

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We've picked out some of these tools below:

1. Replace (Ins) Tool - for replacing text. Strikes a line through text and opens up a text box where replacement text can be entered. How to use it • Highlight a word or sentence. Click on the Replace (Ins) icon in the Annotations Type the replacement text into the blue box that idard framework for the analysis of m icy. Nevertheless, it also led to exoge ole of strateg nber of comp 08/06/2011 15:58:17 O is that the st, which led of nain compo be level, are exc important works on enery by shire M henceforth) $^{
m l}$ we open the 'black h

2. Strikethrough (Del) Tool – for deleting text.

Strikes a red line through text that is to be deleted.

How to use it

Highlight a word or sentence.
Click on the Strikethrough (Del) icon in the Annotations section.

there is no room for extra profits at ups are zero and the number of cet) values are not determined by Blanchard and Kiyotaki (1987), erfect competition in general equilil

ts of aggregate demand and supply

lassical framework assuming monor

een an evogenous number of firms

3. Add note to text Tool - for highlighting a section to be changed to bold or italic. Highlights text in yellow and opens up a text box where comments can be entered. How to use it · Highlight the relevant section of text. Click on the Add note to text icon in the Annotations section. Type instruction on what should be changed regarding the text into the yellow box that appears. namic responses of mark ups ent with the VAR evidence ith sation 08/06/2011 15:31:38 y Ma ell

stent also with the demand-

and

on n

to a

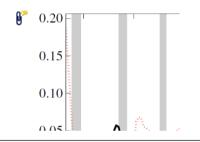
led

ber

⊿ on

4. Add sticky note Tool - for making notes at specific points in the text. Marks a point in the proof where a comment needs to be highlighted. How to use it · Click on the Add sticky note icon in the Annotations section. Click at the point in the proof where the comment should be inserted. Type the comment into the yellow box that appears. ianu anu suppiy snocks. wost oi a min dthreshe eti numbe 08/06/2011 15:18:08 iff dard fr sis cy. Nev) (ole of str W iber of competitors and the map is that the structure of the secto

5. Attach File Tool – for inserting large amounts of text or replacement figures.

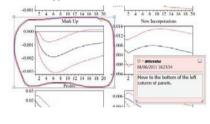


Inserts an icon linking to the attached file in the appropriate place in the text.

How to use it

- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you'd like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

END


6. Drawing Markups Tools – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

How to use it

- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.

[Palaeontology, 2015, pp. 1-16]

GIVING TAXONOMIC SIGNIFICANCE TO MORPHOLOGICAL VARIABILITY IN THE BIVALVE PTYCHOMYA AGASSIZ

■ by PABLO S. MILLA CARMONA^{1,2}, DARÍO G. LAZO¹ and IGNACIO M. SOTO^{2,3}

¹Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Estudios Andinos 'Don Pablo Groeber' (UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina e-mail: millacarmona@gl.fcen.uba.ar

²Instituto de Ecología, Genética y Evolución de Buenos Aires (CONICET), Buenos Aires, Argentina

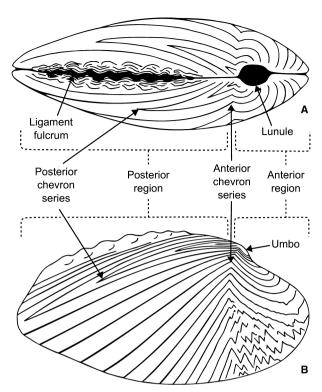
³Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina

Typescript received 17 July 2015; accepted in revised form 23 September 2015

Abstract: The taxonomic significance of the morphological variability present in the genus *Ptychomya* Agassiz has remained obscure due to inadequacy of the traditional qualitative approach to account for complex patterns of variation. In this work, we focus on solving the distinction between intra- and interspecific variability in *Ptychomya* from Hauterivian marine beds of the Neuquén Basin (west-central Argentina), a longstanding and unresolved palaeontological issue, using the quantitative framework provided by geometric morphometrics and multivariate statistics. The species *Ptychomya koeneni* Behrendsen and several subspecies had been recognized in the studied succession by former authors based on qualitative morphological descriptions. We tested two hypotheses: (1) that there exist morphological discontinuities between hypothesized species that mark their bound-

aries; and (2) that morphology follows a pattern of geographical variation, suitable for recognition of subspecies. We find two morphological groups in the studied sample, with a significant morphological gap between them, supporting the idea that there are at least two species in the studied succession, *Ptychomya* cf koeneni and *Ptychomya* coihuicoensis Weaver. On the other hand, we found no correspondence between morphological and geographical distributions, leading to the conclusion that the named subspecies are invalid taxa. This study highlights the potential of this methodological approach for solving the taxonomy of this notorious genus of pandemic distribution during the Cretaceous.

Key words: *Ptychomya*, Argentina, Lower Cretaceous, geometric morphometrics, taxonomy.


PTYCHOMYA Agassiz, 1845 (Veneroida, Astartidae) is a genus of extinct marine burrowing bivalves. It comprises about 20 species and several subspecies, and can be found in marine deposits from all regions across the world except for Oceania and Antarctica. Ptychomya is restricted to the Cretaceous, being especially abundant in the Lower Cretaceous (Freneix 1972; but see Hallam et al. 1986), and it can be an abundant component of shallow marine bivalve assemblages. It is characterized by a mediumsized, oval to subrectangular, posteriorly elongated shell, slightly to markedly truncated towards the posterodorsal end, with a row of crenulations on the dorsal margin alongside its opisthodetic ligament. However, its most conspicuous trait is the external divaricate ribbing pattern. This can be strikingly complex, showing two clearly differentiated regions: one anterior with rounded oblique and the other posterior with subradial ribs (Fig. 1). Two series of chevrons can be recognized, the first one running dorso-ventrally and pointing towards the umbo (anterior

chevron series), while the second runs from the umbo to (and points towards) the posterior shell margin (posterior chevron series). In addition, ribs may show a zigzag arrangement that can vary in intricateness depending on the region of the shell (Chavan 1952; Freneix 1972). Internally, the shell is far less eye-catching, bearing a typical astartoidean heterodont hinge, isomyarian adductor muscles and entire pallial line (Freneix 1972).

Whereas the features described above make *Ptychomya* a very distinctive, easily recognizable morphology-based taxon, they also make the recognition of taxonomically and palaeobiologically meaningful entities below the genus level a daunting task. In addition to variation in shell outline, members of this genus also show variability in the ornamentation pattern that includes differences in number, coarseness, separation, orientation and zigzagging of the ribs, which may range from subtle to marked even between members of the supposedly same species. Traditional, qualitative taxonomic descriptions are not

1

doi: 10.1111/pala.12215

FIG. 1. Scheme of the external morphology of *Ptychomya* Agassiz. A, dorsal view. B, right lateral view.

well suited to reflect and make use of the complex morphological variability displayed by *Ptychomya*. For example, a common practice is to describe a species and then arbitrarily assign subspecies in order to formalize morphological variation not considered initially (e.g. Weaver 1931; Dietrich 1938; Mullerried 1948). This practice could have obscured the distinction between intra- and interspecific variability in this genus, at both local and regional scales.

Hence, we consider that a quantitative approach focused on discriminating intra- from interspecific variability is needed to address this problem. In this regard, the combination of geometric morphometrics and multivariate statistics constitutes a powerful tool that has been successfully used for the study of morphological variation in a variety of organisms, including extant and fossil bivalves (e.g. Crampton and Maxwell 2000; Márquez *et al.* 2010; Leyva-Valencia *et al.* 2012; Echevarría 2014). Thus far, no attempt of using this rigorous quantitative framework has been made for the study of *Ptychomya*, despite the advantages it offers.

However, application of this quantitative approach alone is not sufficient to solve this problem. Well-defined operative criteria stemming from strong conceptual foundations are also needed for proper analysis and interpretation of the data. There are a myriad of species concepts and definitions (Mayden 1997), but only few of them are

applicable to fossil diversity. In palaeontology, the primary source of information is morphology of hard parts, and as such, species are mainly delimited using morphological criteria (i.e. they are morphospecies). As natural populations always exhibit some degree of variability in their attributes, the sole recognition of morphological differences is not sufficient to delimit new species. In order to do so, it is necessary to observe morphological discontinuities separating them (Darwin 1859; Simpson 1937; Mallet 1998; Zapata and Jiménez 2012). In this context, the validity of subspecies as taxonomic entities lies in the concept of geographical variation (i.e. the organization of morphological variation following a geographical pattern; Wilson and Brown 1953; Drooger 1954; Mayr 1982; Thorpe 1987; Mallet 2007). Otherwise, subspecies become just arbitrary sections in a continuum of variation.

The main goals of this work were to explore the clustering structure and taxonomic significance of the morphological variation of *Ptychomya* within the quantitative framework provided by geometric morphometrics and multivariate statistics. In particular, we investigated the case of *Ptychomya* from upper Hauterivian marine successions of the Neuquén Basin, in west-central Argentina. Two hypotheses were tested: (1) that there exist morphological discontinuities between hypothesized species; and (2) that morphology follows a pattern of geographical variation among hypothesized subspecies. After thorough morphometric and statistical analysis, we present a new systematic proposal for the genus *Ptychomya* from Argentina.

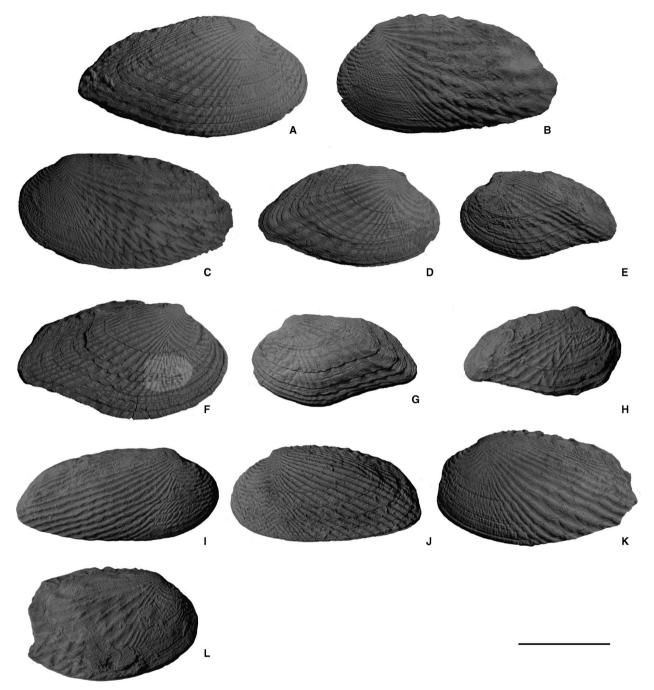
The genus Ptychomya in the Lower Cretaceous of Argentina

In Argentina, Ptychomya has been recorded from Valanginian-Barremian marine beds of the Neuquén Basin in the Quintuco (Weaver 1931), Chachao (Damborenea et al. 1979), Mulichinco (Leanza et al. 2001) and Agrio (Weaver 1931) Formations. To date, their only known representative is Ptychomya koeneni Behrendsen, 1892. (Haupt (1907) also recorded Ptychomya germani 3 Pictet and Campiche, 1866 in the Valanginian of Cerro Lotena. However, the actual taxonomic status of this record is difficult to assess because the material was not been figured and could not be retrieved from the collections of the Steinmann Institut für Geologie, Mineralogie und Paläontologie (Universität Bonn). Therefore, it was not taken into account in this work.). The type specimens were collected by W. Bodenbender from lower-upper Valanginian deposits of the Pilmatué Member of the Agrio Formation at Arroyo Truquicó section (Neuquén Province) and then donated to O. Behrendsen for study. They are currently housed in the Geoscience Centre of the University of Göttingen, Museum, Collections and Geopark, Göttingen (Germany).

This species has been also recorded abundantly in upper Hauterivian deposits of the Agua de la Mula Member from the Agrio Formation (Weaver 1931), where it exhibits a remarkable variability in external morphology of the valves including differences in ribbing pattern and geometry of shell outline (Weaver 1931; Aguirre-Urreta et al. 2011). This variability was taxonomically formalized by Weaver (1931) on qualitative grounds with the nomination of six subspecific varieties of *P. koeneni*. These varieties are as follows: (1) P. koeneni var. agrioensis Weaver, 1931 (Fig. 2A), characterized by its suboval, posteriorly acuminated shell, with fine straight posterior ribs and fine anterior ribs with an intricated anteroventral zigzag arrangement; (2) P. koeneni var. coihuicoensis Weaver, 1931 (Fig. 2B-C), which has an oval shell with very coarse, curved posterior ribs with a marked zigzag arrangement, and fine anterior ribs with an intricated anteroventral zigzag arrangement; (3) P. koeneni var. groeberi Weaver, 1931 (Fig. 2D-F), characterized by an acuminated, ventrally projected posteroventral end, with straight ribs in the posterior region; (4) P. koeneni var. windhauseni Weaver, 1931 (Fig. 2G-H), characterized by an acuminated, projected posteroventral end, and very coarse, straight posterior ribs that may show a strong zigzagging near the anterior chevron series, and coarse anterior ribs which may show a zigzag arrangement; (5) P. koeneni var. vacaensis Weaver, 1931 (Fig. 2I-L), which possesses an elongated shell, slightly truncated in the posterior end, with straight to slightly curved posterior ribs and fine anterior ribs which may show a subtle anteroventral zigzagging; and (6) P. koeneni var. leufuensis Weaver, 1931, which has an oval, elongated shell, with thin, straight ribs. From this point onwards, we treat these varieties as subspecies, which is the appropriate term to refer to subspecific taxa according to the International Commission on Zoological Nomenclature (ICZN, 1999).

However, the true taxonomic significance of the morphological variability of *Ptychomya* in the upper Hauterivian of the Neuquén Basin remains uncertain, and allocation of newly collected specimens to any of the Weaver's (1931) Ptychomya subspecies is often extremely difficult. The observed within-bed variation is wide-ranged and subtly gradational, implying that specimens from the same bed can be either very similar or very different. Thus, assessing the presence of a morphological gap from a qualitative point of view becomes a very difficult task. Moreover, the hypothesis of geographical variation had never been tested, so the validity of the subspecies nominated by Weaver (1931) had remained to be confirmed.

GEOLOGICAL SETTING


The Neuquén Basin is located in the Andes of westcentral Argentina and corresponds mostly to the territories of Mendoza and Neuquén Provinces. It originated in the Late Triassic and had a nearly continuous sedimentation until the Early Palaeogene, accumulating deposits of several thousand metres that includes continental and marine deposits (Howell et al. 2005).

This basin has one of the richest and most complete fossil records of marine invertebrates for the Jurassic and Cretaceous in the Southern Hemisphere. In particular, the ammonoid faunas of the Neuquén Basin are of great importance and have allowed the establishment of highresolution biostratigraphical schemes for western Gondwana and their correlation to the Tethys region (e.g. Aguirre-Urreta et al. 2005, 2007, 2011; Lazo et al. 2009; Riccardi et al. 2011; Aguirre-Urreta and Rawson 2012).

The material studied in this work is derived from the Agua de la Mula Member of the Agrio Formation. The latter outcrops across much of the basin and varies considerably in thickness, lithology and fossiliferous content. It spans from the lower Valanginian to the upper Hauterivian or lowest Barremian and was divided into three members, namely Lower or Pilmatué, Middle or Avilé and Upper or Agua de la Mula (Leanza et al. 2006). The latter has been interpreted as a shallow offshore marine deposit, which shows a marked shallowing tendency towards the top of the succession. Five ammonoid biozones have been recognized in this member, namely Spitidiscus riccardii, Crioceratites schlagintweiti, Crioceratites diamantensis, Paraspiticeras groeberi and Sabaudiella riverorum, ranging from upper Hauterivian to lowest Barremian (Aguirre-Urreta et al. 2007; Aguirre-Urreta and Rawson 2012). Recently, Aguirre-Urreta et al. (2015) provided U-Pb zircon radioisotopic ages of two tuffs from the Agua de la Mula Member, identifying the base of the upper Hauterivian in the Spitidiscus riccardii biozone (c. 129.5 Ma) and the Hauterivian/Barremian boundary near the top of the Paraspiticeras groeberi biozone (c. 127 Ma).

MATERIAL AND METHODS

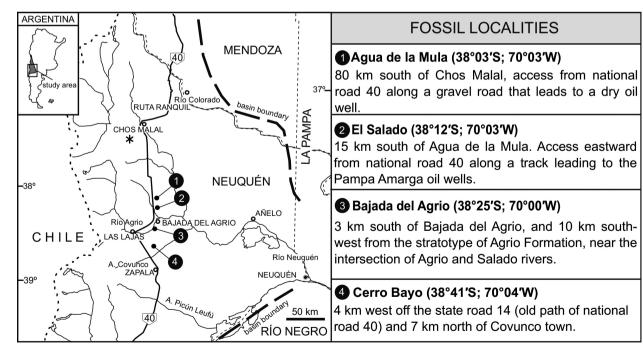
The material for this study is based on 48 unpublished specimens of Ptychomya housed in the Palaeontological Collection of the University of Buenos Aires (CPBA), carefully selected from an original pool of 184 specimens taking into account that external ornamentation and shell outline needed to be well preserved for quantification. In addition, 12 syntype specimens of the subspecies of Weaver (1931; Fig. 2), housed in the Burke Museum of Natural History and Culture (BMNHC), USA, were included. The syntype of P. k. leufuensis Weaver, 1931, recorded in the Pilmatué Member of the Agrio Formation, was not considered in this work as it is older than the rest of the subspecies. The studied specimens are derived from the Agua de la Mula Member of the Agrio Formation, Crioceratites

FIG. 2. Weaver's (1931) subspecies syntypes analysed in this work, from the Agua de la Mula Member of the Agrio Formation, late Hauterivian, Neuquén Basin. A, *Ptychomya koeneni agrioensis* BMNHC-28545, right lateral view. B–C, *P. k. coihuicoensis*; B, BMNHC-28549, left lateral view; C, BMNHC-28547, left lateral view. D–F, *P. k. groeberi*; D, BMNHC-235, right lateral view; E, BMNHC-234, left lateral view; F, BMNHC-233, right lateral view. G–H, *P. k. windhauseni*; G, BMNHC-232, left lateral view; H, BMNHC-231, right lateral view; L, P. *k. vacaensis*; I, BMNHC-28555, right lateral view; J, BMNHC-28554, right lateral view. All specimens were collected from Cerro Vaca Muerta, with the exception of specimen BMNHC-28549, collected from Arroyo Coihueco. Scale bar represents 3 cm.

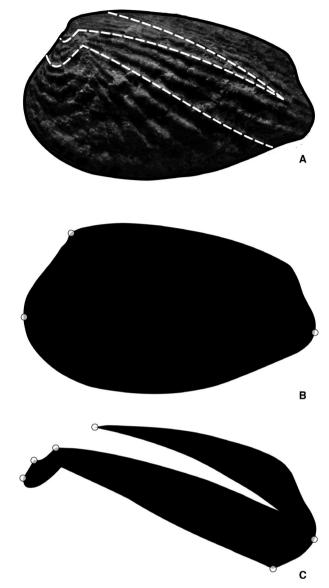
diamantensis ammonoid zone, upper Hauterivian, Neuquén Basin, west-central Argentina (Aguirre-Urreta and Rawson 2012; see *Ptychomya* localities in Table 1 and Fig. 3).

Morphometric analysis

The external morphology of the left valve of all the studied specimens was digitalized in 2D with a Canon Powershot


TABLE 1. Sample size and procedence of the material of *Ptychomya* considered for this work.

Locality	Bed	Sampled specimens	Studied specimens
Agua de la Mula	24	3	0
	26	1	0
	28	40	5
	29	6	0
Bajada del Agrio	3	1	1
, -	4	5	4
	9	4	2
	10	84	17
	11	10	2
	14	10	2
Cerro Bayo	_	17	12
El Salado	_	3	3
Total	_	184	48


S50 camera fixed in a tripod, keeping constant the distance from camera to sample, camera settings and sample orientation. Morphometric analysis was carried out through Elliptic Fourier Analysis (EFA; Kuhl and Giardina 1982), a procedure that allows the quantification of geometry of closed contours. In EFA, a given number of harmonics (sine and cosine functions) are employed to imitate a set of target contours; the degree of fit depends upon the number of harmonics used, with more complex contours requiring

a higher number of harmonics for a more accurate description. Each harmonic has four coefficients, which are used as shape descriptors of the target contours. Then, a principal component analysis of the variance—covariance matrix of coefficients of all harmonics is made. Resulting principal components represent different aspects of the geometric variation present in the set of studied contours (MacLeod 2012). Scores of specimens on principal components were used as the input variables for all subsequent statistical analyses.

Two different traits pertaining to the external morphology of the valves were quantified: shell outline and ribbing pattern, each one sampled using a different set of contours. The perimeter of the shell in lateral view (Fig. 4A-B) was used to capture its outline (growth lines were used when necessary and possible, i.e. when the shell margin was chipped). The contour used to describe ribbing pattern had a higher degree of complexity. The posterior rib forming the larger posterior chevron and the anterior rib converging with it were taken as reference (Fig. 4A). These reference ribs along with the third converging ventral posterior and anterior ribs from it and the margin of the shell were used to define this contour (Fig. 4C). Adopting this arbitrary but structurally constant criterion allowed to sample the complex design of ribbing pattern in a standardized and comparable way. For selection of the number of harmonics needed for proper description, the most geometrically complex contours of each set were reconstructed using different

FIG. 3. Map of the Neuquén basin showing the fossil localities sampled for this work, with their corresponding GPS coordinates and access routes. Arroyo Truquicó, where the type material of *Ptychomya koeneni* of Behrendsen 1892 is derived from, is marked in the map with an asterisk.

FIG. 4. The two sets of contours sampled in each specimen. A, *Ptychomya* specimen in left lateral view, with both contours drawn upon its surface (solid black line: shell outline contour; dashed white line: ribbing pattern contour). B, shell outline contour. C, ribbing pattern contour. Open circles indicate the landmarks used for Generalized Procrustes Analysis (GPA) normalization of each set of shapes.

numbers of harmonics. The lowest number of harmonics that deviates on average less than 0.01% of the centroid size from the best possible shape (calculated using the highest possible number of harmonics) was used to describe the shapes of each set of contours. In this way, seven and 40 harmonics were selected for description of shell outline and ribbing pattern contours, respectively.

One key feature of geometric morphometrics analyses is normalization, that is the removing of rotation, translation and scaling differences from the studied objects, leaving only the shape variation between them to be analysed (MacLeod 2009). There are a number of ways for achieving normalization of contour data (e.g. Kuhl and Giardina 1982; Ferson et al. 1985; Rohlf 1990; Dryden and Mardia 1998). In the present work, we performed a Generalized Procrustes Analysis (GPA; Gower 1975; Rohlf and Slice 1990) prior to EFA, after placing landmarks on the contours (Fig. 4). GPA superimposes the studied shapes by minimizing the squared distance between corresponding landmarks across the entire data set (MacLeod 2009), and it is a method proven to be superior to standard contour normalization procedures, both mathematically and biologically (Frieß and Baylac 2003). Both GPA and EFA were carried out in the R environment (R Core Team 2014) using the package Momocs v. 2.0-6 (Bonhomme et al. 2014).

Statistical analysis

Probable number of morphological groups in the data set was explored using the gap statistic (Tibshirani et al. 2001). This is a standard method for estimating the optimal number of clusters in a given data set by comparing the within-cluster dispersion to the expectation under a null reference distribution with no obvious clustering structure. For this analysis, Euclidean distances were selected as our dissimilarity measure, as they work well for continuous data. Three different clustering algorithms were used to determine the optimal number of groups: k-means non-hierarchical clustering, and hierarchical clustering based on Ward and centroid linkage algorithms. Classification of specimens was determined using partitioning around medoids (PAM), a non-hierarchical clustering method that is insensitive to both noise and outliers (Singh and Chauhan 2011). This classification was used as the input a priori categories for a linear discriminant analysis (LDA) with leave-one-out cross validation, to generate the canonical axes, identify the shape variables involved in-group distinction and produce a robust reclassification of the specimens. A priori probabilities for groups were set to be equal.

The degree of overlapping (i.e. the magnitude of the morphological gap) between the identified groups was tested following the procedure proposed by Zapata and Jiménez (2012) for quantitative continuous characters. Under this approach, it is assumed that phenotypic variation was the result of the effect of several genes and that there was random mating among conspecifics from a geographical region, thus making intraspecific morphological variation reasonably described by a normal distribution. Evidence for morphological discontinuity between hypothesized species arises in assessing the overlap of the tails of their probability distributions. This is achieved

estimating tolerance regions for the distribution of each hypothesized species at an a priori nonzero frequency cutoff (i.e. certain percentage of the hypothesized species is encompassed within these regions; see Wiens and Servedio 2000) and assessing their overlap. Accordingly, tolerance regions for normal distribution were calculated for the distribution of each group along the canonical axes resulting from LDA. Univariate normal distribution of each group was tested with a Shapiro-Wilks normality test. An a priori frequency cut-off of $\beta = 0.1$ was selected (i.e. the tails of the distributions of hypothesized species may only overlap in an area comprising the 10% or less of their populations; otherwise, they are considered to be overlapped). Statistical significance was evaluated through a permutation test (1000 random permutations).

Finally, the validity of the subspecies nominated by Weaver (1931) was assessed by testing the hypothesis of geographical variation. Under this hypothesis, the morphological variability is expected to be organized following a geographical pattern. An LDA was performed in order to produce a classification of the samples to the subspecies established by Weaver (1931) and to generate a morphospace in which those categories were maximally separated, following the same procedure described above for LDA on PAM grouping. Then, correspondence between the morphological and geographical patterns was evaluated through visual inspection by plotting the specimens in a morphospace and distinguishing them according to their locality of origin.

All the analyses were performed in the R environment (R Core Team 2014) using the packages cluster (Maechler et al. 2014), NbClust (Charrad et al. 2014), MASS (Venables and Ripley 2002), sm (Bowman and Azzalini, 1997, 4 2015) and tolerance (Young 2010).

RESULTS

Three and seven principal components (i.e. shape variables) resulting from EFA were retained after principal component analysis for each set of contours, describing shell outline (O1-3) and ribbing pattern (R1-7), respectively (Figs 5-6, Table 2). Only components representing at least 1% of the original variation were retained. The first shell outline variable (O1; 92% of explained variation in shell outline) describes variation in concavity of the dorsal and posteroventral margins, the shape of the anterior end of the shell and the acumination of the posterior end, with higher values corresponding to shells with slightly concave dorsal and posteroventral margins, dorsally oriented anterior end and broader posterior end, while lower values of O1 correspond to shells with straight dorsal margin, slightly convex posteroventral margin, ventrally oriented anterior end and narrower

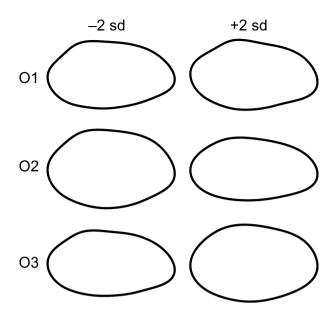
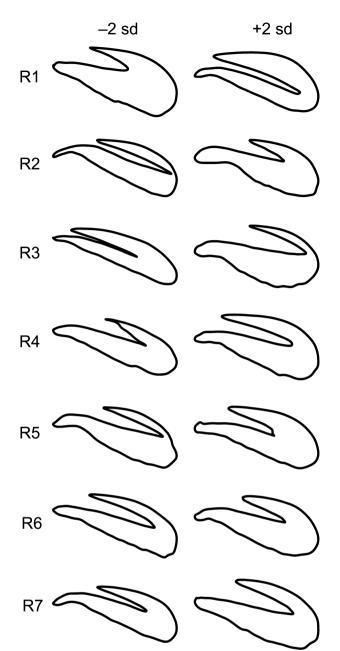



FIG. 5. The three shell outline variables retained from Elliptic Fourier Analysis (EFA) of the shell outline contours, depicted at -2 and +2 standard deviations.

posterior end. The second shell outline variable (O2; 4% of explained variation in shell outline) mainly describes changes in the height/length ratio of the shell. Higher values of O2 correspond with elliptic, relatively elongated shells, while lower values of O2 correspond to more subtrapezoidal shells.

On the other hand, variation in depth of the posterior chevron series, zigzagging and curvature of the posterior portion of the ribs, and development of the anterior portion of the ribs were somehow accounted by nearly all ribbing variables, reflecting the high degree of variability present on these characters. The first and second ribbing variables (R1 and R2; 38% and 32% of explained variation in ribbing pattern, respectively) mainly reflect variation in depth and relative width of the posterior chevron series and zigzagging of the posterior portion of the ribs (although with opposite trends). Higher values of R1 indicate deeper posterior chevrons pointing posteroventrally and straight, densely packed (or coarser) posterior ribs, while lower values correspond to shorter posterior chevrons, with more separated (or finer) posterior ribs showing zigzag arrangement. For the case of R2, higher values correspond to shorter posterior chevrons, posterior ribs posterodorsally curved with zigzag arrangement and more developed anterior portion of the ribs, while lower values indicate deeper posterior chevrons pointing posteriorly, straight posterior ribs with no zigzag arrangement and less developed anterior portion of the ribs. It is important to keep in mind that, although it may seem that some of these variables are representing essentially the same patterns of morphological variation, they are in

FIG. 6. The seven ribbing variables retained from Elliptic Fourier Analysis (EFA) of the ribbing pattern contours, depicted at -2 and +2 standard deviations.

fact mathematically orthogonal. Attention must be paid to the subtle geometrical differences expressed by each variable in order to make a proper assessment of the morphological variability present in the sample. Distributions of the specimens in the morphospaces defined by the first two variables of each set are depicted in Figures 7–8.

All clustering algorithms tested found that the best number of clusters in the data set was two (gap statistic (k-means) = -0.610; gap statistic (Ward) = -0.561; gap

TABLE 2. Percentage of variation explained by each morphological variable (O1–3, shell outline; R1–7, ribbing pattern), as well as loadings of each one on the canonical axis resulting from linear discriminant analysis (LDA) of groups A and B (see text for details).

Elliptic Fourier Analysis Variables	Explained (%)	Explained (cumulative %)	Loadings on Canonical axis 1
O1	92.406	92.406	0.192
O2	4.407	96.813	-0.331
O3	1.161	97.974	-0.007
R1	38.190	38.190	-0.753
R2	32.507	70.697	-0.090
R3	15.576	86.273	0.5988
R4	4.193	90.466	0.113
R5	2.485	92.951	-0.197
R6	1.741	94.692	-0.027
R7	1.153	95.845	0.071

statistic (centroid) = -0.788), hereafter referred as groups A and B (see Discussion for a morphological description of these groups). Their probability distributions along the canonical axis resulting from the LDA separating them are essentially unimodal and Gaussian (Fig. 9; Shapiro-Wilks test of normality: W = 0.966, p = 0.248; W = 0.971, p = 0.806, respectively). Tolerance regions calculated for the two recognized morphological groups did not overlap (Fig. 9; permutation test, p < 0.001), providing statistical evidence for the existence of a morphological gap between them. Loadings of the shape variables on the canonical axis (Table 2) show that discrimination of groups A and B were mainly achieved using differences in the ribbing pattern, with variables R1 and R3 (posterior rib zigzag arrangement, broadness of the posterior chevron series) having the higher loadings. Shell outline variable O2 also contributed to separation of groups, although to a lesser

LDA of subspecies of Weaver (1931) produced four canonical axes. The subspecies do not show a marked separation in the morphospace defined by the first two canonical axes (Fig. 10), with the exception of P. k. coihuicoensis, which appear distinctively separated from the rest of specimens mainly along the first canonical axis. Loadings of shape variables on the canonical axes (Table 3) indicate a similar pattern of differentiation to that observed for groups A and B: higher loading of variables R1 and R3 on the first canonical axis (72% of explained variation) followed by O2. On the other hand, variable R5 (shape of the posterior chevron series, upward concavity of the posterior ribs) had the highest loading on the second canonical axis (19% of explained variation), followed by R1 and R4 (shape of the posterior chevron series). No correspondence between geographical

FIG. 7. Distribution of specimens in the morphospace formed by the first two shell outline variables.

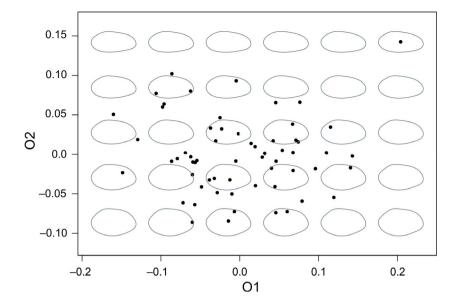


FIG. 8. Distribution of specimens in the morphospace formed by the first two ribbing pattern variables.

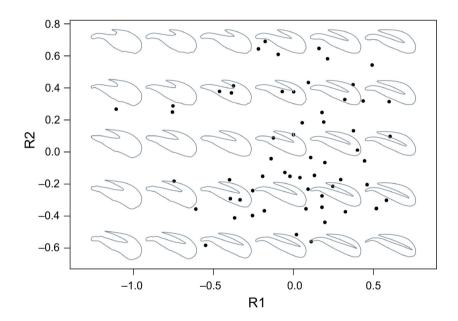
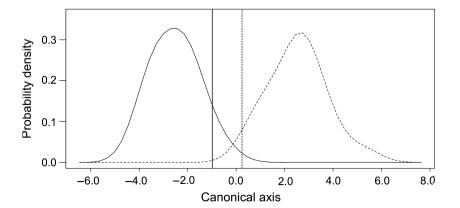
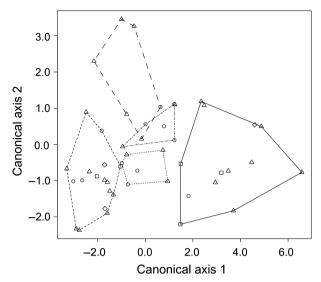




FIG. 9. Probability distributions for Group A (solid line) and B (dashed line) along the canonical axis, and the upper (solid vertical line) and lower (dashed vertical line) limits of the tolerance regions $(\beta = 0.1)$ of each group, respectively. Note that the distribution of the groups does not overlap within their tolerance regions.

FIG. 10. Distribution of the 60 analysed specimens in the morphospace formed by the first two canonical axes resulting from the linear discriminant analysis (LDA) of Weaver's (1931) subspecies: *P. k. coihuicoensis* (solid line), *P. k. agrioensis* (short-dashed line), *P. k. windhauseni* (long-dashed line), *P. k. groeberi* (dotted line) and *P. k. vacaensis* (dotted-dashed line). Specimens are identified by its locality of provenance: Bajada del Agrio (triangles), Cerro Bayo (circles), El Salado (diamonds) and Agua de la Mula (squares).

TABLE 3. Loadings of the shape variables (O1–3, shell outline; R1–7, ribbing pattern) on the canonical axes resulting from linear discriminant analysis (LDA) of subspecies *sensu* Weaver (1931).

Variable	LD1	LD2	LD3	LD4
O1	0.243	-0.075	-0.038	0.183
O2	0.268	0.195	0.573	-0.065
O3	0.151	-0.004	0.190	-0.184
R1	-0.547	-0.216	0.225	0.448
R2	0.019	-0.162	-0.314	-0.180
R3	0.379	0.128	-0.103	0.819
R4	0.259	-0.213	-0.698	-0.040
R5	-0.202	0.815	-0.162	0.029
R6	-0.122	-0.205	-0.109	0.182
R7	-0.190	-0.072	-0.466	0.116

and morphological distributions was observed, as none of the subspecies were representative of a single locality.

DISCUSSION

The morphological variability displayed by this genus is organized into two main groups, which are separated by a statistically significant morphological discontinuity. This same pattern arose when subspecies were used as reference for grouping (Fig. 10), with one group constituted by specimens belonging to *P. k. coihuicoensis* and another group formed by the rest of Weaver's (1931) subspecies. This evidence supports the idea that there are at least two species present in the studied sample, as the morphological gaps are used to infer the action of some evolutionary force that prevented the lineages from phenotypic homogenization (Mallet 2008; Zapata and Jiménez 2012).

An alternative explanation to this phenomenon is that of temporal variation within a single lineage (i.e. anagenetic evolution), and the gap in morphology was produced by the loss of intermediate stages due to bias in the fossil record. However, the analyses performed here were carried out using material coming from a single biozone, the Crioceratites diamantensis ammonoid zone (the average duration of a single biozone in this section is 400 kyr), minimizing the sampled stratigraphical interval and therefore the sampled anagenetic variation. Moreover, specimens from either group were in some cases collected from the same bed. This criterion, known as the 'ancestral survival' criterion, was proposed by Gould (2002) to infer cladogenesis in fossil successions. Thus, the origin of observed morphological variation is regarded as cladogenetic rather than anagenetic.

When examining the classification of type specimens, one thing that stands out is that group B corresponds almost perfectly with those specimens nominated as *P. k. coihuicoensis* by Weaver (1931). This is the most easily recognizable of Weaver's (1931) subspecies, being characterized by 'its oval-elongate outline, very evenly rounded but narrow and somewhat attenuate posterior end, corrugated posterior dorsal border, small but deep and slightly elongate lunule, posterior slope of the umbonal line separating the anterior and posterior sculpture, very coarse heavy ribs on the posterior surface which show the zigzag arrangement and the fine ribbing on the anterior end with the intricate zigzag pattern' (Weaver 1931, p. 345).

The only mismatch found between group B and P. k. coihuicoensis was the assignment of one P. k. vacaensis syntype specimen (BMNHC-28554, Fig. 2L), along with the two P. k. coihuicoensis syntype specimens (BMNHC-28547 and -28549, Fig. 2B–C) included in the analyses, into the same morphological category. However, this specimen is remarkably similar to the syntypes of P. k. coihuicoensis, and its morphology coincides with the description that Weaver (1931) gave for P. k. coihuicoensis, rather than with the one made for P. k. vacaensis based on syntypes BMNHC-28552, -28553 and -28555. Moreover, the external view of this particular syntype of P. k. vacaensis was never included in any of the original plates of Weaver (1931; although the internal view was illustrated in pl. 37, fig. 225). Hence, we regarded

P. k. coihuicoensis from Weaver (1931) and our group B to be the same taxonomic entity. As noted above, this same conclusion was supported by the results from LDA of Weaver's (1931) subspecies: specimens belonging to P. k. coihuicoensis form a morphologically distinct group, separated from the rest of the subspecies. Thus, we adopt the subspecific name coined by Weaver (1931) to refer to this species, from now on Ptychomya coihuicoensis (Fig. 11).

The original description of *P. coihuicoensis* by Weaver (1931) is consistent with the morphometric characterization based on our results. As it can be inferred from results of LDA and EFA, *P. coihuicoensis* has a rather ovate, relatively high shell outline, with rounded transitions between dorsal, anterior and ventral margins (Fig. 12A). Posterior ribs are coarser and more separated, posterodorsally curved and show zigzag arrangement, while the posterior chevron series is broader and shorter (Fig. 12B).

The rest of the subspecies defined by Weaver (1931) fell into our group A, forming a continuum of morphological variation. Even though Weaver (1931) regarded them as belonging by default to *Ptychomya koeneni*, more research

is needed before we can assure it is the same lineage as described by Behrendsen (1892) from the lower-upper Valanginian of Arroyo Truquicó in Neuquén. For this reason, we refer to them as Ptychomya cf. P. koeneni. We found no support for the geographical variation hypothesis, as the four subspecies of P. cf. P. koeneni from the upper Hauterivian of the Neuquén Basin failed to represent local geographical variants. Instead, they constitute arbitrary sections from the continuum of morphological variation they belong to. Thus, we conclude that there are no reasons to justify the establishment of subspecies of P. cf. P. koeneni in the upper Hauterivian of Neuquén Basin, ultimately converting P. k. agrioensis, P. k. groeberi, P. k. vacaensis and P. k. windhauseni into invalid taxa. Ptychomya cf. P. koeneni in the upper Hauterivian of Neuquén is characterized by its relatively elongated shell outline, with a more acuminated posterior end (Fig. 12C). Posterior ribs are fine and straight showing no zigzag arrangement, and form a deep posterior chevron series (Fig. 12D). This species shows great morphological variability that mainly involves aspects of shell outline as can be seen in the assessment of the dispersion of the shape variables relative to P. coihuicoensis (Fig. 13). Variables O1

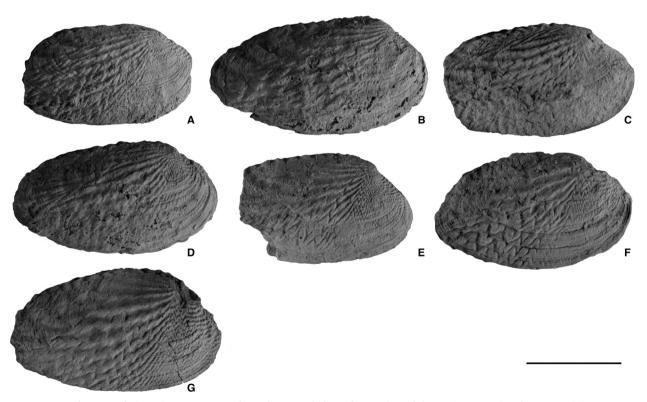
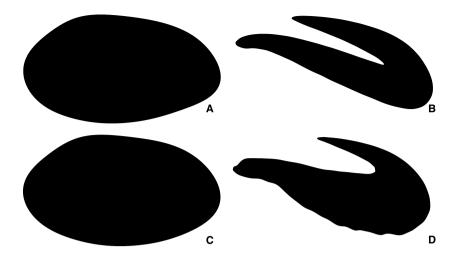



FIG. 11. Ptychomya coihuicoensis Weaver, 1931 from the Agua de la Mula Member of the Agrio Formation, late Hauterivian, Neuquén Basin. A, CPBA-21113.1. B, CPBA-21113.2. C, CPBA-21113.3. D, CPBA-21113.5. E, CPBA-21113.6. F, CPBA-21114.1. G, CPBA-21115.1. CPBA-21113.1–6 were collected from bed 10 of Bajada del Agrio; CPBA-21114.1 was collected from bed 28 of Agua de la Mula; CPBA-21115.1 was collected from bed 11 of Bajada del Agrio. All specimens are shown in right lateral view. Scale bar represents 3 cm.

FIG. 12. Mean shapes of the two identified species, resulting from Elliptic Fourier Analysis (EFA). A–B, mean shell outline and ribbing pattern shapes for *Ptychomya* cf. *P. koeneni.* C–D, mean shell outline and ribbing pattern shapes for *Ptychomya coihuicoensis*.

and O3 have the highest relative dispersion, meaning that this variation is focused on the concavity of the dorsal and anteroventral margins, the shape of the anterior end, the relative elongation of the valve and the acumination of the posterior end. Ribbing variables show a somewhat greater dispersion in P. coihuicoensis (Fig. 13). This is probably due to the effect of a more variable ontogeny, as the initially straight posterior ribs of P. coihucoensis become more strongly zigzaged as the animal grew larger, while posterior ribs of Ptychomya cf. P. koeneni remain essentially straight through the entire ontogeny. This was confirmed by calculating the residuals of simple linear regressions between size (calculated as centroid size) and the morphological variables, and reassessing their dispersion. While Ptychomya cf. P. koeneni still showed greater dispersion for shell outline variables, dispersion of the ribbing variables for both species becomes similar (results not shown).

The integrative approach adopted here proved to be very effective in distinguishing between inter- and intraspecific variation and recognizing palaeobiologically meaningful taxa within this genus. Generally speaking, it consisted of the following: (1) the choice of the systematic hypotheses to be tested; (2) quantification of the morphological variation using geometric morphometrics; (3) exploration of the grouping structure present in the data set; and (4) quantitative assessment of the taxonomic level of variation in accordance with the chosen criteria. Although for each step there are several alternatives (e.g. different criteria for species—subspecies delimitation, the use of landmarks and semilandmarks to quantify the variability, or the use of different clustering algorithms), we

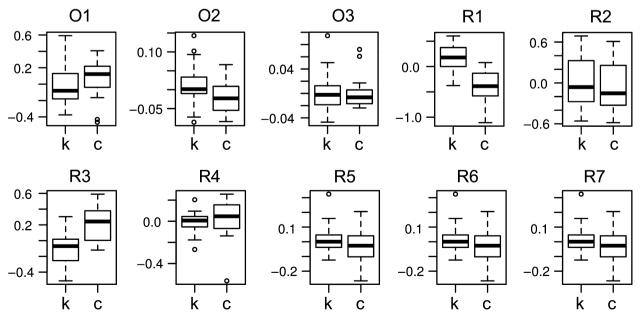


FIG. 13. Box plots of the shape variables analysed. k, Ptychomya cf. P. koeneni; c, Ptychomya coihuicoensis.

think the particular choices we have made were the best suited to deal with the study case of Ptychomya. This approach is easily applicable to the occurrence of this genus in other regions, as the only major restrictions are the quality of preservation and sample size. However, these restrictions are attenuated by the possibility of using the growth lines of the shell and the relatively low sample size needed to identify the same pattern reported here in a reduced data set of 44 individuals (Milla Carmona 2014). Additional considerations to keep in mind are geographical and stratigraphical resolution. The former needs to be set depending on the taxonomic scale of the study; for example, if the only purpose is identification of morphospecies, it is not necessary (although desirable) to sample a wide geographical distribution. As for the latter, care must be taken to avoid confusion between anagenetic and cladogenetic variation. In this regard, the 'ancestral survival' criterion (Gould 2002) can be useful to identify certain cases of cladogenesis.

Institutional abbreviations, CPBA, Colección de Paleontología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina; BMNHC, Burke Museum of Natural History and Culture, Seattle, USA.

SYSTEMATIC PALAEONTOLOGY

Family ASTARTIDAE d'Orbigny, 1844 Subfamily PTYCHOMYINAE Freneix, 1972

Genus PTYCHOMYA Agassiz, 1845 Ptychomya coihuicoensis Weaver, 1931 Figures 2B-C, 2L, 11

- v. 1931 Ptychomya koeneni var. coihuicoensis Weaver, pl. 37, figs 214-216, 224.
- v. 1931 Ptychomya koeneni var. vacaensis Weaver, plate 37, fig. 225 (not pl. 37, figs 212-213; pl. 38, fig. 230).
- v. 2011 Ptychomya koeneni var. coihuicoensis Weaver; Aguirre-Urreta et al., p. 481, fig. 10g.

Diagnosis. Oval-elongate outline, very evenly rounded but narrow and somewhat attenuate posterior end, corrugated posterior dorsal border, small but deep and slightly elongate lunule, posterior slope of the umbonal line separating the anterior and posterior sculpture, very coarse heavy ribs on the posterior surface which have fine ribs on the anterior surface with an intricate zigzag pattern (modified from Weaver 1931).

Age. Late Hauterivian, Crioceratites diamantensis ammonoid zone (Aguirre-Urreta et al. 2007).

Type material. Three articulated specimens and one right valve from Cerro Vaca Muerta, Agua de la Mula Member, Agrio Formation (BMNHC-28547, -28548, -28549 and -28550).

Additional material. Six articulated specimens from Bajada del Agrio, bed 10 (CPBA-21113.1-6), one articulated specimen from Bajada del Agrio, bed 11 (CPBA-21114.1), one articulated specimen from Agua de la Mula, bed 28 (CBPA-21115.1) and one right valve from Cerro Vaca Muerta (BMNHC-28554). All these specimens are derived from the Agua de la Mula Member, Agrio Formation.

Description. Medium-sized, moderately inflated shell, equivalve and inequilateral, with oval, anteroposteriorly elongated shell outline and a narrow and slightly truncated posterior end. Umbo prosogyrate and low, located at one-fifth of the total length of the shell from the anterior end, marking the highest point of the shell. Dorsal margin posterior to the umbo straight, with a row of crenulations (around 11 in the largest specimens). The transition between dorsal and posterior margins rounded, making an angle of approximately 200°. Posterior margin rounded, slightly truncated, passing imperceptibly towards the ventral margin, which is convex, and gradually towards the anterior end. Anterior margin rounded and short.

Ornamentation divided into two well differentiated regions: an anterior region with thin, oblique, markedly curved, concaveupward ribs, which continue in a posterior region where they become thick, subradial, asymmetrical in transversal view (with the highest angle pointing dorsally), curving posterodorsally along their course. Ribs exhibit a marked zigzag arrangement in posterior region. Transition between anterior and posterior regions of the sculpture abrupt, with ribs changing their orientation in approximately 250°, forming a series of chevrons that point to the umbo (anterior chevron series). These chevrons are aligned, forming a straight line slightly inclined posteroventrally, which runs dorsoventrally from the umbo to the ventral margin and separates the anterior and posterior regions of the ornamentation.

In both anterior and posterior regions of the shell, dorsal and ventral subregions can be recognized. Dorsal subregion of the anterior region bears well-defined rounded oblique ribs, while ribs from ventral subregion of the same region show an intricate zigzag arrangement. Dorsal subregion of the posterior region shows ribs that are oriented subradially and slightly curved posterodorsally, and then abruptly change their direction in an angle of approximately 30°, towards the dorsal margin. The change in orientation of these ribs defines a second series of chevrons that points towards the posteroventral end (posterior chevron series). Ribs from ventral subregion of the posterior region are similar to the dorsal ribs, but they do not change their direction and culminate in the posterior or, in the case of most ventral ribs, the ventral margin.

Affinities. This species was previously thought to be a subspecies of Ptychomya koeneni Behrendsen, 1892 (e.g. Weaver 1931, Aguirre-Urreta et al. 2011). Once we established their specific rank, P. coihuicoensis and P. koeneni constitute the only two representatives of the genus Ptychomya in the upper Hauterivian and, provisionally, in

the Lower Cretaceous of Argentina, at least until further studies can clarify the taxonomic status of P. cf. P. koeneni. Both species could be considered to be more closely related to each other than with any other fossil bivalve taxon of the area, although this still has to be confirmed through a rigorous phylogenetic analysis. Freneix (1972) recognized four groups of Ptychomya species, based on the external morphology of their valves. The Ptychomya koeneni group is characterized by its suboval to subtrapezoidal shell outline, with an obliquely truncated posterior end, and irregular posterior ribs. This group includes endemic forms from South America (Ptychomya crispa Philippi, 1899 and Ptychomya buchiana Karsten, 1886) and South Africa (Ptychomya renniei Freneix, 1972). Ptychomya coihuicoensis would belong to this group, being more akin to the Gondwanan species than to European, Asian or North American representatives.

Within this group, *P. crispa* is the species that most resembles to *P. coihuicoensis*, mainly due to the presence of coarse ribs with zigzags in the posterior region of the shell, and their suboval (although apparently more elongated) shell outline. However, the material depicted in Philippi (1899, pl. 35, fig. 9) is not just incomplete, but also poorly illustrated, making it difficult to assess in detail its morphology. On the other hand, *P. buchiana* from the Aptian of Colombia (Dietrich 1938, pl. 22, fig. 3) has a suboval shell outline and lacks the zigzag arrangement in the posterior region. Finally, *P. renniei* from the Early Cretaceous of South Africa (Rennie 1936, pl. 49, figs 1–2) can be distinguished from *P. coihuicoensis* by its fine posterior ribs that lack zigzags, and by its shell outline which slightly broadens posteriorly, giving it a rectangular shape.

Remarks. Ptychomya coihuicoensis differs from P. cf. P. koeneni in external valve morphology. Although both of them show the characteristic divaricate pattern, ribs from the posterior region of P. coihuicoensis are coarser, curved posterodorsally and exhibit a conspicuous zigzag arrangement, while in P. cf. P. koeneni, they are thin, straight to slightly curved posterodorsally and lack zigzags. Posterior chevron series of P. coihuicoensis is less acute and broader than the one of P. cf. P. koeneni. Shell outline also differs, having P. cf. P. koeneni relatively more elongated, subtrapezoidal shells, and bearing in some cases a posteroventral projection that is absent in P. coihuicoensis. The quantitative study carried out in the present work brought evidence of a morphological discontinuity between these two taxa, justifying their establishment as separate species.

CONCLUSION

The genus *Ptychomya* in the upper Hauterivian of the Neuquén Basin, Argentina, was previously thought to be

represented by a single species, *Ptychomya koeneni* Behrendsen, with six subspecies nominated by Weaver (1931). Our results do not support this scenario. Instead, this genus is composed of, at least, two coexisting species: *P. cf. P. koeneni* and *P. coihuicoensis*, which are separated by a significant morphological gap. Subspecies recognized by Weaver (1931) do not define geographical groupings and instead appear to define arbitrary sections of a continuum of morphological variation. Hence, with the exception of *P. k. coihuicoensis*, found to be here a separate species by virtue of the aforementioned morphological discontinuity, we regarded the subspecies of Weaver (1931) as invalid taxa.

The integration of morphological criteria, biological concepts and quantitative framework adopted in this work proved to be very effective at solving the distinction between inter- and intraspecific variation and identifying palaeobiologically meaningful taxa in *Ptychomya*. This general approach can be easily extended to the study of other occurrences of *Ptychomya*, in order to give taxonomic significance to the complex morphological variability known in this genus using a rigorous quantitative protocol.

Acknowledgements. We extend our thanks to Virginia García Alonso, Damian Pérez, Valeria Carreira, Andrea Concheyro, M. Beatriz Aguirre-Urreta and Javier Echevarría. We are especially grateful for useful discussions and corrections from Sally Thomas (The Palaeontological Association, UK), Susana E. Damborenea (Museum of La Plata, Argentina) and James Crampton (GNS Science, New Zealand) that significantly improved the manuscript. Elizabeth Nesbitt and Ronald Eng from the Burke Museum of Natural History & Culture are specially thanked for their assistance during the revision of the Charles E. Weaver collection. A combined CONICET and Fulbright Commission scholarship to DGL allowed the revision of Weaver's collection. This research was supported by grant PICT 0464/2010 awarded to M. Beatriz Aguirre-Urreta. This is contribution R-159 of IDEAN.

DATA ARCHIVING STATEMENT

Data for this study are available in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.58k0t.

REFERENCES

AGASSIZ, L. 1845. Monographie des Myes. Études critiques sur les mollusques fossiles. Imprimerie de H. Wolfrath, Neuchatel, 275 pp.

AGUIRRE-URRETA, M. B. and RAWSON, P. F. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation. *Cretaceous Research*, 35, 208–216.

— CONCHEYRO, G. A., BOWN, P. R. and OTTONE, E. G. 2005. Lower Cretaceous (Berriasian–Aptian)

- biostratigraphy of the Neuquén Basin. Geological Society, London, Special Publications, 252, 57-81.
- MOURGUES, F. A., RAWSON, P. F., BULOT, L. G. and JAILLARD, E. 2007. The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal, 42, 143-173.
- LAZO, D. G., GRIFFIN, M., VENNARI, V., PAR-RAS, A. M., CATALDO, C. S., GARBEROGLIO, R. and LUCI, L. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. 465-488. In LEANZA, H. A., ARRE-GUI, C., CARBONE, O., DANIELI, J. C. and VALLÉS, J. M. (eds). Relatorio del XVIII Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, 893 pp.
- LESCANO, M., SCHMITZ, M., TUNIK, M., CON-CHEYRO, A., RAWSON, P. F. and RAMOS, V. A. 2015. Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes. Geological Magazine, 152, 557-564.
- BEHRENDSEN, O. 1892. Zur Geologie des Ostabhanges der argentinischen Cordillere. II Theil. Zeitschrift der Deutschen Geologischen Gesellschaft, 44, 1-42.
- BONHOMME, V., PICQ, S., GAUCHEREL, C. and CLAUDE, J. 2014. Momocs: outline analysis using R. Journal of Statistical Software, 56, 1-24. doi:10.18637/jss.v056.i13
- BOWMAN, A. W. and AZZALINI, A. 1997. Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Oxford Statistical Science Series, 18, Oxford University Press.
- — 2015. Smoothing methods for nonparametric regression and density estimation, version 2.2-5.4. https://cran. r-project.org/web/packages/sm/sm.pdf.
- CHARRAD, M., GHAZZALI, N., BOITEAU, V. and NIKNAFS, A. 2014. NbClust: an R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61, 1-36. doi:10.18637/jss.v061.i06
- CHAVAN, A. 1952. Mélanges paléontologiques. II. Disctintion et classement des Crassatellidés. Cahiers géologiques de Thoiry,
- CRAMPTON, J. S. and MAXWELL, P. A. 2000. Size: all it's shaped to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). Geological Society, Special Publications, 177, 399-423.
- DAMBORENEA, S. E., MANCEÑIDO, M. O. and RIC-CARDI, A. C. 1979. Estudio paleontológico de la Formación Chachao. Unpublished Internal Report Yacimientos Petrolíferos Fiscales, Buenos Aires, Informe Final, 152 pp.
- DARWIN, C. R. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, First edition. John Murray, London, 495 pp.
- DIETRICH, W. O. 1938. Lamelibranquios Cretácicos de la Cordillera Oriental. Estudios geológicos y paleontológicos sobre la Cordillera Oriental de Colombia. Parte Tercera. Ministerio de Industrias y Trabajo, Departamento de Minas y Petroleo, República de Colombia, 81-108.
- DROOGER, C. W. 1954. Remarks on the species concept in paleontology. The Micropaleontologist, 8, 23-26.
- DRYDEN, I. L. and MARDIA, K. V. 1998. Statistical shape analysis. John Wiley and Sons, Chichester, 347 pp.

- ECHEVARRÍA, J. 2014. Ontogeny and autoecology of an Early Cretaceous trigoniide bivalve from Neuquén Basin, Argentina. Acta Palaeontologica Polonica, 59, 407-420.
- FERSON, S., ROHLF, F. J. and KOEHN, R. K. 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology, 34, 59-68.
- FRENEIX, S. 1972. Les mollusques bivalves crétacés du bassin côtier de Tarfaya (Maroc méridional). Notes et Mémoires du Service Géologique du Maroc, 228, 155-168.
- FRIEß, M. and BAYLAC, M. 2003. Exploring artificial cranial deformation using Elliptic Fourier analysis of Procrustes aligned outlines. American Journal of Physical Anthropology, **122**, 11–22.
- GOULD, S. J. 2002. The structure of evolutionary theory. Harvard University Press, 1433 pp.
- GOWER, J. C. 1975. Generalized Procrustes analysis. Psychometrika, 40, 33-51.
- HALLAM, A., BIRÓ-BAGÓCZKY, L. and PEREZ, E. 1986. Facies analysis of the Lo Valdés Formation (Tithonian-Hauterivian) of the High Cordillera of central of Chile, and palaeogeographic evolution of the Andean Basin. Geological Magazine, 123, 425-435.
- HAUPT, O. 1907. Beiträge zur Fauna des oberen Malm und der unteren Kreide in der argentinischen Cordillere. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 23 (Suppl), 187-236.
- HOWELL, J. A., SCHWARZ, E., SPALLETTI, L. A. and VEIGA, G. D. 2005. The Neuquén Basin: an overview. 1-14. In VEIGA, G., SPALLETTI, L., HOWELL, J. A. and SCHWARZ, E. (eds). The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society of London, Special Publications, 252, 336 pp.
- ICZN 1999. International code of zoological nomenclature, Fourth edition. International Trust for Zoological Nomenclature, London, 306 pp.
- KARSTEN, H. 1886. Geologie de l'ancienne Colombie bolivarienne: Vénézuela, Nouvelle-Grenade et Ecuador. R. Friedlander & Son, Berlin, 62 pp.
- KUHL, F. P. and GIARDINA, C. R. 1982. Elliptic fourier features of a closed contour. Computer Graphics and Image Processing, 18 (3), 236-258.
- LAZO, D. G., CONCHEYRO, A., OTTONE, E. G., GULER, M. V. and AGUIRRE-URRETA, M. B. 2009. Bioestratigrafía integrada de la Formación Agrio en su localidad tipo, Cretácico Temprano de Cuenca Neuquina. Revista de la Asociación Geológica Argentina, 65, 322-341.
- LEANZA, H. A., HUGO, C. A. and REPOL, D. 2001. Hoja Geológica 3969-I, Zapala. Provincia del Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín, 275, 1-128.
- REPOL, D., SRUOGA, P., HUGO, C. A., FAUQUÉ, L. A. and ZANETTINI, J. C. M. 2006. Hoja Geológica 3769-31, Chorriaca, provincia del Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín, 354, 93 pp.
- LEYVA-VALENCIA, I., ALVAREZ-CASTAÑEDA, S. T., LLUCH-COTA, D. B., GONZÁLEZ-PELÁEZ, S., PÉREZ-VALENCIA, S., VADOPALAS, B., RAMÍREZ-

- PÉREZ, S. and CRUZ-HERNÁNDEZ, P. 2012. Shell shape differences between two *Panopea* species and phenotypic variation among *P. globosa* at different sites using two geometric morphometrics approaches. *Malacologia*, **55** (1), 1–13.
- MACLEOD, N. 2009. Who is Procrustes and what has he done with my data? *Palaeontological Association Newsletter*, **70**, 21–36.
- 2012. The center cannot hold II: elliptic fourier analysis. Palaeontological Association Newsletter, 79, 29–42.
- MAECHLER, M., ROUSSEEUW, P., STRUYF, A., HUBERT, M. and HORNIK, K. 2014. cluster: cluster analysis basics and extensions. R package version 1.15.3.
- MALLET, J. 1998. Species concepts. 709–711. In CALOW, P. (ed.). Encyclopaedia of ecology and environmental management. Blackwell Press, 832 pp.
- 2007. Subspecies, semispecies, superspecies. *Encyclopedia of Biodiversity*, **5**, 1–5.
- 2008. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. *Philosophical Transactions of the Royal Society of London*, 363, 2971–2986.
- MÁRQUEZ, F., ROBLEDO, J., ESCATI PEÑALOZA, G. and VAN DER MOLEN, S. 2010. Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam *Ameghinomya antiqua* (Veneridae) in north Patagonia, Argentina. *Fisheries Research*, **101**, 127–131.
- MAYDEN, R. L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. 381–424. *In* CLARIDGE, M. F. et al. (eds). *Species: the units of biodiversity*. Chapman and Hall, 439 pp.
- MAYR, E. 1982. Of what use are subspecies? *The Auk*, **99**, 593–595
- MILLA CARMONA, P. S. 2014. Variabilidad morfológica del género Ptychomya (Bivalvia, Astartidae) en el Cretácico Temprano de la Cuenca Neuquina, centro-oeste de Argentina. Unpublished MSc thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 87 pp.
- MULLERRIED, F. K. G. 1948. El género *Ptychomya* en México (Moll. Pelecyp.). *Ciencia*, **8**, 269–280.
- ORBIGNY, A. D' 1844. Terrains Crétacés, Vol. III. Lamellibranches. *Paléontologie Française. Description des Mollusques et Rayonnés Fossiles*. Mason, París, 807 pp.
- PHILIPPI, R. A. 1899. Los fósiles secundarios de Chile. Brockhaus, F. A., Leipzig, 104 pp.
- PICTET, F. J. and CAMPICHE, G. 1866. Description des fossiles du terrain Crétacé des environs de Sainte-Croix. Troisième partie. Materiaux pour la Paléontologie Suisse. H. Georg, Geneva, 353–360.
- R CORE TEAM 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

- RENNIE, J. V. L. 1936. Lower Cretaceous Lamellibranchia from northern Zuzuland. *Annals of South African Museum*, **31**, 277–283 and 297–391.
- RICCARDI, A. C., DAMBORENEA, S. E., MAN-CEÑIDO, M. O. and LEANZA, H. A. 2011. Megainvertebrados del Jurásico y su importancia geobiológica. 441–464. *In* LEANZA, H. A., ARREGUI, C., CARBONE, O., DANIELI, J. C. and VALLÉS, J. M. (eds). *Relatorio del* XVIII Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, 893 pp.
- ROHLF, F. J. 1990. Fitting curves to outlines. 167–178. *In* ROHLF, F. J. and BOOKSTEIN, F. L. (eds). *Proceedings of the Michigan Morphometric Workshop*. The University of Michigan Museum of Zoology, Ann Harbor, Michigan, 380 pp.
- and SLICE, D. E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. *Systematic Zoology*, **39**, 40–59.
- SIMPSON, G. G. 1937. Patterns of phyletic evolution. *Bulletin of the Geological Society of America*, **48**, 303–314.
- SINGH, S. S. and CHAUHAN, N. C. 2011. K-means v/s K-medoids: a comparative study. *National Conference on Recent Trends in Engineering and Technology*, 4 pp.
- THORPE, R. S. 1987. Geographic variation: a synthesis of cause, data, pattern, and congruence in relation to subspecies, multivariate analysis and phylogenesis. *Bolletino di Zoologia*, 54, 3–11.
- TIBSHIRANI, R., WALTHER, G. and HASTIE, T. 2001. Estimating the number of clusters in a data set via the gap statistic. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **63**, 411–423.
- VENABLES, W. N. and RIPLEY, B. D. 2002. Modern applied statistics with S, Fourth edition. Springer, New York, 495 pp.
- WEAVER, C. E. 1931. Paleontology of the Jurassic and Cretaceous of west central Argentina. *Memoirs of the University of Washington*, 1, 1–595.
- WIENS, J. J. and SERVEDIO, M. R. 2000. Species delimitation in systematics: inferring diagnostic differences between species. *Proceedings of the Royal Society of London: B*, 267, 631–636.
- WILSON, E. O. and BROWN, W. L. JR 1953. The subspecies concept and its taxonomic application. *Systematic Zoology*, **2**, 97–111.
- YOUNG, D. S. 2010. Tolerance: an R package for estimating tolerance intervals. *Journal of Statistical Software*, **36**, 1–39. doi:10.18637/jss.v036.i05
- ZAPATA, F. and JIMÉNEZ, I. 2012. Species delimitation: inferring gaps in morphology across geography. *Systematic Biology*, **61**, 179–194.

Author Query Form

Journal: PALA Article: 12215

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

Query reference	Query	Remarks
1	AUTHOR: Please confirm that given names (red) and surnames/family names (green) have been identified correctly.	
2	AUTHOR: Please check that the affiliations are correct. They have been rearranged in journal style.	
3	AUTHOR: Haup (1907) has been changed to Haupt (1907) so that this citation matches the Reference List. Please confirm that this is correct.	
4	AUTHOR: links from the Bowman & Azzalini book link you provided were broken, so I have replaced it with the full reference.	
5	AUTHOR: please check this reference; the links you originally provided were broken, but this seems to link to the correct page (book reference also inserted above).	
6	AUTHOR: is this page reference specific for the description of P. germani? Reference apparently has 558 pages. If it is a specific page reference, we should add this to the citation (although is it needed for a nomenclatural citation?)	

The Palaeontological Association

Offprint Order From

A **free PDF** file of your article with a note governing conditions of use will be supplied to authors of all papers published in *Palaeontology* and *Papers in Palaeontology* upon publication.

If you do not require printed offprints, simply inform the Production Editor when you return your proof corrections, there is no need to complete this form. Printed offprints can be purchased in units of 50 at the rate of £5.00 per page (e.g. £105 if your paper is 21 pages) or \$10.00 per page (e.g. \$210 if your paper is 21 pages). You should give your Credit Card details at the bottom of this page, and we will make any necessary currency adjustments before processing; please remember to quote the CVV Security Number. This rate can only be maintained if this Order Form is returned with your proofs. Please send it electronically, with your corrected proofs, to the Production Editior (Pala@wiley.com). Authors are reminded that they may not reproduce further offprints by any method without first obtaining the permission of the Association.

Co-authors will not receive separate Order Forms; you must include their requirements and those of your Institution on the Order Form below. Separate parcels will be sent up to 3 different addresses if required.

Authors who are unable to make payment by Credit Card should return this Order Form stating their requirements, but without payment (and with an appropriate Order Form and Order Number if the costs are to be met by their Department, Research Grant, or other funding body). We will send out an invoice that can be for payment in either Pounds Sterling or in US Dollars, whichever is most appropriate. Billing queries to palass@palass.org

of my/our joint paper entitled.		00 per page per 50/\$10.00 per page per 50)
Date: S	Signed	E-mail:
Send offprints to	(USE CAPTIALS)	Send bill to
Name:	Name): :
Address:	Addre	ess:

Credit/Debit Card (only Visa or Mastercard) details (name, number, expiry date, CVV number, start date for certain Debit Cards):