RECENT PROGRESS ON THE MONGE-AMPERE
EQUATION
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ABSTRACT. We consider convex solutions to the equation det D% = p
when p has a doubling property. We summarize the latest results on
geometric and measure theoretic properties associated to ¢. We also
discuss applications such as the real analysis related to ¢ and Hdélder
regularity for V.

1. INTRODUCTION

Let ¢ : R* — R be a convex function and let Jyp denote its normal
mapping (or sub-differential) given by

dp(x) ={peR" : p(x) +p- (y —7) < p(y), Vy e R"}.
The Monge-Ampere measure j, associated to ¢ is (well-)defined on any
Borel set E by
po(B) = |00(E)],
where | - | stands for Lebesgue measure. Given a Borel measure y on R”,

we say that ¢ is a solution (in the Alexandrov sense) to det D¢ = y in R®
if pp = p. In particular, for f > 0, we have det D?p = fif

o (F) = /E f(z) d,

for every Borel set E C R". See [9] for this and other basic definitions on
Monge-Ampeére. Now, for z € R",p € dp(z) and t > 0, a section of ¢
centered in z at height ¢ is the open convex set

Sp(z,p: 1) ={y €R" : 9(y) < @(z) +p-(y —x) +1}.
If we consider the archetypal convex function ¢o(z) = $|z|?, then det D2y =

1, that is, the Monge-Ampeére measure associated to ¢ is Lebesgue mea-
sure. Also for z € R® and ¢t > 0

Sy, (x,t) = B(z,V2t).

Hence, the family of sections of @2 consists of the usual balls in R". In the
other end of the spectrum, we have the case of ¢;(z) = |z|, verifying

det D*p1 = |B(0,1)|,

(6o being Dirac’s measure at 0) and whose sections can be unbounded
convex sets. In order to hope for some regularity results for our solutions,
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we will disregard solutions like that. One way to avoid them is to consider
functions ¢ whose sections are bounded sets. Geometrically, this means
that the graph of ¢ does not contain half-lines. If ¢ is differentiable, then
we identify dp(z) and Vo(z). In this case, we just write S,(z,t) for the
sections.

Inspired by some basic features of the usual balls and Lebesgue measure in
R™, now we will define some properties for the bounded sections of ¢ and
the measure p, . We say that the sections satisfy the engulfing property if
there exists a K > 1 such that for every section S,(z,p,t) we have

y € Sy(z,p,t) = Syp(z,p,t) C Sp(y,q, K1)

for all ¢ € Op(y). Also, we say that the sections satisfy the shrinking
property if there exist 0 < 7, A < 1 such that for all z € R*,p € d¢(z) and
t > 0, it holds that

So(z,p, 7t) C ASy(z,p,1t).
Regarding the measure i, we say that u, satisfies the (DP)-doubling prop-
erty if there exists a constant C' > 0 such that

(8o ,0,1)) < Cp(Sp 0, 3),

for every z € R”, p € dp(z) and t > 0. Similarly, we say that pu, satisfies
the (DC)-doubling property if there exist constants C > 0 and 0 < a < 1
such that for all sections S, (z,p,t), we have

tio(Sp(,p,1)) < Cpp(aSy(z,p,t)),

where aS,(z,p, t) denotes a-dilation of S, (z,p,t) with respect to its center
of mass. We are now in position to go over the main aspects of Caffarelli’s
regularity theory for the Monge-Ampére equation. We will begin by men-
tioning some old and some very recent important results of the theory which
have not been summarized in the literature until now.

2. THE BASIC RESULTS

In [3], Caffarelli proved two striking results: if p, verifies the (DC)-
doubling property, then ¢ is strictly convex (in the sense that every tangent
hyperplane touches the graph of ¢ at one point only), and ¢ € CL#(R?)
for some 8 € (0,1]. Caffarelli’s proof for this C"#-regularity result uses a
compactness argument which does not allow to estimate 8 in terms of the
(DC)-doubling constants. The task of finding a constructive proof for this
Holder-regularity result was posed as an open problem in Villani’s recent
book [12].

The results above stressed the importance of the (DC)-doubling property
for pu, and many efforts were made to better understand it, mainly by
exploring the relationship between this doubling property and geometric
properties of the sections (such as the engulfing and shrinking properties).
In [10], Gutiérrez and Huang proved that the (DC)-doubling property for
e implies both the engulfing property for the sections of ¢, and the (DP)-
doubling property for u, (but (DP) does not imply (DC)). Also, they gave
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the first geometric characterization for the (DC)-doubling property by prov-
ing that this property is equivalent to the shrinking property of the sections
of ¢. In [6], the authors proved that the engulfing property also charac-
terizes the (DC)-doubling property. The interplay between geometry and
measure theory can be summarized in the following theorem (see [6, 10] for
these and other equivalent conditions)

Theorem 1. Let Sy(z,p,t), with x € R",p € 0p(z),t > 0; be the bounded
sections of a convez function ¢ : R* — R. Then the following are equivalent

(i) The sections of ¢ satisfy the engulfing property.

(i) The sections of ¢ satisfy the shrinking property.
(iii) The measure i, satisfies the (DC)-doubling property.
(iv) The Monge-Ampére measure u, satisfies

Ctn S |S(P(xapa t)|y’§0(S§0($apa t)) S Ctna
for all sections S,(z,p,t) and some positive constants c,C.

Let us denote by Eng(n, K) the set of all convex functions ¢ : R* — R
whose bounded sections satisfy the engulfing property with constant K.
Let us also define

Eng(n) = | J Eng(n, K)
K>1
and
Engy(n) = U Engy(n, K),
K>1
where Engy(n, K) = {¢ € Eng(n, K) : ¢(0) =0, Ve(0) = 0}.

3. EXAMPLES OF FUNCTIONS IN Eng(n)

Let ¢ : R* — R be a strictly convex differentiable function.
(i) If det D?¢ = p, where p is a polynomial, then ¢ € Eng(n, K) for some
K depending only on the degree of p (in particular, K does not depend on
the coefficients of p), see [9], pp. 52.
(i1) If pa,, verifies the po, property, ie., given d; € (0,1), there exists dy €
(0,1) such that for every section S = S,(z,t) and every measurable set
ECS,
po(E)
po(S)
then ¢ € Eng(n). To see how pq implies the (DC)-doubling condition,
given 0, € (0,1), pick a € (0,1) such that

< 515

|S_aS| n
—— =1-0a" < o,
S|
then (s 5)
Hplo —
= < 4y,
po(S) '

and the (DC)-doubling property follows with C = 1/(1 — §;). By Theorem
1, we get ¢ € Eng(n). This us property plays an important role in the
proof of Harnack’s inequality for non-negative solutions to the linearized
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Monge-Ampeére equation, see [5].
(4ii) If ¢ € C?(R™) and there exist constants A, A > 0 such that

(3.1) A < det D?p <A,

then ¢ € Eng(n). This follows from the fact that in this case u, clearly
verifies the uy property. Actually, the same is true if we only ask (3.1) to
hold in the Aleksandrov sense.

(tw) If n = 1 and ¢(x) = |z|P with p > 1, then ¢ € Eng(1). In general, if u
is a doubling measure on R, then ¢,(z) = [/ f(f dp dt belongs to Engg(1),
see [7].

4. REAL ANALYSIS RELATED TO CONVEX FUNCTIONS.
A SPACE OF HOMOGENEOUS TYPE FOR MONGE-AMPERE

In R™ with the usual balls and Lebesgue measure (all of them related to
the convex function @2 ) we are able to develop the standard real anal-
ysis (Calderén-Zygmund decomposition, types of the Hardy-Littlewood
maximal function, BMO, Hardy spaces, singular integrals, Muckenhoupt’s
weights, etc). The question is how far we can take this by considering a
general convex function ¢. As we shall see, the essential property for a
convex function ¢ so we can produce a real analysis related to its sections
and measure y, is the engulfing property.

In [4], Caffarelli and Gutiérrez proved the following Besicovitch-type cover-
ing lemma, for the sections of ¢ when these sections verify certain conditions
(in [6] these conditions were proved to be equivalent to the engulfing prop-
erty)

Lemma 2. Let A C R" be a bounded set. Suppose that for each x € A a
section Sy(x,t) is given such that t is bounded by a fized number M. Let us
denote by F the family of all these sections. Then there exists a countable
subfamily of F, {Sy(zk,tx) : k € N} such that

(i) A C UgenSp(zk, t)-

(1t) zp & UjckSp(x4,t5), for every k > 2.
(75i) For € > 0 small (smallness depending on the engulfing constant K ),
we have that the family

Fe = A{Sp(zg, (1 —€)ty) : k € N}

has bounded overlaps; more precisely
o0
Z XSp (g, (1—€)tr) (-’17) <Ckgln 1/5,
k=1

where Cx depends only on the engulfing constant K.

Lemma 2 allows us to prove a variant of the Calderén-Zygmund decom-
position adjusted to the sections S,(z,t) and the measure y, and then
carry on a real analysis. However, there is a somewhat more natural ap-
proach to the real analysis for ¢. Note that, under the presence of the
engulfing property, we have a family of sections and a doubling measure.
If we found a quasi-distance p, related to these objects, then we would
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turn (R™, p1y, p,) into a space of homogeneous type. Therefore, all the real
analysis would follow in a nowadays standard way. We will see that this is
actually the case. For ¢ : R* — R, strictly convex and differentiable, we
set

po(@,y) = inf{r:y € Sy(z,r),x € Su(y,r)},
and

dy(z,y) = (Ve(z) = Vo(y)) - (z —y),

then it is immediate to check that

ptp(way) S d(p(way) S 2plp(xay)a

for every z,y € R". In [1]; Aimar, Forzani and Toledano proved that: if
the sections of ¢ satisfy the engulfing property with constant K, then p,
(as much as d,) is a quasi-distance on R" whose balls are topologically
equivalent to the sections of ¢, that is, there exist positive constants 0 <
01 < 1 < 2, depending only on K, such that

Sy(z,d1t) C B,, (z,t) C Sy(z,dat),
for every z € R" and ¢ > 0, where

BPgo(I’t) = {y eR": pw(w,y) < t}'

Moreover, the quasi-triangular constant of p, depends only on K. Con-
versely, if p is any quasi-distance on R" whose balls are topologically equiv-
alent to the sections of ¢, then the sections of ¢ have the engulfing prop-
erty; this is just due to the quasi-triangular inequality for p. Also, since
the (DC)-doubling property of p, implies the (DP)-doubling property of
e on the sections, we have that the engulfing property turns (R", yu,, d,,)
into a space of homogeneous type. The real analysis related to ¢ € Eng(n)
plays a key role in the LP-theory for solutions to the linearized Monge-
Ampére equation, analogous to the role that the usual real analysis plays
for solutions to Au = f. See [4, 5.

5. NEW CHARACTERIZATIONS FOR THE ENGULFING PROPERTY

Some immediate properties of Eng(n) are stated in the following Lemma

which was proved in [8].
Lemma 3. Let ¢ be in Eng(n, K).

(i) If A > 0, then Ay € Eng(n, K).

(ii) If ¢ € Eng(n, K'), then ¢ + ¢ € Eng(n,2(K V K')).

(ii1) If for z,y € R™ we set @z 4(s) = @(sy + (1 — s)z),s € R, then @z €

Eng(1, K).

(iv) AE(R™,R™) acts on Eng(n,K) by composition.

(v) AE(R",R) acts on Eng(n, K) by addition.

To cite some other recent applications of these ideas, let us mention that
in [7], the authors proved a characterization for the engulfing property in
dimension 1 which, in turn, is useful to characterize all doubling measures
and quasi-symmetric mappings on R. What follows is the n-dimensional
version of that Theorem. For the complete proof see [8].
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Theorem 4. Let ¢ : R* — R be a strictly convex differentiable function.
The following are equivalent:

(i) There ezists a constant K > 1 such that if x € Sy,(y,t) then
Sy(y,t) C Sy(z, Kt),

for every z,y € R™ and t > 0.(Engulfing property.)

(i) There exists a constant K' > 1 such that if z,y € R™ and t > 0 verify
z € Sy(y,t), then y € Sy(z, K't).

(#1i) There exists a constant K" > 1 such that for every z,y € R"

KL o)~ ola) ~ Vol@) - (v - 2)

< (Vo(z) = Ve(y)) - (z —y)
< (K" +1) (ely) — p(z) — Ve(z) - (y — 2)).-

Proof for (ii) = (iii) in Theorem 4. Given z,y € R” and € > 0, we have
o(z) < p(z)+e=0(y)+ Vo) (z-y)+o) —e(y) - Vo) (z-y) +e,
(note that the convexity of ¢ implies p(z) — ¢(y) — Vo(y) - (z —y) > 0),
this means that z € S,(y, o(z) — o(y) — Vo(y) - (x — y) + €). By property
(i1), we must have y € S,(z, K'(¢(z) — ¢(y) — Ve(y) - (z —y) +¢€)), which
means
o(y) < (z) + V() (y —2)+ K'p(z) — K'o(y) = K'Vo(y) - (z —y) + K'e.
Letting € go to 0 and summing up we get
(5.2)  (K'+1)p(y) < (K'+1)p(z) + (Ve(z) + K'Vo(y)) - (y — ).
Now interchanging the roles of z and y, we obtain
(5.3) (K" +De(z) < (K" +1)p(y) + (Vely) + K'Ve(z)) - (z —y).
From (5.2) and (5.3), we get

!

K'+1

Vo(z) - (z —y) + Vo(y) - (z —y)

By using the first inequality in (5.4) we get

1
(5:5) o771 (Vel@) = Vo)) - (= —y) < @(z) — o(y) = Vely) - (z — ).
The second inequality in (5.4) yields

(5.6) w(z) —w(y) = Vo(z) (z-y) < K,1+ T (Voly) = Ve(2)) - (z —y),

which implies

!

(5.7) o(x) —p(y) = Vo(y) - (z—y) < "l (Vo(z) = Vo(y)) - (z —y).
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Now (i%7) follows from (5.7) and (5.5) with K" = K. O

The following result relates the Euclidean balls and the d,-balls, provid-
ing the quantitative behaviour of ¢ € Eng(n, K).

Theorem 5. Let ¢ € Eng(n,K) and r > 0. For y € R" define py(z) =
o(x) —o(y) = Voly) - (z —y). If |z —y| <7, then
(5.8)

( Jmin_ iy (2 )) ('x;y|>1+K

If |lx —y| > 7 >0, then
(5.9)

min 0@)) (=) < @) = o) = Veln) - 0 —w)
(. ) (54)

z—y|=r
N K
< ( max (py(z)> <u) .
zi|z—y|=r T

Proof of Theorem 5. We shall first prove that if ¢ € Engy(n, K) and
|z <7,

610 ( min o(2)) ('%')HK < (o) <  max (7)) (@)HUK,

and, if |z| > r > 0, then

611 ( min (o)) ('jf—')m/K < p(o) < s o(2)) (@)+K

Consider first a function ¢ € Engy(1, K). By Theorem 4 we know that

(512 (1) < $(0)t - (0) < Kol

for every t € R. Let us work out the second inequality in the first place.
For t > 0, we get
¢'(t)

(1)
recognizing the derivatives of the corresponding logarithms, we get that
the function ¢(¢)/t'*¥ is decreasing in (0,00). Now, given z € R", write
x = tzrg, where |zo| = 1, and define ¢(t) = @(tzp). By Lemma 3, ¢ €
Eng,(1, K). If |z| <, then ¢t < r and we use the mentioned monotonicity
to get

IN

() —o(y) — Voly) - (z —y)

p\T
_ 14+1/K
(max )(L y') .
| yl—r T

1

$(r)/r' < g(1) /11,
which is,

1 1 1
W(TxO)m < @(tmo)m = o(z) |z[IFK
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and the first inequality in (5.8) follows. The other inequalities are proven
in similar fashion, by remarking that the function ¢(t)/¢t'*/¥ is increasing
in (0, 00).

In order to finish the proof we need to consider the general case ¢ €
Eng(n, K). In this case, given y € R", define ¢, (z) = ¢(z +y) — ¢(y) —
Vo(y) - . Thus, by Lemma 3, 9, € Engy(n, K) and we complete the proof
by applying (5.11) and (5.10) to the function ). O

6. Eng(n) IS INVARIANT UNDER CONVEX CONJUGATION

Lemma 6. If ¢ € Eng(n, K), then Vo : R* — R" is a continuous bijection.

Proof of Lemma 6. The continuity of V¢ follows from Caffarelli’s results
mentioned in the Introduction. Injectivity of V¢ follows from the strict
convexity of ¢. We could also use that ¢ € Eng(n, K) to turn p, into a
quasi-distance, consequently

Vo(z) = Vo(y) = pp(z,y) =0 =z =1y.

To prove that V¢ is onto, note that it is enough to suppose ¢ € Engy(n, K)
(subtract a hyperplane from ¢). Thus, (5.11), with r = 1, gives

M — +w_
jal=too 2]
Now, given a € R" we can minimize h(z) = ¢(z) — a - = to get that
a € Vp(R"). O

Theorem 7. Let ¢ be in Eng(n, K). If ¢* denotes the conjugate of ¢, then
¢* € Eng(n, K*) with K* = 2K(K + 1). Moreover, the sections of ¢ and
©* are related as follows: for every x € R*,t > 0

(6.13) V(S (,t/K)) C Spr (Vpl),8) € Vip(S,(a, KH)).
For the proof, see [8]. Recall that

¢*(z) = sup (z -z — ¢(2)).
z€R"
Since ¢ has the engulfing property, we know that ¢ is a strictly convex
differentiable function. By Theorem 26.5 in [11], we get that ¢* is also a
strictly convex differentiable function whose domain is V¢(R™) which, by
Lemma 6, equals R*. We also have

(6.14) Vo(Ve*(z)) = Vo' (Vop(r)) =z Vz € R",
(") = o,

and

(6.15) " (Vo(z)) = Vo(z) -7 — p(z) Yz eR",

(remark that (6.15) and (5.12) imply ¢*(Ve(z)) = ¢(z)).
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7. ON CAFFARELLI’'S C1'# REGULARITY RESULT

As mentioned in the Introduction, Caffarelli proved the C1# regularity

of any convex function ¢ € Eng(n, K). His proof is based on a compactness
argument that does not provide an estimate for 8 or the C# norm of ¢ on
compact sets. The task of finding the explicit size of these constants was
posed as an open problem in Villani’s recent book (see [12], pp. 141).
In [8], the authors got such estimates, in terms of K, through Theorem 5.
To illustrate the main idea, let us take a look at the case n = 1. Consider
¢ € Engy(1,K), |z| < 1, and denote by M(p,1) the maximum between
©(1) and @(—1). Then, by (5.8), we get p(z) < M(p,1)|z|' /5. On the
other hand, by (5.12), we have 0 < ¢/(z)z < (K + 1)¢(z). Consequently,
for every = with |z| < 1, we get |¢/(z)| < (K + 1)M(¢p,1)|z|"/X. Which is
the C'/K regularity of ¢' about 0. Before stating the general result some
notation is in order. Given a convex function ¢ € Eng(n, K),y € R", and
r > 0, set

M(¢,y,r) = max {¢(z) —¢(y) - Vo(y) - (z — )},

zilz—y|=r
and

m(¢,y,r) = min {$(z) = ¢(y) = Vé(y) - (z = y)}

z:|z—y|=r

Theorem 8. Let ¢ € Eng(n, K), ¢* € Eng(n, K*), and y € R*. For every
z € R" with |z — y| <r, we have

[Ve(z) — Vo(y)| .
|Z_y|1/1—|—K* SC(T,K,m( y?oa l)aM((Paya’r))a

where 1y is the convez conjugate to

Py(z) = p(z+y) —e(y) — Vo(y) - =.
Thus, Ve is in C# with 8 =1/1 4+ K* and K* = 2K (K +1).

8. FURTHER REMARKS

If the Monge-Ampere measure y, satisfies the (DC)-doubling condition
with constants C and «, then ¢ € Eng(n, K) with

K — 22— C
- n-+1 1— n
Qp ( Oé)

+1,

where wy, is the volume of the k-dimensional unit ball and a,, = n=3/2. In
the case A < det D?p < A, if we set o = 1/2 we get C = 2"A/\. These
constants can be easily followed up from [9].

Although we consider solutions to det D?¢ = y in R”, the main results in
this paper can be proved (after slight modifications) for solutions to the
Monge-Ampere equation in a bounded convex domain Q2 C R”.
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