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1 Introduction

Zero-eigenvalue modes in the Dirac equation for fermions coupled to a topologically non-

trivial background can have remarkable physical consequences in systems belonging to a

large domain in physics, going from high energy to condensed matter physics. A typical

example in the former case is the so-called QCD U(1)A problem which can be explained

taking into account the zero modes of Dirac fermions in an instanton background [1]. Also

in many condensed matter systems, as for example in superconducting graphene or in

topological insulators, zero-mode fermions in a vortex background could play a central role

(see [2] and references therein).

Zero modes in 2+1-dimensional Dirac equations for fermions minimally coupled to an

Abelian Higgs model vortex [3]–[4] were first studied by Nohl [5] and de Vega [6]. Jackiw and

Rossi [7] reconsidered this problem adding a fermion number violating interaction between

fermions and the Higgs field. They set the fermion mass term to zero but nevertheless a

mass was generated dynamically via the fermion-Higgs interaction. They found that the

resulting Dirac equation has |n| zero-mode solutions in the n-vortex background field.

When a Chern-Simons term is included in the 2 + 1-dimensonal Lagrangian, vortex

solutions are electrically charged [8]–[13]. In this case the search for Dirac equation zero

modes is considerably more involved due to the existence of an electrostatic potential. Grig-

nani and Nardelli [14] studied in detail the case in which the vortex background corresponds

to a Chern-Simons-Higgs action [11]–[12] including cases with Yukawa-like interactions be-

tween fermions and the Higgs field. Also, by taking the vortex background as the one

arising from a N = 2 supersymmetric Chem-Simons-Higgs model, Lee et al. found an

interesting connection between fermionic and bosonic zero modes [15].

Recently, the study of gauge theories in which a hidden sector is coupled to the

Standard Model or its supersymmetric extensions has received much attention in connec-

tion with dark matter, supersymmetry breaking and phenomenological superstring studies

(see [16]–[17] and references therein). In this context self-dual vortex solutions in the

bosonic sector of N = 2, U(1) × U(1) planar gauge theories coupled to Higgs scalars and

including Chern-Simons terms have been considered in [18]. There have been also results
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concerning the case of a Maxwell-Chern-Simons-Higgs model with vortex solutions which

might have interesting implications in condensed matter problems [19–21].

It is the purpose of the present paper to study the zero-mode Dirac equation for

a fermion in the background of the self-dual vortex solutions referred above, namely a

U(1)×U(1) Chern-Simons gauge theory, each sector coupled charged scalars with a mixing

between both sectors given in [18]. We first consider the case in which both U(1) gauge

symmetries are spontaneously broken so that two distinct topological Chern-Pontryagin

numbers characterize the vortex magnetic fluxes and electric charges. We also comment

on the case in which one of the Higgs scalars is absent (no symmetry breaking in the

corresponding sector) so that there is just one topological number but still magnetic flux

and electric charge confined in a flux tube.

2 The gauge field/Higgs background

The 2 + 1 dimensional bosonic sector of the N = 2 supersymmetric U(1) × Uh(1) Chern-

Simons gauge theory coupled to Higgs scalars analyzed in [18] reads

L = κǫµνρAµ∂νAρ+κhǫ
µνρCµ∂νCρ+2ξǫµνρAµ∂νCρ+|Dµ[A]φ|

2+|Dµ[C]η|2−Veff[φ, η]. (2.1)

Here

DA
µ φ = ∂µφ− iqAµφ , DC

µ η = ∂µη − iqhCµη (2.2)

where q is the charge coupling the U(1) gauge Aµ to the Higgs scalar φ while qh plays the

same role for the Uh(1) gauge field Gµ and the scalar η. Concerning Veff [φ, η], supersym-

metry forces the sixth order potential to take the form

Veff =
1

4(κκh − ξ2)

(

(

κhq(|φ|
2 − φ2

0) + ξqh(|η|
2 − η20)

)2
e2|φ|2 (2.3)

+
(

κqh(|η|
2 − η20) + ξq(|φ|2 − φ2

0)
)2

g2|η|2
)

, (2.4)

where ξ2 < κκh. Note that the Lagrangian includes a gauge mixing term (with parameter

ξ) which also implies a Higgs portal mixing the two scalars in the symmetry breaking

potential.

The vortex configurations ansatz takes the following form

φ = φ0f(r)e
inθ, Aϕ = −

A(r)

qr
, Ar = 0

η = η0h(r)e
ikθ, Cϕ = −

C(r)

qhr
, Cr = 0 (2.5)

where n and k are the winding numbers associated to each Higgs scalar.

The Bogomolny equations for static configurations associated to Lagrangian (2.1) can

be easily obtained from vanishing of the SUSY charges acting on physical states of the
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extended supersymmetric model [18]. They read

DA
1 φ = sgn(n)iDA

2 φ ,

DC
1 η = sgn(k)iDC

2 η ,

B = −sgn(n)
q2|φ|2

2(κκh − ξ2)(κ− ξ)

(

qκh(|φ|
2 − φ2

0) + ξqh(|η|
2 − η20)

)

,

Bh = −sgn(k)
q2h|η|

2

2(κκh − ξ2)(κh − ξ)

(

qhκ(|η|
2 − η20) + ξq(|φ|2 − φ2

0)

)

,

A0 = −sgn(n)
1

(κκh − ξ2)

(

κhq(|φ|
2 − φ2

0) + ξqh(|η|
2 − η20)

)

,

C0 = −sgn(k)
1

(κκh − ξ2)

(

κqh(|η|
2 − η20) + ξq(|φ|2 − φ2

0)
)

, (2.6)

where the magnetic fields are defined as B = F12[A] and Bh = F12[G] and sgn(n) = |n|
n . The

numerical solutions, which also solve the second order field equations are described in [18].

3 The Dirac zero-mode equation

Extending the proposal in [14] for the ordinary Chern-Simons-Higgs self-dual model, we

shall consider the following Dirac Lagrangian for the case in which a hidden sector is

included

LD = ψ̄
(

γµ(i∂µ − eAµ − ehCµ)−m
)

ψ + Lφη + Lφ + Lη , (3.1)

with

Lφη = −
i

2
gφηψ̄ψc +

i

2
g∗φ∗η∗ψ̄cψ , (3.2)

Lφ = −gφ|φ|
2ψ̄ψ , (3.3)

Lη = −gη|η|
2ψ̄ψ . (3.4)

We are working in 2 + 1 dimensions and hence the lowest dimension representation for

Dirac γ-matrices is two. They can be chosen as

γ0 = σ3 , γ1 = iσ2 , γ2 = −iσ1 (3.5)

where σi are the Pauli matrices. This leads to α-Dirac matrices of the form ~α = (σ1, σ2)

and β = σ3. Concerning the charge conjugated spinor ψc, it is related to ψ̄ according to

ψc α = Cαβψ̄β , (3.6)

with Cαβ the charge conjugation matrix.

All three interaction Lagrangians, eqs. (3.2)–(3.4), correspond to power counting

renormalizable intersections in 2 + 1 dimensions. It should be also noted that similar

fermion/scalar interactions arise in the supersymmetric extensions of Abelian Higgs mod-

els [22]. Also note that in the presence of interaction (3.2), fermion number which corre-

sponds to an invariance under the global transformation ψ → exp(iα)ψ is violated.
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In view of the covariant derivatives definitions given in (2.2), gauge invariance implies

that gauge and matter fields should change according to

Aµ
Λ

−→ A′
µ = Aµ − ∂µΛ(x) Cµ

Λh−→ C ′
µ = Cµ − ∂µΛh(x)

φ
Λ

−→ φ′ = exp(iqΛ(x))φ η
Λh−→ η′ = exp(iqhΛh(x))η

ψ
Λ

−→ ψ′ = exp(ieΛ(x))ψ ψ
Λh−→ ψ′ = exp(iehΛh(x))φ

(3.7)

In the presence of the fermion number violating interaction Lagrangian (3.2), the matter-

gauge fields couplings should obey the following relations in order to have a U(1)×U(1)h
gauge invariant theory [7]

q = 2e , qh = 2eh (3.8)

Interaction Lagrangians Lφ and Lη do not impose any relation between charges.

Notice that in the present case, like in [14], the fermion-scalar interaction is quadratic

in the scalar field and the coupling constant is dimensionless, which contrasts with [7]

where the coupling is lineal in the scalar. On the other hand, like in [7], the fermion

number violating term involves the two scalar fields and consequently the scalar charge is

twice the electron charge, unlike the case in [14] where the scalar charge is the same as the

fermion charge.

The Dirac equation following Lagrangian (3.1) takes the form

(i∂0 − eA0(~x)− ehC0(~x))ψ(~x, t) =
(

− ~α.
(

i~∇+ e ~A+ eh ~C
)

+ βm
)

ψ(~x, t) (3.9)

− gf(r)φ0η0h(r) exp(i(n+ k)ϕ)σ2ψ∗(t, ~x) +
(

gφφ
2
0f

2(r) + gηη
2
0h

2(r)
)

σ3ψ(t, ~x) = 0 .

Following [7]–[14] we make the two phases ansatz in order to factor out time dependence

ψ(t, r, ϕ) = exp(−iEt)Ψ+(r, ϕ) + exp(iEt)Ψ−(r, ϕ) . (3.10)

Now, for the zero-mode solutions the two equations collapse to one which takes the form
(

− ~α.
(

i~∇+ e ~A+ eh ~C
)

+ eA0 + ehC0 + βm
)

Ψ(r, ϕ) (3.11)

− gf(r)φ0η0h(r) exp(i(n+ k)ϕ)σ2Ψ∗(r, ϕ) +
(

gφφ
2
0f

2(r) + gηη
2
0h

2(r)
)

σ3Ψ(r, ϕ) = 0 .

In terms of upper and lower components of the spinor field Ψ, Ψ =

(

ΨU

ΨL

)

, the above

equation can be written in the form of the coupled system,

(eA0 + ehC0 +m)ΨU − ie−iϕ

(

∂r −
i

r
∂ϕ +

1

2
(A(r) + C(r))

)

ΨL (3.12)

+ igf(r)φ0η0h(r) exp(i(n+ k)ϕ)Ψ∗
L(r, ϕ) +

(

gφφ
2
0f

2(r) + gηη
2
0h

2(r)
)

ΨU(r, ϕ) = 0 ,

and

(eA0 + ehC0 −m)ΨL − ieiϕ
(

∂r +
i

r
∂ϕ −

1

2
(A(r) + C(r))

)

ΨU (3.13)

− igf(r)φ0η0h(r) exp(i(n+ k)ϕ)Ψ∗
U (r, ϕ)−

(

gφφ
2
0f

2(r) + gηη
2
0h

2(r)
)

ΨL(r, ϕ) = 0 .
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Proposing the two-phase ansatz as

ΨU = UUe
imϕ + VUe

i(n+k−m−1)ϕ ,

ΨL = ULe
i(m+1)ϕ + VLe

i(n+k−m)ϕ , (3.14)

with m ∈ Z, we obtain the following set of coupled equations

(eA0 + ehC0 +m)UU − i

[

∂r +
m+ 1

r
+

1

2
(A(r) + C(r))

]

UL

+igf(r)φ0η0h(r)V
∗
L +

(

gφφ
2
0f

2(r) + ghη
2
0h

2(r)
)

UU = 0 , (3.15)

(eA0 + ehC0 +m)VU − i

[

∂r +
n+ k −m

r
+

1

2
(A(r) + C(r))

]

VL

+igf(r)φ0η0h(r)U
∗
L +

(

gφφ
2
0f

2(r) + ghη
2
0h

2(r)
)

VU = 0 , (3.16)

(eA0 + ehC0 −m)UL − i

[

∂r −
m

r
−

1

2
(A(r) + C(r))

]

UU

−igf(r)φ0η0h(r)V
∗
U −

(

gφφ
2
0f

2(r) + ghη
2
0h

2(r)
)

UL = 0 , (3.17)

(eA0 + ehC0 −m)VL − i

[

∂r −
n+ k −m− 1

r
−

1

2
(A(r) + C(r))

]

VU

−igf(r)φ0η0h(r)U
∗
U −

(

gφφ
2
0f

2(r) + ghη
2
0h

2(r)
)

VL = 0 . (3.18)

Defining the following relations

M ≡
q2φ2

0

|κ|
, N ≡

q2hη
2
0

|κh|
(3.19)

one can rewrite the zeroth components of the gauge fields in eq. (2.6) in the form

eA0 = sgn(n)

(

|κ|κhe

q(κκh − ξ2)
M(1− f2) +

|κh|ξe

qh(κκh − ξ2)
N (1− h2)

)

,

ehC0 = sgn(k)

(

|κh|κeh
qh(κκh − ξ2)

N (1− h2) +
|κ|ξeh

q(κκh − ξ2)
M(1− f2)

)

. (3.20)

As a result, we obtain

eA0 + ehC0=

(

|κ|
sgn(n)κhe+sgn(k)ξeh

(κκh − ξ2)

M

q
(1−f2)+|κh|

sgn(k)κeh+sgn(n)ξe

(κκh − ξ2)

N

qh
(1−h2)

)

(3.21)

Now, calling

l ≡
κκh − ξ2

κ [sgn(n)κhe+ sgn(k)ξeh]
q ,

lh ≡
κκh − ξ2

κh [sgn(k)κeh + sgn(n)ξe]
qh , (3.22)

we finally get

eA0 + ehC0 =

(

sgn(κ)
M

l
(1− f2) + sgn(κh)

N

lh
(1− h2)

)

, (3.23)
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which can be written as the extension of Grignani-Nardeli result to the U(1)×U(1) model

if one defines

eÂ0 ≡ sgn(κ)
M

l
, ehĈ0 ≡ sgn(κh)

N

lh
(3.24)

It results in

eA0 + ehC0 = eÂ0(1− f2) + ehĈ0(1− h2) . (3.25)

Let us define I0 as

I0 ≡

(

(eÂ0 − gφφ
2
0)(1− f2) + (ehĈ0 − gηη

2
0)(1− h2) +Mf

)

, (3.26)

with

MF ≡ m+ gφφ
2
0 + gηη

2
0 . (3.27)

Then, the terms containing an UU factor in eq. (3.15) and a VU factor in eq. (3.16) take

the form I0UU and I0VV , respectively. Analogously, the terms containing UL and VL in

eqs. (3.17)–(3.18) are of the form J0Ul and J0VL with

J0 ≡

(

(eÂ0 + gφφ
2
0)(1− f2) + (ehĈ0 + ghη

2
0)(1− h2)−Mf

)

. (3.28)

Then, in order to find non-trivial zero-mode solutions the analysis in [14] for the case of

just one sector can be extended to the present model leading to the following fine tuning

conditions

Mf = 0 , (3.29)

Â0 = ±
gφ
e
φ2
0 , (3.30)

Ĉ0 = ±
gh
eh

η20 , (3.31)

so that either I0 = 0 or J0 = 0, depending on the sign choice.

Let us first consider the case in which the signs in eq. (3.30) and in eq. (3.31) are

negative. Under these conditions, the upper components, UU and VU completely decouple

from the lower components, so that both of them can be taken equal to zero. Then

eqs. (3.15)–(3.16) take the simple form
(

∂r +
m+ 1

r
+

1

2
(A(r) + C(r))

)

UL = gf(r)φ0η0h(r)V
∗
L ,

(

∂r +
n+ k −m

r
+

1

2
(A(r) + C(r))

)

VL = gf(r)φ0η0h(r)U
∗
L . (3.32)

These equations can be simplified by defining new functions ŨL and ṼL through the

relations

UL = exp

(

−
1

2

∫ r

0
dr′(A(r′) + C(r′))

)

r−m−1ŨL ,

VL = exp

(

−
1

2

∫ r

0
dr′(A(r′) + C(r′))

)

rm−(n+k)ṼL , (3.33)
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so that one now has

∂rŨL = gφ0η0f(r)h(r)Ṽ
∗
Lr

(2m−(k+n)+1) ,

∂rṼL = gφ0η0f(r)h(r)Ũ
∗
Lr

(−2m+(k+n)−1) . (3.34)

Because of the properties of the vortex solutions, the exponentials in eq. (3.33) go to 1 at

the origin and to r−(n+k)/2 at infinity.

One can now obtain a set of real equations by writing

ŨL = exp(iωL)ÛL , ṼL = exp(−iωL)V̂L (3.35)

with ωL an arbitrary phase and ÛL and V̂L solutions of the equations

∂rÛL = gφ0η0f(r)h(r)V̂Lr
(2m−(n+k)+1) ,

∂rV̂L = gφ0η0f(r)h(r)ÛLr
(−2m+(n+k)−1) . (3.36)

From these equations we see that ÛL and V̂L, apart from a power behavior, have an

exponential behavior exp(±|gφ0η0|r). In order to have regular zero-mode solutions, UL

and VL should be well-behaved at the origin as well as at infinity. It follows that

UL ∼
small r

r−m−1 , rm−(n+k)+|n|+|k|+1

Vl ∼
small r

rm−(n+k) , r−m+|n|+|k| (3.37)

All the solutions to this equations are regular provided the following inequalities hold

(n+ k) ≤ m ≤ −1 , (3.38)

which in turn implies n+ k < 0 and therefore the number of zero modes is |n+ k|.

If one chooses A0 and C0 with positive signs instead of those chosen in the analysis

above, the analysis goes the same. One can take UL = VL = 0 and instead of eq. (3.37)

we have

UL ∼
small r

rm , r−m+(n+k)+|n|+|k|

Vl ∼
small r

r−m+(n+k)−1 , rm+|n|+|k|+1 (3.39)

leading to the inequalities

n+ k − 1 ≥ m ≥ 0 , (3.40)

which can only be satisfied for positive n+k. Therefore, it results in the existence of (n+k)

zero modes.

The final form of the zero-energy eigenfunctions for the case n+ k < 0 is

ψ(n+k)<0(~r) = exp

(

−
1

2

∫ r

0
dr′

(

A(r′) + C(r′)
)

)

×
(

ei((m+1)ϕ+ωL)r−m−1ÛL + ei((n+k−m)ϕ−ωL)rm−(k+n)V̂L

)

(

0

1

)

, (3.41)

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
0
4
2

while for n+ k > 0 one has

ψ(n+k)>0(~r) = exp

(

−
1

2

∫ r

0
dr′

(

A(r′) + C(r′)
)

)

×
(

ei(mϕ+ωU )rmÛU + ei((n+k−m−1)ϕ−ωU )r(k+n)−m−1V̂U

)

(

1

0

)

. (3.42)

One can see that as a result of fermion number violation, ψ is an eigenstate of particle

conjugation as defined in [7],

σ3ψ = sgn(n+ k)ψ . (3.43)

One can also find zero modes in the absence of fermion-number violating terms. In

this case q/e and qh/eh are not fixed by gauge invariance so that, as in refs. [5]–[6] for just

a visible sector, the zero modes will depend on this ratio.

4 Summary and discussion

In this paper we have found all zero modes of fermions in the background of vortex solutions

of a Chern-Simons-Higgs model with visible and hidden gauge and Higgs fields. Apart from

their quantized magnetic flux, the vortices are electrically charged and they are solutions

of self-dual equations found in [18] by considering the N = 2 supersymmetric extension of

the model.

What we have analyzed in this paper is the Dirac equation for a single fermion field that

couples to the vortex background fields of the two sectors. It could be of interest to instead

consider the zero modes of the N = 2 supersymmetric model with fermions in the two

sectors, a U(1)×U(1) extension of the analysis presented in [15] for just one sector, where

a simple connection between all independent fermion and boson zero modes is established

through a formula that converts every fermion zero mode into a correspondent bosonic zero

mode. Analogous relation should exist when the two U(1) sectors are considered.

Another direction to explore has to do with possible condensed matter applications.

In this respect, we have seen that zero-modes as given in eq. (3.42) can be interpreted as

their own antiparticles and hence as discussed in [2] they can play a relevant role in de-

scribing certain quantum Hall states and some exotic superconductors. Also in connection

with superconductivity it was shown in [18] that when one of the two U(1) symmetries

remains unbroken (for example when no Higgs field in the corresponding sector is present)

the magnetic and electric fields are proportional (and so are the magnetic flux and the

electric charge). In this case the model makes contact with the one considered by Anber

et al. [19–21], except that no Maxwell term is included in any of the two sectors. It could

be interesting to see whether the condensed matter applications discussed in [19–21], in

particular the possibility of superconductivity at any temperature, can be analyzed from

the fermionic zero modes side.
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