1, we display the average of Impr over instances having the same density.

As we have mentioned, strategies S2–S7 reached the same bound in every instance. One way to tie them is by inspecting
the average of Time, i.e. the time elapsed, and Cuts, i.e. the number of cuts generated. The smaller Time is, the sooner the
algorithm reaches the best bound. On the other hand, the less Cuts is, the better the quality of the cuts involved are. Table 2
resumes these results. Best values are emphasized with boldface font.

As we can see from Table 2, strategy S4 reaches the best lower bound with fewer cuts for graphs having at least 70% of
density and the amount of cuts generated is relatively acceptable for graphs having at most 50% of density. Strategy S4 also
has the best balance between number of cuts generated and time consumed. Therefore, this strategy is a good candidate for
our cutting-plane algorithm.

From the previous results we conclude that the cuts obtained from the polyhedral study are indeed effective. They appear
to be strong in practice, increasing significantly the initial lower bound.
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Fig. 1. Average of Impr for strategies S1 and S2–S7.

Table 3
Performance of different strategies.

Num. of vertices % density graph % solved Nodes Time
B&B S1 S4 S7 B&B S1 S4 S7 B&B S1 S4 S7

90 10 100 100 100 100 2933 3050 1718 1718 33 33 21 21
60 30 100 100 100 100 7515 2976 1050 6567 129 52 35 130
60 50 100 100 100 100 29490 20639 21232 15786 974 1065 812 812
60 70 87.5 100 100 100 19811 12891 5330 6454 734 508 327 340
90 90 62.5 62.5 100 100 52545 35538 12645 15536 2332 2404 689 1088

Nevertheless, the long-term efficiency of cuts cannot be appreciated here and require further experimentation. This topic
is covered in the next section.

4.4. Long-term efficiency of cuts

The purpose of the following experiments is to compare the Branch and Bound (B&B) algorithm of CPLEX with a Cut and
Branch. The algorithm consists of applying 30 iterations of the cutting-plane algorithm to the initial relaxation. Then, we
run a Branch and Bound enumeration until the optimal solution is found or a time limit of 2 h is reached.

Preliminary experiments showed that strategies S2–S6 have a similar behavior each other, although S4 presents the best
performance among them. This led us to deepen the analysis of strategies S1, S4 and S7.

First, we apply both algorithms to 40 randomly generated graphs with different number of vertices and densities of
edges. Since instances having 10% and 90% of density are easier to solve, we increased the number of vertices of them.
Table 3 reports:
• Percentage of solved instances within 2 h of execution.
• Average of nodes evaluated over solved instances.
• Average of total CPU time in seconds over solved instances.

The new inequalities show again a substantial improvement and, in particular, strategy S4 is established as the best one.
It is worth mentioning that strategy S7 evaluated fewer nodes than S4 when solving instances of 50% of density, but this
reduction on the number of nodes was not enough to counteract the CPU time elapsed.

The second experiment consists of solving 35 benchmark instances from the DIMACS challenge [7] and 5 Kneser
graphs [5].

Instances anna, games120, homer, jean and kneser5_2 have been solved at the initial stage, i.e. the initial lower and
upper bounds coincide.

Instances 1-FullIns_3, 2-FullIns_3, 3-FullIns_3, 5-FullIns_3, david, kneser7_2, kneser7_3,
kneser9_4, miles750, miles1000, miles1500, mug88_1, mug88_25, mug100_1, mug100_25, mulsol.i.1,
myciel3, myciel4, queen6_6, queen7_7 and zeroin.i.1 have been solved in at most 2 s of CPU time. The perfor-
mance over the other instances considered is presented in Table 4. In this table, a bar ‘‘–’’ means that the instance has not
been solved by the strategy in two hours of execution.

Let us observe that S7 outperforms B&B in 5 instances (1-FullIns_4, fpsol2.i.3, le450_5a, myciel5 and
queen8_12) while B&B outperforms S7 only for queen8_8. In addition, S4 is the only one able to solve le450_5b.
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Table 4
Performance of strategies over benchmark instances.

Name Vert. Edges χeq Nodes Time
B&B S1 S4 S7 B&B S1 S4 S7

1-FullIns_4 93 593 5 1175 1175 2339 494 17 18 31 8
4-FullIns_3 114 541 7 23 23 71 29 2 2 4 3
fpsol2.i.1 496 11654 65 1 1 1 1 3 4 4 4
fpsol2.i.2 451 8691 47 8 8 8 5 9 10 9 11
fpsol2.i.3 425 8688 55 47 47 26 48 32 32 26 25
inithx.i.1 864 18707 54 1 1 1 1 34 34 35 35
kneser11_5 462 1386 3 104 104 104 104 9 9 9 9
le450_5a 450 5714 5 – 2 0 0 – 7324 5970 3929
le450_5b 450 5734 5 – – 0 – – – 5447 –
myciel5 47 236 6 763580 763580 325458 325458 954 850 321 321
queen8_12 96 1368 12 146 177 110 56 21 20 15 10
queen8_8 64 728 9 28956 105698 49182 43286 445 1292 570 907
zeroin.i.2 211 3541 36 21 21 18 13 3 3 3 3
zeroin.i.3 206 3540 36 33 33 12 22 2 2 2 4

Averagea 66175 72572 31444 30793 128 190 86 112
a le450_5a and le450_5b are not considered in the average since they are not solved by B&B.

Comparing averages, strategy S7 evaluates fewer nodes than S4, as well as for random graphs, but S4 needs less solving
time.

From the reported computational experience we conclude that the new inequalities used as cuts are good enough to be
considered as part of the implementation of a further competitive Branch and Cut algorithm that solves the ECP.
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