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In this paper we prove convergence of adaptive finite element methods for second-order elliptic
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reasonable marking strategies, and starting from any initial triangulation.
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1. Introduction and Main Result

In many practical applications it is of interest to find or approximate the eigenvalues
and eigenfunctions of elliptic problems. Finite element approximations for these
problems have been widely used and analyzed under a general framework. Optimal
a priori error estimates for the eigenvalues and eigenfunctions have been obtained
(see e.g. the articles by Babuska and Osborn,** Raviart and Thomas,'” Strang and
Fix,?” and the references therein).

Adaptive finite element methods are an effective tool for making an efficient use of
the computational resources; for certain problems, it is even indispensable to their
numerical resolvability. A quite popular, natural adaptive version of classical finite
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element methods consists of the loop
SOLVE — ESTIMATE — MARK — REFINE,

that is: solve for the finite element solution on the current grid, compute the a posteriori
error estimator, mark with its help elements to be subdivided, and refine the current
grid into a new, finer one. The ultimate goal of adaptive methods is to equidistribute the
error and the computational effort obtaining a sequence of meshes with optimal com-
plexity. Historically, the first step to prove optimality has always been to understand
convergence of adaptive methods. A general result of convergence for linear problems
has been obtained by Morin, Siebert and Veeser,'® where very general conditions on the
linear problems and the adaptive methods that guarantee convergence are stated.
Optimality for adaptive methods using Dérfler’s marking strategy” has been proved by
Stevenson®! and Cascon, Kreuzer, Nochetto and Siebert® for linear problems.

The goal of this paper is to analyze the convergence of adaptive finite element
methods for the eigenvalue problem consisting in finding A € R, and u # 0 such that

-V (AVu) = ABu in ), u=0 on 0%,

under general assumptions on A, B and 2 that we state precisely in Sec. 2.1.

As we mentioned before, adaptive methods are based on a posteriori error esti-
mators, that are computable quantities depending on the discrete solution and data,
and indicate a distribution of the error. A posteriori error estimators for eigenvalue
problems have been constructed using different approaches by Verfiirth,?*** Lar-
son,'” and Durén, Padra and Rodriguez.® They have been developed for A = I and
B = 1, but the same proofs can be carried over to the general case considered here; see
Ref. 11 and Sec. 2.3. An important aspect to be mentioned here is that the upper
bound holds for sufficiently fine meshes. However, our proof will not rely on this
bound, allowing us to prove convergence from any initial mesh. The first result (and
only up to now) about convergence of adaptive finite elements for eigenvalue pro-
blems has been presented by Giani and Graham.!

The following is the main result of this article.

Theorem 1.1. (Main Result) Let A, and wu, be the discrete eigenvalues and
eigenfunctions obtained with the adaptive algorithm stated in Sec. 2.4 below. Then
there exists an eigenvalue \ of the continuous problem such that

lm Ay =X and  lim disty o) (w. M(V) =0,

where M(X) denotes the set of all eigenfunctions of the continuous problem corre-
sponding to the eigenvalue \.

Remark 1.1. Before proceeding with the details of the statement and the proof of
this result, we make some remarks:

e An important difference with previous works is that we do not require the initial
mesh 7 to be fine enough. Any initial mesh that captures the discontinuities of A
will guarantee convergence.
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The result holds for any of the popular marking strategies, not only Dorfler’s.” The
only assumption is that non-marked elements have error estimators smaller than
marked ones, see condition (2.16) in Sec. 2.4 below.

The marking is done according to the residual type a posteriori error estimators
presented in Sec. 2.3. Even though there are some oscillation terms in the lower
bound, we do not require any marking due to these terms. We only need to mark
according to the error estimators, which is what is usually done in practice.

The result holds with a minimal refinement of marked elements, one bisection
suffices. We do not require the enforcement of the so-called interior node property.
Giani and Graham'' prove an error reduction result between consecutive iterands,
which is stronger than our plain convergence result. Their proof assumes a suffi-
ciently fine initial mesh, relies on Dorfler’s strategy with a separate marking for
error and oscillation indicators, and enforces the interior node property. Such an
error reduction has been essential in proving quasi-optimality for linear pro-
blems.*"® Nevertheless, verifying that 7 is fine enough is not easy in practice, and
it is arguable if the separate marking could destroy optimality (see discussion in
Ref. 6). The interior node property is not such a strong requirement, but it has
been proved to be not necessary, at least for linear problems.’

We are assuming that each of the discrete eigenvalues )\, is the jth eigenvalue of
the corresponding discrete problem. The result, as stated above, only guarantees
that A, converges to one eigenvalue A of the continuous problem. We can be sure
that we approximate the jth eigenvalue of the continuous problem under any of
the following assumptions:

(a) No eigenfunction is equal to a polynomial of degree < ¢ on an open region of €2,
where ¢ denotes the polynomial degree of the finite element functions being
used. This is a Non-Degeneracy Assumption, and it holds for a large class of
problems; see Assumption 6.1 and discussion following it.

(b) The meshsize of the initial triangulation is small enough. This assumption goes
against the spirit of adaptivity and a posterior: analysis, since we cannot
quantify what small enough means. But we state it for completeness, because
in some (nonlinear) problems there may be no way to overcome this.

The proof follows similar ideas to those of Morin, Siebert and Veeser,'® with some
modifications due to the different nature of the problem. It consists of proving the
following steps:

(a) The full sequence of discrete eigenvalues converges to a number A\ and a
subsequence of the discrete eigenfunctions converges to some function u..

(b) The global a posteriori error estimator converges to zero (for the
subsequence).

(¢) The pair (A, us) is an eigenpair of the continuous problem. Due to a lack of a
sharp upper bound (it only holds for sufficiently fine meshes), it is necessary to
introduce a new argument to prove this (see Theorem 5.1). This new argument
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is perhaps the main difference with respect to Ref. 16, and we believe that the
idea can be useful for many other nonlinear problems.

The rest of the paper is organized as follows. In Sec. 2, we state precisely the
problem that we study, describe the approximants, mention some already known
results about a priori and a posteriori estimation, and state the adaptive loop. In
Sec. 3, we prove that the sequence { (A, uy) } sen, of solutions to the discrete problems
contains a subsequence that converges to a limiting pair (A, 4y, ). In Sec. 4, we prove
that the global a posteriori error estimator tends to zero; which is instrumental to
conclude in Sec. 5 that (A, us) is an eigenpair of the continuous problem. Finally, in
Sec. 6, we state and prove the main result and discuss its implications.

2. Problem Statement and Adaptive Algorithm

This section is subdivided into four parts. In Sec. 2.1, we state precisely the continuous
problem that we study and mention some of its properties. In Sec. 2.2, we state the
discrete problems that we consider as approximants to the continuous one, mention
some of its properties and state the a priori error estimates. In Sec. 2.3, we define the
a posteriori error estimators that we use, state the upper bound and prove the discrete
local lower bound that we will use in our convergence proof. Finally, in Sec. 2.4, we state
the adaptive algorithm together with the assumptions on each of its blocks.

2.1. Setting

Let Q C R? be a bounded open set with a Lipschitz boundary. In particular, we
assume that 2 is a polygonal domain if d = 2 and a polyhedral domain if d = 3. Let
a,b: Hy(Q) x Hj () — R be the bilinear forms defined by

a(u,v) := /.AVU~V1}
Q

and

b(u,v) = /Buv,
Q

where A is a piecewise W1>(Q) symmetric-matrix-valued function which is uni-
formly positive definite, i.e. there exist constants a;, ap > 0 such that

0] < A(z)é- £ < wle]?, VEeRY, VzeQ,
and B is a scalar function such that
by < B(z) < by, Vzel,

for some constants b, by > 0.
We also define the induced norms by these bilinear forms as

[ollo = a(v, )%, ve Ho(Q) and o], := b(v,0)"?, we L*(Q).
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By the assumptions on A and B, || - ||, ~ || - HH&(Q) and || - ||y = || - |lq, i-e. there exist
positive constants ¢, ¢y, c3, s such that

allollgyo) < lvlla < eollvllgy)y, Vo€ Ho(€),

and

allella < llolls < eallolla, Vo€ I2(9).
Where, hereafter, || - || z1(q) = || - | (o) and if A C &, || - [|4 denotes the L?(A)-norm,
ie.

1/2
o= (1) and Hollmn = (ol -+ 19000

We consider the following:
Continuous eigenvalue problem. Find A € R and u € H{(Q) satisfying

{ a(u,v) = Ab(u,v), Vve H(Q),

ully = 1. 21)

It is well known® that under our assumptions on A and B, problem (2.1) has a
countable sequence of eigenvalues

and corresponding eigenfunctions
Uy, U9, U3y« -«

which can be assumed to satisfy

1 i=j
o) =0y = {0 i# 3,
where in the sequence {A;} jen, the A; are repeated according to geometric multi-
plicity.
Also, the eigenvalues can be characterized as extrema of the Rayleigh quotient

R(u) = Z(%Z; , by the following relationships.

o Minimum principle:

A= min R(u) =R(w),
ueH(Q)

A= min R(u) = R(u;), j=2,3,....
weH, (Q)
a(u, u;)=0

o Minimum—Mazimum principle:

Aj= min maxR(u) = max  R(u), j=12,....
V,CHy(Q) ueV; u€span{uy ..., u; }
dimV;=j
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For each fixed eigenvalue A of (2.1) we define
M(\) := {u € Hj(Q) : u satifies (2.1)},

and notice that if A is simple, then M()) contains two functions, whereas if A is not
simple, it consists of a sphere in the subspace generated by the eigenfunctions.

2.2. Discrete problem

In order to define the discrete approximations we will consider conforming triangu-
lations 7 of the domain 2, that is, partitions of €2 into d-simplices such that if two
elements intersect, they do so at a full vertex/edge/face of both elements. For any
triangulation 7, S will denote the set of interior sides, where by side we mean an edge
if d =2 and a face if d = 3. And x; will denote the regularity of 7, defined as

diam(T)
Kr = max————,
TeT Pr

where diam(7T) is the length of the longest edge of T, and pr is the radius of the
largest ball contained in it. It is also useful to define the meshsize hy := maxpcrhyp,
where hyp = | T|Y/4.

Let ¢ € N be fixed, and let V be the finite element space consisting of continuous
functions vanishing on 92 which are polynomials of degree < £ in each element of 7,
ie.

Vyi={ve Hj(Q):v|p € P(T), VT €T}
Obviously, V7 € H(Q) and if 7, is a refinement of 7, then V; C V.

We consider the approximation of the continuous eigenvalue problem (2.1) with
the following

Discrete eigenvalue problem. Find Ay € R and uy € V7 such that

{ a(ur,v) = Mg b(ur,v), VYveVr, (2.2)

Juzly = 1.

For this discrete problem, similar results to those of the continuous problem hold.*
More precisely, problem (2.2) has a finite sequence of eigenvalues

O<Mzr<Xr<XNr < <Ay,
where N7 := dim V7, and corresponding eigenfunctions
Uy, U7, U3 Ty UN, T
can be assumed to satisfy

b7, u;7) = 6y
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Moreover, the following extremal characterizations also hold:

o Minimum principle:

A7z = min R(u) = R(uy 1),

ueVy

Aj"]' = min R(’LL) = R(’(Ljﬂ'), ] = 2, 3, ey NT'

ueVr

o Minimum—Mazimum principle:

Ajr = min  max R(u) = max R(w), j=1,2,...,Nr.
VirCVy u€Vir uEspan{uy r,...,u; 1}
dimV,;=j

It follows from the Minimum—Maximum principle that
)\jg)\j,'fa j:1727"'7NT

and it also follows that if 7, is any refinement of 7, then
A],ISA‘%T? j:1727"'?NT'
For a given eigenvalue A we define a notion of minimal error of approximation of

its eigenfunctions by

er(A) == sup inf [lu— x|,
ueM(n) X€Vr

For j=1,2,..., N7, there holds that
2
N — Ay Ser(Ag),

where, from now on, whenever we write A < B we mean that A < CB with a constant
C that may depend on A, B, the domain §2 and the regularity x; of 7, but not on
other properties of 7 such as element size or uniformity.

If {7}}4en, is any sequence of triangulations such that supjcy, kg < oo, and
hz — 0 as k — oo, then

ez(A) =0, ask— oo,

and therefore,

as k — oo. (2.3)

This holds for any j € N and it is a consequence of standard interpolation estimates
and the fact that M();) is bounded and contained in a finite-dimensional subspace of
Hi ().

2.3. A posteriori error estimators

A posteriori estimates for eigenvalue problems have been studied by Larson,"
Durén, Padra and Rodriguez,® and Giani and Graham.'" In this section we present
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the residual type a posteriori estimates for eigenvalue problems, state without proof
some already known properties and prove the discrete local lower bound that will be
useful for our convergence proof.

In order to define the estimators, we assume that the triangulation 7 matches the
discontinuities of A. More precisely, we assume that the discontinuities of A are
aligned with the sides of 7. Observe that in particular, A|; is Lipschitz continuous
forall T e T.

Definition 2.1. (Element residual and jump residual) For y € R and v € V we
define the element residual R(u, v) by

R(p,v)|r := =V - (AVv) — pBuv, (2.4)
for all T € 7, and the jump residual J(v) by
J(v)|s == (AVV)|7, -n; + (AVY)|7, - ny, (2.5)

for every interior side S € S, where T} and T, are the elements in 7 which share S
and n; is the outward normal unit vector of 7; on S, for i=1,2. We define

J(v)]pq := 0.

Definition 2.2. (Local and global error estimator) For u € R and v € V7, we define
the local error estimator ny(u, v; T') by

17 (1, 0 T) = b7 || R(w, v)[| 7 + bl T (0) | 32
for all T € 7, and the global error estimator 77 (u, v) is given by

2 2
nr(p, v) = Z nz(p, v; T).
TeT
Even though we will not need it for the convergence proof, we include the state-
ment of the upper bound of the error in terms of the a posteriori error estimation, for
the sake of completeness, which holds for simple eigenvalues.

Theorem 2.1. (Upper bound) Let j € N, and let uy be an eigenfunction corres-
ponding to the jth eigenvalue Ay of the discrete problem (2.2), then if hy is small
enough, there exists an eigenfunction u corresponding to the jth eigenvalue A\ of the
continuous problem (2.1) such that

lu — urlle Snr(Ar, ur).

The proof of this theorem can be obtained following the steps given in Durén,
Padra and Rodriguez,® by extending Lemmas 3.1 and 3.2 presented there for the
model problem with A = I and B = 1, to the general case that we consider here, using
the following regularity result, and the a priori bound stated in Theorem 2.2 below.

Lemma 2.1. (Regularity of the eigenfunctions) There exists r € (0,1] depending
only on Q) and A such that

u€ H'(Q),
for any eigenfunction u of the problem (2.1).
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Proof. This can be proved by observing that if u is an eigenfunction, then it is also a
solution to a linear elliptic equation of second order with right-hand side in L?(f2).
We know that r =1 when A is constant or smooth and € is convex. The case in
which € is non-convex has been studied in Ref. 5 and the case of A having a
discontinuity across an interior interface in Ref. 2. For the general case, which we are
considering here, see Theorem 3 in Ref. 14. O

The following result is an a priori estimate relating the errors in the strong and
weak norms associated to the problem, and it is the last slab in the chain necessary to
prove Theorem 2.1. The case A = [ and B = 1 can be easily obtained from the results
in Refs. 22 and 17. The general case was presented in Refs. 11 and 10.

Theorem 2.2. Let the same assumptions of Theorem 2.1 hold. Then, if hy is small
enough, there exists an eigenfunction u corresponding to the jth eigenvalue X\ of the
continuous problem (2.1) such that

lu = urlly S hrlle — urllo

The next result, which we will need for our proof of convergence is the discrete
local lower bound, whose proof follows that of the continuous lower bound in Ref. 8
but in order to make this paper more self-contained we will include it here.

For § € S we define wr(S) as the union of the two elements in 7 sharing S. For
TeT Ny (T):={T' €T :T'NnT+# 0} denotes the set of neighbors of T'in 7, and
wr(T) :=Upen,(n)T"- We also define n; :=3 if d =2 and n, := 6 if d = 3. This
guarantees that after n, bisections to an element, new nodes appear on each side and
in the interior. Here we consider the newest-vertex bisection in two dimensions and

the procedure of Kossaczky in three dimensions.'®

Theorem 2.3. (Discrete local lower bound) Let T €7 and let 7T, be the
triangulation of 0 which is obtained from T by bisecting ny times each element of
N (T). Let \y and ur be a solution to the discrete problem (2.2). Let W be a
subspace of Hi(Q) such that Vi CW. If p € R and w € W satisfy

{ a(w, v) = pb(w,v), YveW,
lJwlly = 1,

then

nr(Arsur; T) SIV(w = ur) o, r) + Brllpw — Arur|le, ()
i S
+hp|R =Ry + b 7IT = Tllor,

where, for every T' € N'7(T), R|p is the L>(T')-projection of R := R(\r, ur) onto
Py_1, and for every side S C AT, J | g is the L*>(S)-projection of J := J(uz) onto Py_;.
Proof. We first analyze the element residual. We obviously have

IRz <Rz + IR~ R]7. (2.6)
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Let 2% denote the vertex of 7, which is interior to T. Let ¢ be the continuous
piecewise linear function over 7, such that o (2%") = 1 and ¢ vanishes over all the
other vertices of 7,. Then

B35 [ Bror= [ R@or) = [ REer)+ [ @-RRer 21

If we define v := Ry € V7 C W, taking into account that v vanishes over 07, for
the first integral in (2.7) we have

/R’U —/ AV'U,T) )\TB’U/]')’U
= /AVUT-VU—/)\TBUTU
T T
= /AVUT-VU—/)\TBuTv—/AVw-Vv—i—/quv
T T T T

= /AV(UT —w)-Vo+ /B(uw — Arugr)v
T T

S IV(ur = )| 2l[Vollr + [[pw = Arug|zl|v] -

For the second integral in (2.7) we have
/T(E — R)Rer < |[RerllzllR — Blr < [Rll7|R - Rl|7.

Therefore, taking into account that ||[Vo|7 < hLT||11||T and [|v]|y < ||R| 7 we can
write

||RH2T<||V(T_U))HT HRIIT+Huw Arurllr|R 7 + Rl 7lIR — Rl 7,

and then

he|Rlr SIV(ur — w)ll 7 + hellpw = Arurllz + he|R = R 7. (2.8)
Now, from (2.6) and (2.8) it follows that

hel|Rllr S|V (ur — w)llz + hollpw — Arurllr + hel|R = R|| 1. (2.9)
The same bound holds replacing T by T”, for all T/ € N'7(T).

Secondly, we estimate the jump residual. Let S be a side of T" and let T} and T,
denote the elements sharing S. Obviously, one of them is T itself. As before we
proceed by bounding first the projection J of J, since

1lls < 1Tl + 1.7 = T |Is- (2.10)

Let 22 denote a vertex of 7, which is interior to S. Let ¢g be the continuous
piecewise linear function over 7, such that pg(z") = 1 and ¢g vanishes over all the
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other vertices of 7,. Then
713 < /g (TVps = /g T (Ts) = /S I(Ts) + /S 7 — I (2.11)

Now, we extend J to w7 (S) as constant along the direction of one side of each Tj,
for i = 1,2, and still call this extension .J . Observe that J is continuous on wy(.S) and
J|7, € Pry(Ty), for i=1,2.

Since v:=Jypg € V7 C W and taking into account that v =0 on d(wz(S)), for
the first integral in (2.11) we have

/Jv: / vAVur -n; = /V (vAVur)
s i=1,2/9T: i=1,2

= (/ AVur - Vv+/ AV (AVuﬂ)
i= 12 T;

+/ uBwv — AVw - Vo
T,UT, T\UT,

= 2;2 (/TLAV(U/I —w)-Vo+ /Ti(V - (AVur) + qu)v)

i=

= [Jﬂs)Av(uT —w)-Vo+ Z (/ RUJF/T,B(HM AT“T)”)

i=1,2

S AV (ur = )l ) IVl s)

+ 1R llwrs)l1Vllwr(s) + [l1w = Azuzllops)lvllor(s)-
For the second integral in (2.11) we have
[0 = 9705 < 1T esllllT = Il < ITsIT = Tl
Hence, taking into account that ||Vul|,, (s < hT N0llor(5)> 1Vllwrs) < I |y (s) and
T o (5) S h1/2||J||5 we can write
—1/2)7 12,7
7113 S 1V (ur = )y b I s + 1Rl s p I Il
12,5 11T
+lpw = Apurlloy s h 71T s + 1T 11T = Jls,
and then, using (2.10) it follows that
1/2
hi 1T ls S IV (ur = w)llures) + Aol Bl
+hrlluw = Mrurll ) + WHJ Ils.
Adding this last inequality over all S C 0T, we obtain
B2
21 lor S IV (ur = w)lurcr) + hrlRlluyr)
+hllw = Aur|lur) + th/?nJ ~Tllor.
The claim of this theorem follows by adding this last inequality and (2.9). O
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The next result provides a bound for the oscillation terms, that will be useful to
obtain the bound of Corollary 2.1, which is what will be effectively used in our

convergence proof.

Lemma 2.2. Under the assumptions of Theorem 2.3 there holds
hel R =Rluyry + b 20T = Tllor S hr(2+ Ap) lurll anwp ry)-
Proof. [1] We first consider the term corresponding to the element residual.
|IR=R|p = |-V (AVur) = At Bug +V - (AVur ) + ABur |7

< |l = V- (AVur) + V- (AVur)|lr + [Ar(Bur —Bur)|r,  (2.12)

where, as before, the bar denotes the L?(T)-projection onto P,_;(T).

Let AT = (A]) denote the mean value of A = (A;) over the element T, and note
that V- (ATVur) =V - (ATVus). Thus, for the first term on the right-hand side
of (2.12) we have

| =V - (AVur) + V- (AVur )| 1
IV (AT = A)Vur) = V- (AT = A)Vur)|

< (V- (AT = A)) - Vur — (V- (AT —A)) - Vur|r
+ (AT — A) : D*uy — (AT — A) : D2uy ||
< (V- (AT = A)) - Vur|r + (AT = A) : D*url|r

A

S MlwelIVurllz + AT = All g (7)1 D* g || -
Since [|[AT — Al ~(1) S hrllAllwy (1), an inverse inequality leads to

| =V (AVur) + V- (AVur)|r < ||A||W§O(T)||VW||T + hT”-AHWO{(T)”DQUTHT

S IVur|r.
For the second term on the right-hand side of (2.12) we have
A7 (Bur —Bug )|z < [AMrBurlz SAzlluzllr,
and therefore,
IR =R 7 <+ A)urllm -
The same estimation holds for all elements in A'7(T), and consequently,
hrl|R =Ry, () S hr(1+ Ap)ur o, (y)- (2.13)

Next, we analyze the jump residual. Let S be a side of T and let T} and T, denote
the elements sharing S. Again, if the bar denotes the L?(S)-projection onto P,_;(S),
it follows that

7= Tlls = Z(AVUT)|T, ‘= Z(AVUT)M ‘n;

i=1,2 i=1,2

S
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Using that (ATiVur)|r -n; = (AT:Vur)|r, -n; we have

1] =Tls = (A= AT)Vugr)|7,-n;— Y (A —AT)Vur)lr, -1,
=12 i=1.2 s
< (A= AT)Vur)|r, - n;
i=12 5
<Y A= AT)Vug)|g, - nylls
i—12
< Iz = AT s IVurl 7 s
=12
~1/2
S > bl Al kg Pller i,
i=1,2
1/2
S Azl oy )
Therefore,
RPN =T llor Sh 2.14
7 lor < T||UT||H'(wT(T))- (2.14)
Adding (2.13) and (2.14) we obtain the claim of this lemma. O

As an immediate consequence of Theorem 2.3 and Lemma 2.2 the following result
holds.

Corollary 2.1. (Lower bound) Under the assumptions of Theorem 2.3 there holds

nr(Arsur; T) SV (w — ug) |y ) + Rrllpwllo,(ry + he(1+ A0zl g1 wr (1))-

2.4. Adaptive loop

Our goal is to use an adaptive method to approximate the jth eigenvalue and one of
its eigenfunctions, for some fixed j € N. From now on, we thus keep j € N fixed, and
let A denote the jth eigenvalue of (2.1) and u an eigenfunction in M ().

The algorithm for approximating A and M()\) is an iteration of the following main
steps:

(1) (Ap, up) := SOLVE(V}).

(2) {ne(T)} reg := ESTIMATE(A;, wy, Ty).
(3) My, := MARK({ny(T)} re, i)

(4) Ti.1 := REFINE(7;, M), increment k.

This is the same loop considered in Ref. 16, the difference lies in the building
blocks which we now describe in detail.
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If 7, is a conforming triangulation of 2, the module SOLVE takes the space
Vi, := Vg as input argument and outputs the jth eigenvalue of the discrete pro-
blem (2.2) with 7" = 7;, i.e. A, := ), 7, and a corresponding eigenfunction u; € V.
Therefore, A, and wu;, satisfy

{ a(uy, vp) = A b(ug, v), Vv, €V,

(2.15)
[Jugllp = 1.

Given 7, and the corresponding outputs A, and wu; of SOLVE, the module
ESTIMATE computes and outputs the a posteriori error estimators {n;(7T)} rez,
where

Ne(T) == ng (N, ug; T).

Based upon the a posteriori error indicators {7;(7T)} ez, the module MARK
collects elements of 7, in M. In order to simplify the presentation, the only
requirement that we make on the module MARK is that the set of marked elements
M, contains at least one element of 7}, holding the largest value of estimator. That is,

max

there exists one element T}"* € M, such that
T = (T).
n(Ti™) = maxn(T)

Whenever a marking strategy satisfies this assumption, we call it reasonable, since
this is what practitioners do in order to maximize the error reduction with a mini-
mum effort. The most commonly used marking strategies, e.g., Mazimum strategy
and FEquidistribution strategy, fulfill this condition, which is sufficient to guarantee
that

1/2
T € T\M,, = 1i(T) Smu(My) = ( > m?(T)> : (2.16)

TeM;

This is slightly weaker, and is what we will use in our proof. The original Dorfler’s
strategy also guarantees (2.16).

The refinement procedure REFINE takes the triangulation 7; and the subset
M, C T, as input arguments. We require that all elements of M, are refined (at least
once), and that a new conforming triangulation 7;_, of 2, which is a refinement of 7,
is returned as output.

In this way, starting with an initial conforming triangulation 7, of Q and iter-
ating the steps (1), (2), (3) and (4) of this algorithm, we obtain a sequence of
successive conforming refinements of 7, called 7;,7,,... and the corresponding
outputs (Mg, ug), {1;(T)} reg, M; of the modules SOLVE, ESTIMATE and MARK,
respectively.

For simplicity, we consider for the module REFINE, the concrete choice of the
newest vertex bisection procedure in two dimensions and the bisection procedure of
Kossaczky in three dimensions.™ Both these procedures refine the marked elements
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and some additional ones in order to keep conformity, and they also guarantee that

K = supkg < 00,
keN,
i.e. {7;} jen, is a sequence shape regular of triangulations of (2. It is worth mentioning
that we do not assume REFINE to enforce the so-called interior node property, and
convergence is guaranteed nevertheless, this is an important difference with respect
to Ref. 11.

Regarding the module MARK, we stress that the marking is done only according to
the error estimators; no marking due to oscillation is necessary, this is another
important difference with respect to Ref. 11, where the set of marked elements has to
be enlarged so that Dorfler’s criterion is satisfied not only by the error estimators,
but also by the oscillation of the current solution wuy,.

3. Convergence to a Limiting Pair

In this section we will prove that the sequence of discrete eigenpairs { (g, u;)} ren,
obtained by SOLVE throughout the adaptive loop of Sec. 2.4 has the following
property: A, converges to some \,, € R and there exists a subsequence {ukm}mel\l0 of
{ug} ren, converging in H'(Q) to a function u,..

—— Y0}
Let us define the limiting space as V, := UV, Hol ), and note that V is a closed

subspace of H{ (2) and therefore, it is itself a Hilbert space with the inner product
inherited from H ().

Since 741 is always a refinement of 7;, by the Minimum—Maximum principle
{ Ak} ren, is a decreasing sequence bounded below by A. Therefore, there exists A, > 0
such that

AN\ oo
From (2.15) it follows that
Huk||121 = a’(ulm uk) = Akb(’u’lm uk) = )‘kHuk”% = )‘k - )‘ooa (31)

and therefore, that {u}cn, is a bounded sequence in V. Then, there exists a

subsequence {“km}meNo weakly convergent in V_ to a function u,, € V, so

— oy in Hy(Q). (3.2)

m

3

Using Rellich’s theorem we can extract a subsequence of the last one, which we still
denote {u } such that

meNy?

W, — Uy in L2(€2). (3.3)

If ky € Ny and k,, > &, for all v, € V; we have that a(uy, ,vy) = Ay, b(uy, , vy, ),
and when m tends to infinity, we obtain that a(us,vy,) = Ao b(Us, vy, ). Since
ky € Ny and vy, €V, are arbitrary, we have that

a(Uso, V) = Ao b(Usg, v), Vv €E V. (3.4)
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On the other hand, since that [uy ||, =1, considering (3.3) we conclude that
llusolly = 1. Now, taking into account (3.4) we have that

||uoc||(2z = )\DOHU’OOH% = )‘00'

2 _
a_>‘k

Vi

From (3.1) it follows that ||u,
together with (3.2) yields

— Ay, and therefore, ||u;, ||, — ||toolle- This,

m

U — Uy, N H(Q).
Summarizing, we have proved the following:
Theorem 3.1. There exist A, € R and uy, € V, such that
a(Uno, V) = Ao B(Use, v), Vv EV,
{ [ty = 1.

Moreover, Ay, = limy,_,, A}, and there exists a subsequence {u, },,cn, of {ur}ren, such
that

U, — Uy, N Hy(Q).

Remark 3.1. It is important to notice that from any subsequence {(A;, ,u; )}
of {(Ar, up)}ren,, We can extract another subsequence {(Ar ,ur, )}, €Ny’
u, —converges in H 1(Q) to some function ., € V., that satisfies

{a(ﬂomv):/\oc b(ﬁooav)a VUEVOO,
[ollp = 1.

meN,

such that

4. Convergence of Estimators

In this section we will prove that the global a posteriori estimator defined in Sec. 2.3
tends to zero. We will follow the same steps as in Ref. 16, providing the proofs of the
results that are problem dependent. Those geometrical results that are consequences
of the fact that we are only refining will be stated without proof, but with a precise
reference to the result from Ref. 16 being used.

In order not to clutter the notation, we will still call {u;} ey, to the subsequence
{ur, Yomen,» and {7} ren, to the sequence {7;, },cy, - Also, we will replace the sub-
script 7 by k (e.g. Ni(T) :=N7(T) and wy(T) := wz(T)), and whenever Z is a
subset of 7;, ni(Z) will denote the sum 3" ez nf(T).

The main result of this section is the following:

Theorem 4.1. (Estimator’s convergence) If {7;}cn, denote the triangulations
corresponding to the convergent subsequence of discrete eigenpairs from Theorem 3.1,
then

Jim nk(Zy,) = 0.
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In order to prove this theorem we consider the following decomposition of 7,
which was first established in Ref. 16.

Definition 4.1. Given the sequence {7} }cp, of triangulations, for each k € N, we
define the following (disjoint) subsets of 7j.

o T, :={T €T, : T'is refined at least n, times, for all 7" € N'(T)};
o 7,7 :={T €T : T is never refined, for all 7" € N\ (T)};
. 0 = T\(TPUT).

We also define the three (overlapping) regions in :
o O) = UTG/Z;U wi(T);

o Q) = UTeTk+ wi(T);
o Q= Ureg wi(T).

We will prove that 7,(7,0),7:(7) and 7,(7,") tend to zero as k tends to
infinity in Theorems 4.2, 4.3 and 4.4. Since n7(7;) = (7)) + ni(T,.Y) + ni(T,),
Theorem 4.1 will follow from these results.

Definition 4.2. (Meshsize function) We define hy € L>°(Q2) as the piecewise
constant function

hylp =TIV, VT e,

For almost every z € Q there holds that hj(z) is monotonically decreasing and
bounded from below by 0. Therefore,

hoo(z) := klim hy ()
is well-defined for almost every = € 2 and defines a function in L*(€2). Moreover, the
following result holds, see Lemma 4.3 and Corollary 4.1 in Ref. 16.

Lemma 4.1. The sequence {h;} ey, converges to h, uniformly, i.e.
,}ijgo”hk — heoll =) = 0,

and if Xq! denotes the characteristic function of 9, then

]}E&HthQQHL%(Q) =0.

This lemma is a consequence of the fact that the sequence of triangulations is
obtained by refinement only, and that every time an element T € 7}, is refined into
Tty by (2) < (3)Y 40y (2) for almost every z € T But it is otherwise independent of
the marking strategy. The next result is also independent of the marking strategy, it
is just a consequence of the fact that u, — u.,, the lower bound and the convergence
of ||thQ(k)||Loc(Q) to zero.

Theorem 4.2. (Estimator’s convergence: First part) If {7;}cn, denote the trian-
gulations corresponding to the convergent subsequence of discrete eigenpairs
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from Theorem 3.1, then the contribution of T, to the estimator vanishes in the
limit, i.e.

Jim ny(7;7) = 0.
Proof. Using Corollary 2.1 with W =V _, w = u,, and 4 = \,, we have that
n(T) = mi(T)
TeT

S Z IV (u — uoc)”ik(T) + h2TH>\ooUoo||ik(T) +h7(1 +>‘k)2||uk”§{1(wk(T))
TeT,”

SNV (ug— o)1+ HthQg||%m(Q)(||>\oouoo||522+ (1 +)‘k)2||uk||%ll(ﬂ))-

Since A\ — Ay in R and u, — u,, in H'(Q), Lemma 4.1 implies the claim. m|

The following lemma was proved as the first step of the proof of Proposition 4.2 in
Ref. 16, it is also a consequence of the fact that the sequence of triangulations is
obtained by refinement, without coarsening, and it is independent of the specific
problem being considered.

Lemma 4.2. If Q7 is as in Definition 4.1, then

klim Q% = 0.
From Corollary 2.1, Lemma 4.2 and the fact that u; — u,, we obtain

Theorem 4.3. (Estimator’s convergence: Second part) If {7}y, denote the tri-
angulations corresponding to the convergent subsequence of discrete eigenpairs from
Theorem 3.1, then the contribution of T, to the estimator vanishes in the limit, i.e.

lim 7,.(7;") = 0.
k—o00

Proof. Let (), u) be any eigenpair of (2.1). Then Corollary 2.1 with W = H(Q),
w = u, and y = A\ implies that

ni(T) = > ni(T)
TeT.”

SO IV = w12,y + REINZ, ) + B+ A2l T oy 7))
TeT,”

IV (g = )1y + N2l + (1 + X0 wgll 7y
IV (g = wso) 18 + 1V (o — w)|

?z; +/\2||U||?1;
+ (14 ) [l — Uoo||§11(sz) +(1+ >‘k)2||uoo||%11(£l};)'

Taking into account that A\, — A\, in R, u; — uy in HY(2) and Lemma 4.2, the
claim follows. O



Convergence of Adaptive Finite Element Methods for Figenvalue Problems 739

In order to prove that the estimator contribution from 7, vanishes in the limit,
we make the following

Definition 4.3. Let 7' be the set of elements that are never refined, i.e.

7 =UN T

k>0 m>k

and let the set QT be defined as

QF = U T.

TeT+

It is interesting to observe at this point that

Lemma 4.3. The set Q% is empty if and only if lim;,_ || hy[ =) = 0.

Proof. If Q" is empty, then Q; and Qj are empty for all k € Ny, and ||yl <) =
||h;§|\Lx(Qg> which tends to zero by Lemma 4.1. Conversely, if limy_,[|h|| 1<) = 0,
then Q% must be empty, otherwise there would exist 7' € 7+ and for all £ we would
have || hyl| =) > | T|M. a

This lemma, as Lemma 4.1, is just a geometric observation, and a consequence of
the fact that the sequence of triangulations is shape regular and obtained by
refinement, but it is independent of the particular problem being considered.

As an immediate consequence of Definition 4.3, and Lemma 4.1 in Ref. 16, we have
that

7= 7"

k>0

Remark 4.1. Theorems 4.2 and 4.3 hold independently of the marking strategy. In
the next theorem, we will make use for the first time of the assumption (2.16) done on
the module MARK.

Theorem 4.4. (Estimator’s convergence: Third part) If {7;},cn, denote the
triangulations corresponding to the convergent subsequence of discrete eigenpairs
from Theorem 3.1, then the contribution of T, to the estimator vanishes in the
limit, i.e.

lim 77,,(7;,7) = 0.

k—o0
Proof. Let T € 7, then there exists k, such that T' € 7, for all k > k;. Taking into
account that all marked elements are at least refined once, we have that T ¢ M,.

From assumption (2.16), 7;(7T) <ny(M,). Since M, C 7,7 UT,?, Theorems 4.2
and 4.3 imply that

ne(T) Sni(My) < (TF) + i (T) — 0.
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We have thus proved that
ni(T) — 0, forall TeT™.

Now, we will prove that, moreover,

> ni(T) —o.

TeT*
To prove this, we resort to a generalized majorized convergence theorem. We first

define

1
- mnf(T), forall T € 7;", and € :=0, otherwise.

Then ZT67+ ni(T) = [oer(r)dz, and €(z) — 0 as k — oo for almost every z € (.
It remains to prove that Jaer(z)dz — 0 as k — oc.

Let k be fixed. Due to the definition of 7,7, for T' € 7, we have that w;(T) =
w;(T) for all j >k, and we can drop the subscript and call this set w(7"). Using
Corollary 2.1 we have that if (A, u) is any fixed eigenpair of (2.1),

i (T) SNV (we — w12y + IAull 2oz + (1 + M) 2wl F oy
SV —u )”i(T + ”vuoo”i(T) + ||VU||3J(T) + H)‘UHZ;(T)

6k|T

+ (14 Xo)?[|ug — uoo”H' () + (1 + /\O)QHUOOH%J'(LU(T))
S (14 20)2(lup = uscll ooy + €7)5

where
o= ool oy + Nl 20y + IV )l 2y
and fulfills
> h S sl + IMulld + [Vl § < oc. (4.1)
TeT,"

Let now M, be defined by

C ) )
thoo ¢ + ) fi 117Te T+7
Myl =< |T| (e = vl o ry) + €7) or a p
My, :=0, otherwise,

where C'is chosen so that 0 < ¢;(z) < M;(z), for all z € Q. If we define
¢
M| —cfr |T| forall TeTt, and M :=0, otherwise,

then

[ @) - )| o
= Y i) - M@l dor 3 [ M) - M) do

TeTH\T,* TeT*
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.S / M) drt+ C Y N — el oy

TeT\T," TeT,t
<cC 24 Clluy, — us|| 3
~ T k e} HI(Q)'
TeT\T,*

The terms on the right-hand side tend to zero when k tends to infinity, due to (4.1)
and the fact that u; converges to u., in H{ (). Therefore,

M, — M, in L'(Q").

Hence, using that €,(z) — 0, for almost every z € , we can apply a generalized
majorized convergence theorem® to conclude that

BT = 3 w1 = [ alode—o

TeT,*

as k — oo. O

We have proved in this section that 7;(7;,) — 0 as k — oco. In the next section we
will use this result to conclude that (A, us) is an eigenpair of the continuous
problem (2.1).

5. The Limiting Pair is an Eigenpair

In this section we will prove that (A, us) is an eigenpair of the continuous
problem (2.1). The idea of Morin, Siebert and Veeser'® to prove that u., is the
exact solution to the continuous problem, consisted in using the reliability of the
a posteriori error estimators, that is, the fact that the error in energy norm is bounded
(up to a constant) by the global error estimator. Such a bound does not hold in this
case unless the underlying triangulation is sufficiently fine (see Theorem 2.1). We do
not enforce such a condition on the initial triangulation 7, since the term sufficiently
fine is not easily quantifiable. Instead we resort to another idea, we will bound
a(Usg, V) — Ao D(Us, v) by the residuals of the discrete problems, which are in turn
bounded by the estimators, and were proved to converge to zero in the previous section.

Theorem 5.1. The limiting pair (A, Us,) of Theorem 3.1 is an eigenpair of the
continuous problem (2.1). That is,

{ a(uoov 1}) = )‘ocb(uocv ’1))7 Vve H(}(Q)v
[[usolly = 1.

Proof. We know that ||uy||, = 1 due to Theorem 3.1. It remains to prove that

0t v) = e (U, 0), V0 € Hy ().
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Let v € H}(Q), and let v, € V; be the Scott—Zhang interpolant'®* of v, which

satisfies

1/2
lo = vell 7 S bl Volluyr) and [l —villor S RF2IVolluyr)

From (2.15) we have

a(ug, vi) = Apb(uy, vi),

for all &, and then

|a(tog, v

= |a(u

<

la(ug, v — vy,

- >‘oob(u:>o, 1})|

;) = Moo Do, v) — alug, vg) + Apb(uy, vg)]

- A (uka U= Uk‘) + b()‘kuk - )‘oouoov U) + a(uoo — Uy, U)|

) — Axb
la(ug, v — v3) — Apb(ug, v — vg)| + [b(Apu, — AsgUso, V)| + |a(us — ug, v)].

(5.1)

The second term in (5.1) can be bounded as

|b(/\kuk - Aoouom U)| = p‘kb(uk = Uno, U) + ()‘k - /\oo)b(uooa U)‘

A

< ARl10(ur = toc, 0)[ 4 [Ax = Acc[b(teg, 0)]
S Aollur = uscllallvlle + 1Ak = Ascllltacllo 1ol
<

(Nollur, — usollo + [ A = Asol s [l0) 0]l

And the third term in (5.1) is bounded by

|a(ts = g, 0)| SV (tee = we) |l V0lla-

Finally, the first term in (5.1) can be bounded following the steps of the proof of
the a posteriori upper bound, as follows:

|G/(Uk, i
= /AVuk ’U—’Uk Ak/Buk ’U—’Uk
TeT,

= / (AVuy,) — A Buy) (v — v) + / (v—v) AV -n
TeT,

= TET/ Ay ug) (v — ) + 2[) (v—vp)J () |,

—A b(“k? k)|

orT

1

with R(Ay, u;) and J(uy,) as defined in (2.4) and (2.5). Now, by Hélder and Cauchy—
Schwarz inequalities we obtain

la(ug, v — o) — Apb(ug, v — vy)]

< Z R wi)ll zllv = vell 7 + ([T (wi) [[or|lv — villor
TeT,
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< SR w)llrha IV lluycry + 1T wllorh i [V elluy o
TeT,

1/2
S <Z hTl| RO, w)l| 7 + hT||J(U1c)||0T> Volla

TeT,
= m(T) [V ]|q-

Summarizing, we have that

|a(Use, v) = Ao b, 0)| S (1 + Ao)[|ug — ol 1)
+ Ak = Ascllluscllo + 16 (T 0] 71 () -

Using the convergence of u;, to u., in H'(Q) and A, to Ay, in R from Theorem 3.1, and
the convergence of the global estimator to zero from Theorem 4.1, we conclude that

‘a’(uooa ’U) - )‘OOb(uooa ’U)‘ = Oa

and the proof is complete. O

6. Main Result and Concluding Remarks

We conclude this paper by stating and proving our main result, which is a con-
sequence of the results in the previous sections, and discussing its strengths and
weaknesses.

Theorem 6.1. Let {(\g, ug)}ren, denote the whole sequence of discrete eigenpairs
obtained through the adaptive loop stated in Sec. 2.4. Then, there exists an eigenvalue
A of the continuous problem (2.1) such that

klim Ar=A and klim dist 71 (ug, M(A)) = 0.

Proof. By Theorem 3.1, taking A\ := A\, we have that lim, , A\, =\, and by
Theorem 5.1, A is an eigenvalue of the continuous problem (2.1). In order to prove
that limy_ . disty 1 o) (uz, M(A)) = 0 we argue by contradiction. If the result were not
true, then there would exist a number € > 0 and a subsequence {“km}meNo of {uy} ren,
such that

dlStH&( )(Ukm,M()\)) > €, Vme No. (61)
By Remark 3.1 it is possible to extract a subsequence of {ukm}meNq which still
converges to some function u,, € V. By the arguments of Secs. 4 and 5, u, is an
eigenfunction of the continuous problem (2.1) corresponding to the same eigenvalue
A. That is, a subsequence of {uy, },,.y, converges to an eigenfunction in M(A), this
contradicts (6.1) and completes the proof. m|
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Remark 6.1. We have proved that the discrete eigenvalues converge to an
eigenvalue of the continuous problem, and the discrete eigenfunctions converge to the
set of the corresponding continuous eigenfunctions, and this is the main result of this
paper. But there is still an open question: If \;, was chosen as the jth eigenvalue of the
discrete problem over 7y, is it true that {\;}cy, converges to the jth eigenvalue of
the continuous problem? The answer is affirmative for a large number of problems,
but not necessarily for all. There could be some pathological cases in which looking
for the jth eigenvalue we converge to one that is larger.

We now state an assumption on problem (2.1) that we will prove to be sufficient to
guarantee that the convergence holds to the desired eigenvalue/eigenfunction. More
precise sufficient conditions on problem data A and B to guarantee that this
assumption holds will be stated below.

Assumption 6.1. (Non-Degeneracy Assumption) We will say that problem (2.1)
satisfies the Non-Degeneracy Assumption if whenever u is an eigenfunction of (2.1),
there is no nonempty open subset O of  such that u|y € P,(O).

Theorem 6.2. Let us assume that the continuous problem (2.1) satisfies the Non-
Degeneracy Assumption 6.1, and let {(Ag,ug)}ren, denote the whole sequence of
discrete eigenpairs obtained through the adaptive loop stated in Sec. 2.4 and X denote
the jth eigenvalue of the continuous problem (2.1). Then,

lim Ay = A and  lim dist g1 (q) (up, M(A)) = 0.
k—o00 k—00 0

Before embarking into the proof of this theorem, it is worth mentioning that the
model case of A =1 and B =1 satisfies Assumption 6.1, due to the fact that the
eigenfunctions of the Laplacian are analytic. A weaker assumption on the coefficients
A and B that guarantee non-degeneracy of the problem are given in the following;:

Lemma 6.1. If A is continuous, and piecewise Py, and B is piecewise constant, then
problem (2.1) satisfies the Non-Degeneracy Assumption 6.1.

Proof. We will argue by contradiction. Let us assume that there exists an eigen-
function w of (2.1) with corresponding eigenvalue A, and a nonempty open subset O of
Q such that ulp € Py(O). Without loss of generality, we may assume that Al €
P1(0) and B is constant over O. Then

-V (AVu) = A\Bu, in0O.

Since ulp € P,(O), we have that —V - (AVu) € P, ;(O0), and the last equation
implies that u|p € Py_1(O). Repeating this argument we finally obtain that

ulp =0,
which cannot be true. In fact, u is a solution of a linear elliptic equation of second

order with uniformly elliptic and Lipschitz leading coefficients and therefore, it
cannot vanish in an open subset of { unless it vanishes over Q.'% O
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Remark 6.2. Searching for other sufficient conditions on the coefficients to
guarantee Assumption 6.1 is out of the scope of this paper. We believe that in the
assumptions of the previous lemma, A can be allowed to be piecewise continuous with
discontinuities along Lipschitz interfaces. The only thing needed is a proof of the fact
that solutions to elliptic problems with coefficients like these cannot vanish in an
open subset of 2 unless they vanish over all 2. We conjecture that this could be
proved using Han’s result'® in combination with Hopf’s lemma,'* but it will be
subject of future work.

We now proceed to prove Theorem 6.2, which will be a consequence of the
following lemma.

Lemma 6.2. Let {h;} ey, denote the sequence of meshsize functions obtained
through the adaptive loop stated in Sec. 2.4. If the continuous problem (2.1) satisfies
the Non-Degeneracy Assumption 6.1, then [|h| =) — 0 as k — oo.

Proof. We argue by contradiction. By Lemma 4.3, if ||A]| 1=(0) does not tend
to zero, then QT is not empty, and then there exists T'€ 71, and thus k, € N,
such that T € 7, for all k> ky. Since [|uy, — Usl/z2(r) — 0 as m — oo, and
up|r € Po(T), for all k>0, using that P,(7T) is a finite-dimensional space we
conclude that

Uso| 7 € Py(T). (6.2)

Theorem 5.1 claims that u,, is an eigenfunction of (2.1) and thus (6.2) contradicts
Assumption 6.1. 0O

Remark 6.3. It is important to notice that the convergence of h; to zero is not an
assumption, but a consequence of the fact that a subsequence is converging to an
eigenfunction u,, and the Non-Degeneracy Assumption 6.1.

Proof. (of Theorem 6.2) In view of Theorem 6.1 it remains to prove that A; converges
to the jth eigenvalue of (2.1). By Lemma 6.2 the result follows from (2.3). O

Remark 6.4. At first sight, the convergence of ||h|| 1~ (o) to zero looks like a very
strong statement, especially in the context of adaptivity. But the uniform
convergence of the meshsize to zero should not be confused with quasi-uniformity
of the sequence of triangulations {7} } jcy,, the latter is not necessary for the former to
hold. Thinking about this more carefully, we realize that if we wish to have (optimal)
convergence of finite element functions to some given function in H'(2), then h;, must
tend to zero everywhere (pointwise) unless the objective function is itself a polynomial
of degree < / in an open region of (2. Lemma 4.1 implies that the convergence of h;, to
zero is also uniform, and this does not necessarily destroy optimality.*"%*
Remark 6.5. A sufficient condition to guarantee that we converge to the desired
eigenvalue is to assume that h;, — 0 as kK — oo. This condition is weaker than the
Non-Degeneracy Assumption, but it is in general impossible to prove a priori.



746 E. M. Garau, P. Morin & C. Zuppa

Remark 6.6. Another option to guarantee convergence to the desired eigenvalue is
to start with a mesh which is sufficiently fine. In view of the Minimum—Maximum
principles, it is sufficient to start with a triangulation 7; that is sufficiently fine to
guarantee that \; 7 < A; , where j; > j is the minimum index such that A; > A;. This
condition is verifiable a posteriori if we have a method to compute eigenvalues
approximating from below. Some ideas in this direction are presented in Ref. 1, where
the effect of mass lumping on the computation of discrete eigenvalues is studied.
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