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We define a class of weighted Besov spaces and we obtain a characterization of this class by means of an
appropriate class of weighted Lipschiispaces.

1 Introduction

In this work we introduce a class of weighted Besov spaBgsy® (w), where the smoothness of the functions
involved is controlled by a growth functiaf For the case(t) = t* and the weightv equal to one, these spaces
coincide with the well-known Besov spacBg;>, 0 < a < 1, (see for example [5]).

We obtain a characterization of these weighted spaces by means of an appropriate class of weighted-Lipschitz
¢-spacesA¢(w). This characterization holds for weights belonging to a certain cl$$00), see Definition
2.6. We use the Caldén-type reproducing formula as one of the main tools. Our result generalizes that contained
in [5] for the casep(t) = t* andw = 1, (see Theorem 23 in p. 19 of [5]).

The weighted Lipschitzl>—space/\¢(w) coincides withBM O4(w) wheneverp is of positive lower type and
w satisfies a doubling condition, as we state in Len3maThe space®8M O, (w) consisting of functions whose
mean oscillation is controlled by a weighatand a growth functior), were studied in different situations and
contexts, by several authors. For instance, see [13], [15], [1], [12], [11], [20], [3], [4], [2], [22], [16] and [8]. The
first appearance of this kind of unweighted spaces for gergr8M/ O4 goes back to [20]. There the author
characterizes these spaces in terms of a non-increasing rearrangement. Later on, in [11], Janson obtained another
characterization by means of the Riesz transforms and the Lipschitz spgagsneralizing the well known
decomposition oBM O functions by C. Fefferman (see [3]).

The weightedB M O spaces, that iBM O, (w) with ¢ = 1 in our context, were first introduced by Mucken-
houpt and Wheeden in [MW1] where the authors study the boundedness of the Hilbert transform.

Finally, we remark that the Lipschitz spacas, with ¢(t) = t°, are the spaces whef& functions for
p > n/a, are mapped by, the fractional integral operator, wheneygt = «/n — 1/p. These results, for the
weighted case were proved in [7]. Likewise, the integral operator defined in [10] by

[ ¥z —yl)
Iy = Wf(y)dy-

mapsL?(w) to the weighted Lipschitz spade’ (w).

Other generalizations of these classical results can be found in [17], [6], [14], [7], [9], [18], [19].

Our paper is organized as follows: In Sectibwe define the spaces and the classes of weights used throughout
and we state the main result concerning the characterization of weighted Besov spaces by means of weighted
Lipschitz spaces. In Sectidhwe include some basic lemmas that we use in the proof of our main result. Finally,
the main result is proved in Sectidn
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2 Statement of the main result

Before stating the main result we will include a few definitions and auxiliary lemmas.

We are going to deal with positive functiogsdefined and increasing df, co). We also assume that the
following conditions are satisfied

(a) ¢ is of lower typea, o > 0, that is there exists a constaritsuch that

p(st) < Cso(t)

holds for everys € [0, 1] and everyt > 0.
(b) ¢ is of upper type3, 0 < 3 < 1, that is there exists a constaritsuch that

o(st) < Cs g(t)
holds for everys > 1 and everyt > 0.
In order to define our spaces we need the following lemma contained in [5] (see p. 7). We omit its proof.
Lemma 2.1 Fix N € Z. Then there exists a functignh: R™ — R such that
(i) supp o C{z € R": [z] <1} = B1(0),
(i) ¢ isradial,
(i) ¢ € C=(R™),
(V) Jgn2Tp(x)dz=0 if |y|<N, ~yeZ}, 2 =zl"zP. 2],

VY =91+ 72 + e+ Y
V) [y (@(t))*dt/t =1if & € R™ — {0}.

In the sequence, we denote by(z) = ¢t "¢(t~1z) with ¢ > 0 and byw a weight, that is, a non negative,
locally integrable function defined dR™.

Definition 2.2 Let ¢ be a function having the properties of Lemn2al§ and¢ be an increasing function of
positive lower type. Leff be a function such that

f(z)
———d . 1
/Rn @+ et 0 @)
We say that the functiofi € B> (w) if
ot * f(z)]
apo0 = Sl — " < 00, 2
||fHBi)C (w) .tE]R",pt>O w?(x) ( )
where
oo ol — ul)
wy (x) = w(u) ——= du. 3)
t( ) /u z|<t ( ) |x_u|n

Observe than;f(:c) < o0 a.e. z, in fact, sincep is of positive lower type, for any® > 0

/ wl(z)de = / / n|)d dx
|z|<R |z|<R J|u— z\<f |5E* ul

¢(|lz — ul) L o(s)
——dxdu=C, —d
/u|<R+t w(w) /|ux|<t |z —ul™ T /|u<R+t wlu) /0 S B

Cy w(w) / 1 X 45 < Colty(B(0, R +1)) < 00

Ju|< R+t

IN
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Remark 2.3 We remark that conditionlj for f will be necessary in order to state the convergence of
Caldebn’s formula inS” modulus constant to the functighor, equivalently, inSj, with Sy = {¢ € S/ [ ¢ = 0}
(see [5], p. 125 or [21], p. 164).

Definition 2.4 Let ¢ be a function of positive lower type. We say thfat A?(w) if
(@) = f(y)] < Clwy,_, (@) +wh,_, (1) 4)

wherew? is defined as iff3) for ¢ = 2|z — y|. The least constart will be denoted Y f 1l 4 -

Remark 2.5 If w = 1 and¢(t) = t“ this space coincides with the usual Lipschitz space, and we denote it by
A.,. For more generab and¢(t) = t* this space coincides with that defined in [7].

Now we give the classes of weightswe are working with.
Definition 2.6 We say that a weight belongs toH ¢ (co) if there is a constant’ such that

|B|'/m w(y)(lzs — y|) w(B)
= EAS TV g cC——- 5
(B[ /B s —y W= ®)

for every ballB in R™ centered incg.

Remark 2.7 If we let () = t"%, with 0 < 3 < 1/n, H?(c0) is given by

B)
B 7ﬁ+1/n/ % dy < C& 6
1B rn_p |[TB —y[r AT v |B] ©)

which coincides with the clasd (8n, oo) introduced in [7].

Now, we are in condition to state the main result of this paper.

Theorem 2.8 Let ¢ be a function of positive lower type and of upper typed < 1. Letw be a weight in
H?(00). Then

A?(w) = B%>®(w) (7

and the normg. ||, ,,, and \|.||B¢,oo(w) are equivalent.

3 Lemmas and preliminary results

In this section we introduce some basic lemmas that we are going to use in the proof of the main results. The
first of them gives the relation betwedrt (w) and the spac&M O 4(w) consisting in all the locally integrable
functionsf such that

1
||fHBMO¢(w) = Slép W /B |f —mpfldr < oo (8)

~ Lemma 3.1 Let ¢ be a function of positive lower type. if satisfies a doubling condition, then the space
A?(w) coincides with the spacBM O 4 (w).
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Proof. The proof follows similar lines to that in Proposition 1.3 of [7]. First, we chebior f € BMO4(w).
Givenz andy in R™, with = # y we takeB = B(z, |z — y|) andB’ = B(y, |z — y|). Then

\f(@) = fW)l <1f (@) =mpf|+[f(y) = mp f| + |mpf —mp f|.

The estimate of the three terms are similar, thus, we only estimate the first of them. E&téng (x, 2~ ¢ |z —y|),
i > 1 andB, = B and using the doubling condition af we get

k—1
f (@) =mpf| < Jlim (|f<x>—mka|+Z\mBmf—mBif!>

=0

CZ|Bi|*1/\f<z> —
1=0 B,

IN

dz

IN

o w(Bi) n
CWllmaro,0 2 151 (1B1")
i=0 v

—~ |z —z
"=YB;—Bit1

IN

IN

ClBro,w)
|z—z|<2|z—y|

Cl Al Brro,w) wg"km(fc)

IN

for almostz € R™.

Conversely, integrating4) on a ball B with respect to both variables, andy, and changing the order of
integration, we obtain that belongs taBM O, (w). O

The following proposition asserts thate A¢(w) also satisfies conditiorn ).

Proposition 3.2 Let f € A?(w) andw € H?(c<). If B = B(x,t) then there exists a constaftsuch that

t w(B)¢(|B['/™)
_ < . P S 5 ¥ bl A
1@ =i e de < Cll e ™ ©)
Proof. Let B = B(zp,t)
t
/Rn |f(z) — me|(tJr lzg — af)n T dzx
t t
< — —
< /B |f(z) me|(tJr lzp — a|)n ] dr + /”—B |f(z) —mzf]| (t+ [z — )" HT dz
=I+1II
Let us first estimaté. Sincef € A?(w), by Lemma3.1 we obtain that
t 1
_ < _
J1t@ = mpflg e < [ (@) = maflds

w(B)@(|BJV/")
OB M oy

IN
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To estimatel I, we setB;, = B(zp, 2¥t). Since, by Lemma.7 beloww satisfies a doubling condition, we
can use Lemma.1 obtaining

t J—
/ @) =ma) srde < Ct / 1@ —maf|

IN

(t+|zp—=x g |z —a"t!
= |f(z) —mpf]|
k=0 Br+1— By B
1
< OtZW/ |f(z) —mpfldx
k+1
< ZQ"‘HZ|B|/ —mp, f|dx
k4l
< cuanw e 3 T B
j=0 J k:
o0
w(By) n
< Cllifllaswyt ity ¢(1B;["™)

Jj=

Sincew € H?(c0), using again Lemma.7 we get

11

IN

oo 1 N
C||f||A¢(w)tZ Ww(Bj-‘rl - By)o(IB;|"™)

¢(lzs —=|)
ClAN o () tZ/ de

Bjt1—B;

C 1oyt / » wt)$(lzp —af)

‘xB _ $|”+1
w(B)

B

IN

IN

IN

Clf iy 2 6(| BIY™) .0

Remark 3.3 From the above proposition, ff € A?(w) andw € H?(c0), by takingB = B(0, 1) we obtain
that the functiory(z) = f(z) — mpf satisfies ().

The following two lemmas about real functions were proved in [7] and we omit its proofs.

Lemma 3.4 Lety be a non negative and non decreasing function defindd ar). If there exist two positive
constantg”, andr such that

/“@()d<0<p() (10)

r+1

for everyt > 0, then the functionp(t)/t" is quasi-decreasing with constant equal@g2”*!, that is, for any
t1 <o, p(t2)/th < Co2 lop(t) /7.
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Lemma 3.5 Let p be a non negative and non decreasing function define@oro) andr > 0. Then, the
following conditions are equivalent:

(i) The functiony satisfies {0).
(i) There exista > 1 such thatp(at) < %argo(t) for everyt > 0.
(iii) There exist two positive constartsandd such that
p(01) < CO%(1)

forallt > 0andallg > 1.

We also need the following properties to deal with growth functions.
Lemma 3.6 Let¢ be a function of upper typé < 1. Then for every < ¢

o) _ o)

[ALE s’

that is¢(t) /t™ is quasi decreasing.

Proof: From the fact that has upper typ® and¢/s > 1 we have

(t) < C(t/s)"¢(s) < C(t/s)"¢(s).0

We also note that i is of lower typea > 0 then, clearly,

Yolp) [0t
/0 pdp—/o s < Co(t). (11)

The properties for weighs iff ®(co) are stated in the following two lemmas.

Lemma 3.7 Letw be a weight belonging té/?(cc) whereg is an increasing function of finite upper type.
Thenw satisfies a doubling condition.

Proof: Let B be a ball inR™. Sincew belongs toH ¢ (co) and¢ is an increasing function of finite upper type,
we have

LRy LR TR P o8 B [ el )
Y
n B

Yy =
o(|B[*/™) (lzp — y[ + B[} /m)n+t Bl o(|B]*/") |B|t+1/m
w(B)
< C—=.
| B
Therefore
w(B) _ ., |B" / wélen —yl + 1B - w(2B)
Bl — " o(IB|V™) Jap (lzp —y| + |B/m)nt! - Bl

sinceg is increasing. This completes the praof.

Lemma 3.8 Letw be a weight. Then the following conditions are equivalent

(i) w belongs taH?(c0)
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(ii) There exist two positive constarfisandé such that
w(B(xp,01)¢(0t) < CO™H'°w(B(ap,1)4(t)
for every ballB = B(zp,t) and for allg > 1.

Proof: Let us first suppose that (i) holds. LBt= B(zp,t) and By, = B(xg,2*t), sincew € H?(cc), we have

w(B) | B/ wy)o(es — y))
— 1= —s Iy
B <|B|1/n>/ “p |xB— \nﬂ Y

o Bl / )¢(lz5 — yl)
S(|BI'/) £ Z Bis1— B |xB—y|”+1

Bl g~ _6(2")

o(|B|H/™) rard (2Ff)nt w(B(zp, 2k+1t))

B C(<Z5(|B|1/") Sn+lw(B(-TB,S))?7
t

where we use that is increasing ana satisfies a doubling condition. Therefore, we get

U (Blap.s) & < WBUBD)

t
By Lemmaa3.5 with » = n + 1, we get that there exist two positive constafitandé < 1 such that
w(B(zp,0t))o(0t) < COM0w(B(xp,t))o(t)

forallt > 0andalld > 1.
Conversely, if (ii) is valid then, foB, = B(z g, 2¥t), we have

w(y)o(|zs — yl)
/n_B [+l dy

lzp —y

o0

CZ/B w(y)o(lzs — y) dy

lzp —y|

IN

k=0 k+1— Bk

w(Bg11)9(|Brya|'")
C’Z By | T/m

= 2w (B)g(| B
2k(n+1) ‘B‘l-&-l/n

IN

IN

k=0

w(B)g(|B1/") & 1
¢ |B|1/n+1 ZQW

IN

w(B)¢(|B|V™)
C B

IN

4  Proof of the main theorem

Proof of Theoren2.8: If f € B> (w), first we prove that

/0 ik o fla) dbt (12)
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represents an element &f (w) in the sense that if

1/e
fg(x):/ o1 * o () dt/t

for e > 0, then there exists a sequence of consténts.~o such thatf.(x) — ¢, converges to a functiog(x) for
eache € R™ andg € A?(w) With [|g 35 () < CllF Il goo (u)-

Letz, € R™ and let us consider the function
1/e 1/e
fur@) = [ uvors s@dtft= [ prepns flan) dft = £.0) - f(w0)

Note thatf.(x) is finite for eache andx. Let us first prove that, for each fixed the sequencéf. . }. is a
Cauchy sequence i@i. In fact, let0 < ¢; < e, then

1/e1
(/ // ) (oo oo F(@) — oo x o x Flao)]dbft

/ (oo % o1 f(2)] dift + / o o % f(0)] dit (13)

IN

[fer 2o (2) = fe ()]

IN

1/61
+/ (o1 0% F(2) — o1 % o % F ()] di/t
1/62

0+ + s

Let us first estimaté]. The estimate fof? follows similar lines. Sincéy,| < Ct~—™", we have that

/2 |90t*90t*f($)|dt/t

= - x—zL*f(z)wd)z z
—/61 | [ea-2) Lol Gl dzar

/ / (z — 2)w?(z) dz dt/t
< O|If | go.e /)(/ t‘”/1 wlwdlz=u 4 . iy
(w) |lz—2z|<t |z—u|<t |Z - |
gmwwx)/ ./ t%*/ Oz=uD . gy gu
|z— u|<262 |x—u|/2 |z— u\<t |Z - u|n

€2
<Olflsg [ wu/ Ras / ) 41t du.
|z—u €2 T—u

Since¢ is of lower typea > 0, by (11), the expression above is bounded by

gt dt
Cllfll o / w(u) / & u
B&™ (w) |z—u|<2e2 |lz—ul/2 ot

@(rlz —ul/2) dr
< 26,00
< C|flze. (w)/ / r”lw—u\" r o

|m7u|<262

< ClAll g (w)
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Using the fact thap is of upper type3 with g < 1, we get that

€2 - e dr
/ e * @1+ f(x)]dt/t < OHf”Bgc;oc(w)/ 11)(u)¢)(|$u|)03u/1 r’g’”7

€1 r—u|<2es ‘.’IJ - u|n

OHf”B&M(w)/ w(u)M du

|z—u|<2es ‘LL’ - u|n
Ol 3 gy (2)-

which tends to zero whes} tends to zero, for almost every

IN

In order to estimatds, we first note that from the mean value Theorem we have

1/e1
Bo= [ lesin f@) - oo s flan)l e
1/eo
1/e1 « f(z
< / /|90t(x_z)_@t(ﬁo_z)wwf(z)dzdt/t
1/es wy (z)
< Clifll g 1z — ol
1/e1 1
/ / nt2 w(“)Md dz dt (14)
Ver J{zilz—a|<t|}U{z|z—ao|<t} lu—z|<t |z —ul?

Now, lete, such thalz — z,| < 1/e2 < t. Thenif|z — z,| < ¢t we get thalz — x| < 2¢t and|u — x| < 3¢ for
|u — z| < t. Then, using (11) and.{) we obtain

I < Cllfll e uylz — ol (15)

1/61 1
x/ T—M/ w(u)/ Md du dt.
1/e2 13 {u:|lu—z|<3t} lu—z|<t |Z - u|

V)

< Clfllpo e = ol / [ wduar
Be™ (w) tnt2 lu—z|<3t

1/61 ¢

< Cllfll el — 7 / O (B, 30) dt/1
o(t)
< C|fll geree ]z — 20 / w(B(x,3t)) dt/t
17115 (w)| |; 2 Jen<t<2i+1 ey TP (B(w,3t)) dt/

<

- 4 $(327
Ol ey — xo|;w<3<m,32ﬂ/e2>>(2§/€2§ji)l

Sincew € HZ , from Lemma3.8 the last expression is bounded by

oo 2] 62 n+1 )
s~ — B 9)o(3) S ELDE (16)

J=1

< Clfl| ooy — 2ol (B, 3)),

which also tends to zero when tends to zero. Thus, as we saiff. . (x)} is a Cauchy sequence i@
and then there existf,, (v) = lim¢_o f., (). Let us see thaf,, (z) € A?(w) and verifies|| fo, | s ()



12 Sh. First Author and Sh. Second Author: Short Title

C\ fa. ||B&oc(w), with C' independent of. In fact
@) = oe @) = N[ fe, (@) = e, (0)] (7)

1/e
lim | / 00k ux F(x) — gr % or % Fly) dE/t]

Il + -[2)

IA

where

|z—yl
flz/o (o1 o % F() — o1 x o % ()] dift
and
Iz=/_ lIsot*sat*f(x)—@t*wt*f(y)ldt/t

The estimate fof; follows in similar way as the estimate 6f and we omit it.
In order to estimaté,, we also proceed as in the estimatdpabove. After applying the mean value Theorem
and (11), we obtain as in1(5) that

— 2|z —y :
oS Cllgemqole oY (B, 32 ke ~ o)),
=0

By Lemmas3.7 and3.8 we get

o0

Clf N g uyw(B(z, 2|z — y\))w ERE

I
|z —y|"

IN

=0

A\

o(lz —yl) /
B CHfHB;bOOC(w) |£L’ - y|n lu—z|<2|z—y| w(u) du-

From LemmaB.6 the last term is bounded by

(2 =)

- _ ¢
lu — x| du = Cllfll 5. ) 21—y (*)-

Ol g [

lu—z|<2]z—y]|
Thus||f%\|A¢(w) < CHf”BQQW(w)- Moreover, from {(7) it is clear that
[fellio @) < ClFl g ) (18)

whereC is a constant independent of
We also have that the functigfy, is unique in the sense thatgfx) = (lim_¢ fc(x) — d.), theng(z) =
fz, + constant. In fact

1/e
fxo(z)fg(l'):lg% (de/6 @t*@t*f(xo))dt/t>

which is independent of, i.e. is a constant.
On the other hand, singgin B2:>(w) satisfies (), from Remark2.3 we have that

llir(l)ff :f
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in Sy, and consequentlym._.o f. ., = fin S.
Also, sincef, ,, converges pointwisely td,_, then, by (8), Proposition §.2) and the dominated convergence
Theorem we get that

lim fe,xn = fxo
e—0

in S). Thusf coincides withf,., as a function im\?(w), that is, modulus constants.

Conversely, iff € A?(w) and from the fact thaf ¢, dt = 0 we get

er 1@ = | [t naw ] = | [ ota =) - re)ay

< Clflls [ Voo =l @]+ 0, )y
|z—y|<t
, ¢ - w(w) —ul)du | d
. ¢ - O(ly —ul)
< Wliec (w”(x”/m@“’(“” /| v dyd“)
<

2t
CHf||A¢(w) (wébt(a:)—i—/l_ <3tw(u)t_"/0 d)(pp)dpdu>.

By changing variables and usingl{

/"_m<3tw(u)t /0 ) dpdu = /“_m|<3tw(u)t /0 — dsdu (19)

Ct_"(;ﬁ(t)/_ﬂldtw(u) du

IN

N

< Ct"¢(t)/_ |<2tw(u) du,

where in the last inequality we have used the fact thastisfyies a doubling condition. Now, by Lemm& we
have that the last term in4) is bounded by?w;”t(x). From this fact and RemarR ) we have the resulil
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