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In this paper we prove convergence of adaptive ¯nite element methods for second-order elliptic

eigenvalue problems. We consider Lagrange ¯nite elements of any degree and prove convergence

for simple as well as multiple eigenvalues under a minimal re¯nement of marked elements, for all

reasonable marking strategies, and starting from any initial triangulation.
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1. Introduction and Main Result

In many practical applications it is of interest to ¯nd or approximate the eigenvalues

and eigenfunctions of elliptic problems. Finite element approximations for these

problems have been widely used and analyzed under a general framework. Optimal

a priori error estimates for the eigenvalues and eigenfunctions have been obtained

(see e.g. the articles by Babuška and Osborn,3,4 Raviart and Thomas,17 Strang and

Fix,22 and the references therein).

Adaptive ¯nite element methods are an e®ective tool for making an e±cient use of

the computational resources; for certain problems, it is even indispensable to their

numerical resolvability. A quite popular, natural adaptive version of classical ¯nite
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element methods consists of the loop

Solve ! Estimate ! Mark ! Refine;

that is: solve for the ¯nite element solution on the current grid, compute the a posteriori

error estimator, mark with its help elements to be subdivided, and re¯ne the current

grid into a new, ¯ner one. The ultimate goal of adaptivemethods is to equidistribute the

error and the computational e®ort obtaining a sequence of meshes with optimal com-

plexity. Historically, the ¯rst step to prove optimality has always been to understand

convergence of adaptive methods. A general result of convergence for linear problems

has been obtained byMorin, Siebert andVeeser,16 where very general conditions on the

linear problems and the adaptive methods that guarantee convergence are stated.

Optimality for adaptivemethods usingD€or°er's marking strategy7 has been proved by

Stevenson21 and Cascón, Kreuzer, Nochetto and Siebert6 for linear problems.

The goal of this paper is to analyze the convergence of adaptive ¯nite element

methods for the eigenvalue problem consisting in ¯nding � 2 R, and u 6� 0 such that

�r � ðAruÞ ¼ �Bu in �; u ¼ 0 on @�;

under general assumptions on A; B and � that we state precisely in Sec. 2.1.

As we mentioned before, adaptive methods are based on a posteriori error esti-

mators, that are computable quantities depending on the discrete solution and data,

and indicate a distribution of the error. A posteriori error estimators for eigenvalue

problems have been constructed using di®erent approaches by Verfürth,23,24 Lar-

son,15 and Dur�an, Padra and Rodríguez.8 They have been developed for A � I and

B � 1, but the same proofs can be carried over to the general case considered here; see

Ref. 11 and Sec. 2.3. An important aspect to be mentioned here is that the upper

bound holds for su±ciently ¯ne meshes. However, our proof will not rely on this

bound, allowing us to prove convergence from any initial mesh. The ¯rst result (and

only up to now) about convergence of adaptive ¯nite elements for eigenvalue pro-

blems has been presented by Giani and Graham.11

The following is the main result of this article.

Theorem 1.1. (Main Result) Let �k and uk be the discrete eigenvalues and

eigenfunctions obtained with the adaptive algorithm stated in Sec. 2.4 below. Then

there exists an eigenvalue � of the continuous problem such that

lim
k!1

�k ¼ � and lim
k!1

distH 1
0 ð�Þðuk ;M ð�ÞÞ ¼ 0;

where Mð�Þ denotes the set of all eigenfunctions of the continuous problem corre-

sponding to the eigenvalue �.

Remark 1.1. Before proceeding with the details of the statement and the proof of

this result, we make some remarks:

. An important di®erence with previous works is that we do not require the initial

mesh T0 to be ¯ne enough. Any initial mesh that captures the discontinuities of A
will guarantee convergence.
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. The result holds for any of the popular marking strategies, not only D€or°er's.7 The

only assumption is that non-marked elements have error estimators smaller than

marked ones, see condition (2.16) in Sec. 2.4 below.

. The marking is done according to the residual type a posteriori error estimators

presented in Sec. 2.3. Even though there are some oscillation terms in the lower

bound, we do not require any marking due to these terms. We only need to mark

according to the error estimators, which is what is usually done in practice.

. The result holds with a minimal re¯nement of marked elements, one bisection

su±ces. We do not require the enforcement of the so-called interior node property.

. Giani and Graham11 prove an error reduction result between consecutive iterands,

which is stronger than our plain convergence result. Their proof assumes a su±-

ciently ¯ne initial mesh, relies on D€or°er's strategy with a separate marking for

error and oscillation indicators, and enforces the interior node property. Such an

error reduction has been essential in proving quasi-optimality for linear pro-

blems.21,6 Nevertheless, verifying that T0 is ¯ne enough is not easy in practice, and

it is arguable if the separate marking could destroy optimality (see discussion in

Ref. 6). The interior node property is not such a strong requirement, but it has

been proved to be not necessary, at least for linear problems.6

. We are assuming that each of the discrete eigenvalues �k is the j th eigenvalue of

the corresponding discrete problem. The result, as stated above, only guarantees

that �k converges to one eigenvalue � of the continuous problem. We can be sure

that we approximate the j th eigenvalue of the continuous problem under any of

the following assumptions:

(a) No eigenfunction is equal to a polynomial of degree � ‘ on an open region of �,

where ‘ denotes the polynomial degree of the ¯nite element functions being

used. This is a Non-Degeneracy Assumption, and it holds for a large class of

problems; see Assumption 6.1 and discussion following it.

(b) The meshsize of the initial triangulation is small enough. This assumption goes

against the spirit of adaptivity and a posteriori analysis, since we cannot

quantify what small enough means. But we state it for completeness, because

in some (nonlinear) problems there may be no way to overcome this.

. The proof follows similar ideas to those of Morin, Siebert and Veeser,16 with some

modi¯cations due to the di®erent nature of the problem. It consists of proving the

following steps:

(a) The full sequence of discrete eigenvalues converges to a number �1 and a

subsequence of the discrete eigenfunctions converges to some function u1.

(b) The global a posteriori error estimator converges to zero (for the

subsequence).

(c) The pair ð�1; u1Þ is an eigenpair of the continuous problem. Due to a lack of a

sharp upper bound (it only holds for su±ciently ¯ne meshes), it is necessary to

introduce a new argument to prove this (see Theorem 5.1). This new argument
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is perhaps the main di®erence with respect to Ref. 16, and we believe that the

idea can be useful for many other nonlinear problems.

The rest of the paper is organized as follows. In Sec. 2, we state precisely the

problem that we study, describe the approximants, mention some already known

results about a priori and a posteriori estimation, and state the adaptive loop. In

Sec. 3, we prove that the sequence fð�k ; ukÞgk2N0
of solutions to the discrete problems

contains a subsequence that converges to a limiting pair ð�1; u1Þ. In Sec. 4, we prove

that the global a posteriori error estimator tends to zero; which is instrumental to

conclude in Sec. 5 that ð�1; u1Þ is an eigenpair of the continuous problem. Finally, in

Sec. 6, we state and prove the main result and discuss its implications.

2. Problem Statement and Adaptive Algorithm

This section is subdivided into four parts. In Sec. 2.1, we state precisely the continuous

problem that we study and mention some of its properties. In Sec. 2.2, we state the

discrete problems that we consider as approximants to the continuous one, mention

some of its properties and state the a priori error estimates. In Sec. 2.3, we de¯ne the

a posteriori error estimators that we use, state the upper bound and prove the discrete

local lower bound thatwewill use in our convergence proof. Finally, in Sec. 2.4, we state

the adaptive algorithm together with the assumptions on each of its blocks.

2.1. Setting

Let � � Rd be a bounded open set with a Lipschitz boundary. In particular, we

assume that � is a polygonal domain if d ¼ 2 and a polyhedral domain if d ¼ 3. Let

a; b : H 1
0 ð�Þ � H 1

0 ð�Þ ! R be the bilinear forms de¯ned by

aðu; vÞ :¼
Z
�
Aru � rv

and

bðu; vÞ :¼
Z
�
Buv;

where A is a piecewise W 1;1ð�Þ symmetric-matrix-valued function which is uni-

formly positive de¯nite, i.e. there exist constants a1; a2 > 0 such that

a1j�j2 � AðxÞ� � � � a2j�j2; 8 � 2 R
d ; 8 x 2 �;

and B is a scalar function such that

b1 � BðxÞ � b2; 8 x 2 �;

for some constants b1; b2 > 0.

We also de¯ne the induced norms by these bilinear forms as

jjvjja :¼ aðv; vÞ1=2; v 2 H 1
0ð�Þ and jjvjjb :¼ bðv; vÞ1=2; v 2 L2ð�Þ:
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By the assumptions on A and B, jj � jja ’ jj � jjH 1
0
ð�Þ and jj � jjb ’ jj � jj�, i.e. there exist

positive constants c1; c2; c3; c4 such that

c1jjvjjH 1
0 ð�Þ � jjvjja � c2jjvjjH 1

0 ð�Þ; 8 v 2 H 1
0 ð�Þ;

and

c3jjvjj� � jjvjjb � c4jjvjj�; 8 v 2 L2ð�Þ:

Where, hereafter, jj � jjH 1
0
ð�Þ ¼ jj � jjH 1ð�Þ and if A � �; jj � jjA denotes the L2ðAÞ-norm,

i.e.

jjvjjA :¼
Z
A
jvj2

� �
1=2

and jjvjjH 1ðAÞ :¼ ðjjvjj 2A þ jjrvjj2AÞ1=2:

We consider the following:

Continuous eigenvalue problem. Find � 2 R and u 2 H 1
0 ð�Þ satisfying

aðu; vÞ ¼ � bðu; vÞ; 8 v 2 H 1
0 ð�Þ;

jjujjb ¼ 1:

�
ð2:1Þ

It is well known4 that under our assumptions on A and B, problem (2.1) has a

countable sequence of eigenvalues

0 < �1 � �2 � �3 � . . . % 1

and corresponding eigenfunctions

u1; u2; u3; . . .

which can be assumed to satisfy

bðui; ujÞ ¼ �ij :¼
1 i ¼ j;

0 i 6¼ j;

�

where in the sequence f�jgj2N, the �j are repeated according to geometric multi-

plicity.

Also, the eigenvalues can be characterized as extrema of the Rayleigh quotient

RðuÞ ¼ aðu;uÞ
bðu;uÞ ; by the following relationships.

. Minimum principle:

�1 ¼ min
u2H 1

0
ð�Þ

RðuÞ ¼ Rðu1Þ;

�j ¼ min
u2H 1

0 ð�Þ
aðu; uiÞ¼0

i¼1; . . . ; j�1

RðuÞ ¼ RðujÞ; j ¼ 2; 3; . . . :

. Minimum–Maximum principle:

�j ¼ min
Vj�H 1

0 ð�Þ
dimVj¼j

max
u2Vj

RðuÞ ¼ max
u2spanfu1;...;ujg

RðuÞ; j ¼ 1; 2; . . . :
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For each ¯xed eigenvalue � of (2.1) we de¯ne

M ð�Þ :¼ fu 2 H 1
0 ð�Þ : u satifies ð2:1Þg;

and notice that if � is simple, then Mð�Þ contains two functions, whereas if � is not

simple, it consists of a sphere in the subspace generated by the eigenfunctions.

2.2. Discrete problem

In order to de¯ne the discrete approximations we will consider conforming triangu-

lations T of the domain �, that is, partitions of � into d -simplices such that if two

elements intersect, they do so at a full vertex/edge/face of both elements. For any

triangulation T ; S will denote the set of interior sides, where by side we mean an edge

if d ¼ 2 and a face if d ¼ 3. And �T will denote the regularity of T , de¯ned as

�T :¼ max
T2T

diamðTÞ
�T

;

where diamðTÞ is the length of the longest edge of T, and �T is the radius of the

largest ball contained in it. It is also useful to de¯ne the meshsize hT :¼ maxT2T hT ,

where hT :¼ jT j1=d .
Let ‘ 2 N be ¯xed, and let VT be the ¯nite element space consisting of continuous

functions vanishing on @� which are polynomials of degree � ‘ in each element of T ,

i.e.

VT :¼ fv 2 H 1
0 ð�Þ : vjT 2 P‘ðTÞ; 8T 2 T g:

Obviously, VT � H 1
0 ð�Þ and if T� is a re¯nement of T , then VT � VT� .

We consider the approximation of the continuous eigenvalue problem (2.1) with

the following

Discrete eigenvalue problem. Find �T 2 R and uT 2 VT such that

aðuT ; vÞ ¼ �T bðuT ; vÞ; 8 v 2 VT ;

jjuT jjb ¼ 1:

�
ð2:2Þ

For this discrete problem, similar results to those of the continuous problem hold.4

More precisely, problem (2.2) has a ¯nite sequence of eigenvalues

0 < �1;T � �2;T � �3;T � � � � � �NT ;T ;

where NT :¼ dimVT , and corresponding eigenfunctions

u1;T ; u2;T ; u3;T ; . . . ; uNT ;T ;

can be assumed to satisfy

bðui;T ; uj;T Þ ¼ �ij :
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Moreover, the following extremal characterizations also hold:

. Minimum principle:

�1;T ¼ min
u2VT

RðuÞ ¼ Rðu1;T Þ;
�j;T ¼ min

u2VT
aðu; ui;T Þ¼0
i¼1; . . . ; j�1

RðuÞ ¼ Rðuj;T Þ; j ¼ 2; 3; . . . ;NT :

. Minimum–Maximum principle:

�j;T ¼ min
Vj;T �VT
dimVj;T ¼j

max
u2Vj;T

RðuÞ ¼ max
u2spanfu1;T ;...;uj;T g

RðuÞ; j ¼ 1; 2; . . . ;NT :

It follows from the Minimum�Maximum principle that

�j � �j;T ; j ¼ 1; 2; . . . ;NT

and it also follows that if T� is any re¯nement of T , then

�j;T� � �j;T ; j ¼ 1; 2; . . . ;NT :

For a given eigenvalue � we de¯ne a notion of minimal error of approximation of

its eigenfunctions by

�T ð�Þ :¼ sup
u2M ð�Þ

inf
�2VT

jju � �jja:

For j ¼ 1; 2; . . . ;NT , there holds that

�j;T � �j . �2T ð�jÞ;

where, from now on, whenever we write A.B we mean that A � CB with a constant

C that may depend on A;B, the domain � and the regularity �T of T , but not on

other properties of T such as element size or uniformity.

If fTkgk2N0
is any sequence of triangulations such that supk2N0

�Tk < 1, and

hTk ! 0 as k ! 1, then

�Tk ð�jÞ ! 0; as k ! 1;

and therefore,

�j;Tk ! �j ; as k ! 1: ð2:3Þ

This holds for any j 2 N and it is a consequence of standard interpolation estimates

and the fact that M ð�jÞ is bounded and contained in a ¯nite-dimensional subspace of

H 1
0 ð�Þ.

2.3. A posteriori error estimators

A posteriori estimates for eigenvalue problems have been studied by Larson,15

Dur�an, Padra and Rodríguez,8 and Giani and Graham.11 In this section we present

Convergence of Adaptive Finite Element Methods for Eigenvalue Problems 727



the residual type a posteriori estimates for eigenvalue problems, state without proof

some already known properties and prove the discrete local lower bound that will be

useful for our convergence proof.

In order to de¯ne the estimators, we assume that the triangulation T matches the

discontinuities of A. More precisely, we assume that the discontinuities of A are

aligned with the sides of T . Observe that in particular, AjT is Lipschitz continuous

for all T 2 T .

De¯nition 2.1. (Element residual and jump residual) For � 2 R and v 2 VT we

define the element residual Rð�; vÞ by
Rð�; vÞjT :¼ �r � ðArvÞ � �Bv; ð2:4Þ

for all T 2 T , and the jump residual JðvÞ by
JðvÞjS :¼ ðArvÞjT1

� n1 þ ðArvÞjT2
� n2; ð2:5Þ

for every interior side S 2 S, where T1 and T2 are the elements in T which share S

and ni is the outward normal unit vector of Ti on S, for i ¼ 1; 2. We define

JðvÞj@� :¼ 0.

De¯nition 2.2. (Local and global error estimator) For � 2 R and v 2 VT , we define

the local error estimator 	T ð�; v;TÞ by
	2T ð�; v;TÞ :¼ h 2

T jjRð�; vÞjj2T þ hT jjJðvÞjj2@T ;
for all T 2 T , and the global error estimator 	T ð�; vÞ is given by

	2T ð�; vÞ :¼
X
T2T

	2T ð�; v;TÞ:

Even though we will not need it for the convergence proof, we include the state-

ment of the upper bound of the error in terms of the a posteriori error estimation, for

the sake of completeness, which holds for simple eigenvalues.

Theorem 2.1. (Upper bound) Let j 2 N, and let uT be an eigenfunction corres-

ponding to the jth eigenvalue �T of the discrete problem (2.2), then if hT is small

enough, there exists an eigenfunction u corresponding to the jth eigenvalue � of the

continuous problem (2.1) such that

jju � uT jja . 	T ð�T ; uT Þ:

The proof of this theorem can be obtained following the steps given in Dur�an,

Padra and Rodríguez,8 by extending Lemmas 3.1 and 3.2 presented there for the

model problem withA � I and B � 1, to the general case that we consider here, using

the following regularity result, and the a priori bound stated in Theorem 2.2 below.

Lemma 2.1. (Regularity of the eigenfunctions) There exists r 2 ð0; 1� depending
only on � and A such that

u 2 H 1þrð�Þ;
for any eigenfunction u of the problem (2.1).
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Proof. This can be proved by observing that if u is an eigenfunction, then it is also a

solution to a linear elliptic equation of second order with right-hand side in L2ð�Þ.
We know that r ¼ 1 when A is constant or smooth and � is convex. The case in

which � is non-convex has been studied in Ref. 5 and the case of A having a

discontinuity across an interior interface in Ref. 2. For the general case, which we are

considering here, see Theorem 3 in Ref. 14.

The following result is an a priori estimate relating the errors in the strong and

weak norms associated to the problem, and it is the last slab in the chain necessary to

prove Theorem 2.1. The case A � I and B � 1 can be easily obtained from the results

in Refs. 22 and 17. The general case was presented in Refs. 11 and 10.

Theorem 2.2. Let the same assumptions of Theorem 2.1 hold. Then, if hT is small

enough, there exists an eigenfunction u corresponding to the jth eigenvalue � of the

continuous problem (2.1) such that

jju � uT jjb . h r
T jju � uT jja:

The next result, which we will need for our proof of convergence is the discrete

local lower bound, whose proof follows that of the continuous lower bound in Ref. 8

but in order to make this paper more self-contained we will include it here.

For S 2 S we de¯ne !T ðSÞ as the union of the two elements in T sharing S. For

T 2 T ;NT ðTÞ :¼ fT 0 2 T : T 0 \ T 6¼ ;g denotes the set of neighbors of T in T , and

!T ðTÞ :¼
S

T 02N T ðTÞT
0. We also de¯ne nd :¼ 3 if d ¼ 2 and nd :¼ 6 if d ¼ 3. This

guarantees that after nd bisections to an element, new nodes appear on each side and

in the interior. Here we consider the newest-vertex bisection in two dimensions and

the procedure of Kossaczký in three dimensions.18

Theorem 2.3. (Discrete local lower bound) Let T 2 T and let T� be the

triangulation of � which is obtained from T by bisecting nd times each element of

NT ðTÞ. Let �T and uT be a solution to the discrete problem (2.2). Let W be a

subspace of H 1
0 ð�Þ such that VT� � W. If � 2 R and w 2 W satisfy

aðw; vÞ ¼ �bðw; vÞ; 8 v 2 W;

jjwjjb ¼ 1;

�

then

	T ð�T ; uT ;TÞ . jjrðw � uT Þjj!T ðTÞ þ hT jj�w � �T uT jj!T ðTÞ

þ hT jjR�R jj!T ðTÞ þ h
1=2
T jjJ �J jj@T ;

where, for every T 0 2 N T ðTÞ; R jT 0 is the L2ðT 0Þ-projection of R :¼ Rð�T ; uT Þ onto
P‘�1, and for every side S � @T ; J jS is the L2ðSÞ-projection of J :¼ JðuT Þ onto P‘�1.

Proof. 1 We first analyze the element residual. We obviously have

jjRjjT � jjR jjT þ jjR�R jjT : ð2:6Þ
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Let x int
T denote the vertex of T� which is interior to T . Let ’T be the continuous

piecewise linear function over T� such that ’T ðx int
T Þ ¼ 1 and ’T vanishes over all the

other vertices of T�. Then

jjR jj2T .
Z
T
R 2’T ¼

Z
T
R ðR’T Þ ¼

Z
T
RðR’T Þ þ

Z
T
ðR � RÞR’T : ð2:7Þ

If we de¯ne v :¼R’T 2 VT� � W, taking into account that v vanishes over @T , for

the ¯rst integral in (2.7) we haveZ
T
Rv ¼

Z
T
ð�r � ðAruT Þ � �T BuT Þv

¼
Z
T
AruT � rv �

Z
T
�T BuT v

¼
Z
T
AruT � rv �

Z
T
�T BuT v �

Z
T
Arw � rv þ

Z
T
�Bwv

¼
Z
T
ArðuT � wÞ � rv þ

Z
T
Bð�w � �T uT Þv

. jjrðuT � wÞjjT jjrvjjT þ jj�w � �T uT jjT jjvjjT :

For the second integral in (2.7) we haveZ
T
ðR � RÞR’T � jjR’T jjT jjR � RjjT � jjR jjT jjR � RjjT :

Therefore, taking into account that jjrvjjT . 1
hT

jjvjjT and jjvjjT � jjR jjT we can

write

jjR jj 2T . jjrðuT � wÞjjT
1

hT
jjR jjT þ jj�w � �T uT jjT jjR jjT þ jjR jjT jjR � RjjT ;

and then

hT jjR jjT . jjrðuT � wÞjjT þ hT jj�w � �T uT jjT þ hT jjR � RjjT : ð2:8Þ

Now, from (2.6) and (2.8) it follows that

hT jjRjjT . jjrðuT � wÞjjT þ hT jj�w � �T uT jjT þ hT jjR�R jjT : ð2:9Þ

The same bound holds replacing T by T 0, for all T 0 2 N T ðTÞ.

2 Secondly, we estimate the jump residual. Let S be a side of T and let T1 and T2

denote the elements sharing S. Obviously, one of them is T itself. As before we

proceed by bounding ¯rst the projection J of J , since

jjJ jjS � jjJ jjS þ jjJ �J jjS : ð2:10Þ

Let x int
S denote a vertex of T� which is interior to S . Let ’S be the continuous

piecewise linear function over T� such that ’Sðx int
S Þ ¼ 1 and ’S vanishes over all the
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other vertices of T�. Then

jjJ jj2S .
Z
S
ðJ Þ2’S ¼

Z
S
J ðJ ’SÞ ¼

Z
S
JðJ ’SÞ þ

Z
S
ðJ � JÞJ ’S : ð2:11Þ

Now, we extend J to !T ðSÞ as constant along the direction of one side of each Ti,

for i ¼ 1; 2, and still call this extensionJ . Observe thatJ is continuous on !T ðSÞ and
J jTi

2 P‘�1ðTiÞ, for i ¼ 1; 2.

Since v :¼ J ’S 2 VT� � W and taking into account that v ¼ 0 on @ð!T ðSÞÞ, for
the ¯rst integral in (2.11) we haveZ

S
Jv ¼

X
i¼1;2

Z
@Ti

vAruT � ni ¼
X
i¼1;2

Z
Ti

r � ðvAruT Þ

¼
X
i¼1;2

Z
Ti

AruT � rv þ
Z
Ti

vr � ðAruT Þ
� �

þ
Z
T1[T2

�Bwv �
Z
T1[T2

Arw � rv

¼
X
i¼1;2

Z
Ti

ArðuT � wÞ � rv þ
Z
Ti

ðr � ðAruT Þ þ �BwÞv
� �

¼
Z
!T ðSÞ

ArðuT � wÞ � rv þ
X
i¼1;2

Z
Ti

� Rv þ
Z
Ti

Bð�w � �T uT Þv
� �

. jjrðuT � wÞjj!T ðSÞjjrvjj!T ðSÞ

þ jjRjj!T ðSÞjjvjj!T ðSÞ þ jj�w � �T uT jj!T ðSÞjjvjj!T ðSÞ:

For the second integral in (2.11) we haveZ
S
ðJ � JÞJ ’S � jjJ ’S jjS jjJ � J jjS � jjJ jjS jjJ � J jjS :

Hence, taking into account that jjrvjj!T ðSÞ . 1
hT

jjvjj!T ðSÞ; jjvjj!T ðSÞ � jjJ jj!T ðSÞ and

jjJ jj!T ðSÞ . h
1=2
T jjJ jjS we can write

jjJ jj2S . jjrðuT � wÞjj!T ðSÞh
�1=2
T jjJ jjS þ jjRjj!T ðSÞh

1=2
T jjJ jjS

þ jj�w � �T uT jj!T ðSÞh
1=2
T jjJ jjS þ jjJ jjS jjJ � J jjS ;

and then, using (2.10) it follows that

h
1=2
T jjJ jjS . jjrðuT � wÞjj!T ðSÞ þ hT jjRjj!T ðSÞ

þ hT jj�w � �T uT jj!T ðSÞ þ h
1=2
T jjJ �J jjS :

Adding this last inequality over all S � @T , we obtain

h
1=2
T jjJ jj@T . jjrðuT � wÞjj!T ðTÞ þ hT jjRjj!T ðTÞ

þ hT jj�w � �T uT jj!T ðTÞ þ h
1=2
T jjJ �J jj@T :

The claim of this theorem follows by adding this last inequality and (2.9).
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The next result provides a bound for the oscillation terms, that will be useful to

obtain the bound of Corollary 2.1, which is what will be e®ectively used in our

convergence proof.

Lemma 2.2. Under the assumptions of Theorem 2.3 there holds

hT jjR�R jj!T ðTÞ þ h
1=2
T jjJ �J jj@T . hT ð2þ �T ÞjjuT jjH 1ð!T ðTÞÞ:

Proof. 1 We first consider the term corresponding to the element residual.

jjR�R jjT ¼ jj � r � ðAruT Þ � �T BuT þ r � ðAruT Þ þ �TBuT jjT
� jj � r � ðAruT Þ þ r � ðAruT ÞjjT þ jj�T ðBuT �BuT ÞjjT ; ð2:12Þ

where, as before, the bar denotes the L2ðTÞ-projection onto P‘�1ðTÞ.
Let AT ¼ ðAT

ij Þ denote the mean value of A ¼ ðAijÞ over the element T , and note

that r � ðATruT Þ ¼ r � ðAT ruT Þ. Thus, for the ¯rst term on the right-hand side

of (2.12) we have

jj � r � ðAruT Þ þ r � ðAruT ÞjjT
¼ jjr � ððAT �AÞruT Þ � r � ððAT �AÞruT ÞjjT
� jjðr � ðAT �AÞÞ � ruT � ðr � ðAT �AÞÞ � ruT jjT

þ jjðAT �AÞ : D2uT � ðAT �AÞ :D 2uT jjT
� jjðr � ðAT �AÞÞ � ruT jjT þ jjðAT �AÞ : D2uT jjT
. jjAjjW 1

1ðTÞjjruT jjT þ jjAT �AjjL1ðTÞjjD2uT jjT :

Since jjAT �AjjL1ðTÞ . hT jjAjjW 1
1ðTÞ, an inverse inequality leads to

jj � r � ðAruT Þ þ r � ðAruT ÞjjT � jjAjjW 1
1ðTÞjjruT jjT þ hT jjAjjW 1

1ðTÞjjD2uT jjT
. jjruT jjT :

For the second term on the right-hand side of (2.12) we have

jj�T ðBuT �BuT ÞjjT � jj�T BuT jjT .�T jjuT jjT ;
and therefore,

jjR�R jjT . ð1þ �T ÞjjuT jjH 1ðTÞ:

The same estimation holds for all elements in NT ðTÞ, and consequently,

hT jjR�R jj!T ðTÞ . hT ð1þ �T ÞjjuT jjH 1ð!T ðTÞÞ: ð2:13Þ

2 Next, we analyze the jump residual. Let S be a side of T and let T1 and T2 denote

the elements sharing S. Again, if the bar denotes the L2ðSÞ-projection onto P‘�1ðSÞ,
it follows that

jjJ �J jjS ¼
X
i¼1;2

ðAruT ÞjTi
� ni �

X
i¼1;2

ðAruT ÞjTi
�ni

�����
�����
S

:
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Using that ðATiruT ÞjTi
� ni ¼ ðATi ruT ÞjTi

�ni we have

jjJ �J jjS ¼
X
i¼1;2

ððA � ATi ÞruT ÞjTi
� ni �

X
i¼1;2

ððA �ATi ÞruT ÞjTi
�ni

�����
�����
S

�
X
i¼1;2

ððA � ATi ÞruT ÞjTi
� ni

�����
�����
S

�
X
i¼1;2

jjððA � ATi ÞruT ÞjTi
� nijjS

�
X
i¼1;2

jjAjTi
� ATi jjL1ðSÞjjruT jTi

jjS

.
X
i¼1;2

hT jjAjjW 1
1ðTiÞh

�1=2
T jjuT jjH 1ðTiÞ

. h
1=2
T jjuT jjH 1ð!T ðSÞÞ:

Therefore,

h
1=2
T jjJ �J jj@T . hT jjuT jjH 1ð!T ðTÞÞ: ð2:14Þ

Adding (2.13) and (2.14) we obtain the claim of this lemma.

As an immediate consequence of Theorem 2.3 and Lemma 2.2 the following result

holds.

Corollary 2.1. (Lower bound) Under the assumptions of Theorem 2.3 there holds

	T ð�T ; uT ;TÞ. jjrðw � uT Þjj!T ðTÞ þ hT jj�wjj!T ðTÞ þ hT ð1þ �T ÞjjuT jjH 1ð!T ðTÞÞ:

2.4. Adaptive loop

Our goal is to use an adaptive method to approximate the jth eigenvalue and one of

its eigenfunctions, for some ¯xed j 2 N. From now on, we thus keep j 2 N ¯xed, and

let � denote the j th eigenvalue of (2.1) and u an eigenfunction in M ð�Þ.
The algorithm for approximating � and M ð�Þ is an iteration of the following main

steps:

(1) ð�k ; ukÞ :¼ SOLVEðVkÞ.
(2) f	kðTÞgT2Tk :¼ ESTIMATEð�k ; uk ; TkÞ.
(3) Mk :¼ MARKðf	kðTÞgT2Tk ; TkÞ.
(4) Tkþ1 :¼ REFINEðTk ;MkÞ, increment k.

This is the same loop considered in Ref. 16, the di®erence lies in the building

blocks which we now describe in detail.
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If Tk is a conforming triangulation of �, the module SOLVE takes the space

Vk :¼ VTk as input argument and outputs the j th eigenvalue of the discrete pro-

blem (2.2) with T ¼ Tk , i.e. �k :¼ �j;Tk , and a corresponding eigenfunction uk 2 Vk .

Therefore, �k and uk satisfy

aðuk ; vkÞ ¼ �k bðuk ; vkÞ; 8 vk 2 Vk ;

jjuk jjb ¼ 1:

�
ð2:15Þ

Given Tk and the corresponding outputs �k and uk of SOLVE, the module

ESTIMATE computes and outputs the a posteriori error estimators f	kðTÞgT2Tk ,

where

	kðTÞ :¼ 	Tk ð�k ; uk ;TÞ:

Based upon the a posteriori error indicators f	kðTÞgT2Tk , the module MARK

collects elements of Tk in Mk . In order to simplify the presentation, the only

requirement that we make on the module MARK is that the set of marked elements

Mk contains at least one element of Tk holding the largest value of estimator. That is,

there exists one element T max
k 2 Mk such that

	kðT max
k Þ ¼ max

T2Tk
	kðTÞ:

Whenever a marking strategy satis¯es this assumption, we call it reasonable, since

this is what practitioners do in order to maximize the error reduction with a mini-

mum e®ort. The most commonly used marking strategies, e.g., Maximum strategy

and Equidistribution strategy, ful¯ll this condition, which is su±cient to guarantee

that

T 2 TknMk ) 	kðTÞ. 	kðMkÞ :¼
X

T2Mk

	 2
k ðTÞ

 !
1=2

: ð2:16Þ

This is slightly weaker, and is what we will use in our proof. The original D€or°er's

strategy also guarantees (2.16).

The re¯nement procedure REFINE takes the triangulation Tk and the subset

Mk � Tk as input arguments. We require that all elements ofMk are re¯ned (at least

once), and that a new conforming triangulation Tkþ1 of �, which is a re¯nement of Tk ,
is returned as output.

In this way, starting with an initial conforming triangulation T0 of � and iter-

ating the steps (1), (2), (3) and (4) of this algorithm, we obtain a sequence of

successive conforming re¯nements of T0 called T1; T2; . . . and the corresponding

outputs ð�k ; ukÞ, f	kðTÞgT2Tk , Mk of the modules SOLVE, ESTIMATE and MARK,

respectively.

For simplicity, we consider for the module REFINE, the concrete choice of the

newest vertex bisection procedure in two dimensions and the bisection procedure of

Kossaczký in three dimensions.18 Both these procedures re¯ne the marked elements
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and some additional ones in order to keep conformity, and they also guarantee that

� :¼ sup
k2N0

�Tk < 1;

i.e. fTkgk2N0
is a sequence shape regular of triangulations of �. It is worth mentioning

that we do not assume REFINE to enforce the so-called interior node property, and

convergence is guaranteed nevertheless, this is an important di®erence with respect

to Ref. 11.

Regarding the moduleMARK, we stress that the marking is done only according to

the error estimators; no marking due to oscillation is necessary, this is another

important di®erence with respect to Ref. 11, where the set of marked elements has to

be enlarged so that D€or°er's criterion is satis¯ed not only by the error estimators,

but also by the oscillation of the current solution uk .

3. Convergence to a Limiting Pair

In this section we will prove that the sequence of discrete eigenpairs fð�k ; ukÞgk2N0

obtained by SOLVE throughout the adaptive loop of Sec. 2.4 has the following

property: �k converges to some �1 2 R and there exists a subsequence fukmgm2N0
of

fukgk2N0
converging in H 1ð�Þ to a function u1.

Let us de¯ne the limiting space as V1 :¼ [Vk
H 1

0 ð�Þ, and note that V1 is a closed

subspace of H 1
0 ð�Þ and therefore, it is itself a Hilbert space with the inner product

inherited from H 1
0 ð�Þ.

Since Tkþ1 is always a re¯nement of Tk , by the Minimum�Maximum principle

f�kgk2N0
is a decreasing sequence bounded below by �. Therefore, there exists �1 > 0

such that

�k & �1:

From (2.15) it follows that

jjuk jj2a ¼ aðuk ; ukÞ ¼ �kbðuk ; ukÞ ¼ �k jjuk jj2b ¼ �k ! �1; ð3:1Þ

and therefore, that fukgk2N0
is a bounded sequence in V1. Then, there exists a

subsequence fukmgm2N0
weakly convergent in V1 to a function u1 2 V1, so

ukm * u1 in H 1
0 ð�Þ: ð3:2Þ

Using Rellich's theorem we can extract a subsequence of the last one, which we still

denote fukmgm2N0
, such that

ukm ! u1 in L2ð�Þ: ð3:3Þ

If k0 2 N0 and km 	 k0, for all vk0 2 Vk0 we have that aðukm ; vk0Þ ¼ �kmbðukm ; vk0Þ,
and when m tends to in¯nity, we obtain that aðu1; vk0Þ ¼ �1bðu1; vk0Þ. Since

k0 2 N0 and vk0 2 Vk0 are arbitrary, we have that

aðu1; vÞ ¼ �1bðu1; vÞ; 8 v 2 V1: ð3:4Þ
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On the other hand, since that jjukm jjb ¼ 1, considering (3.3) we conclude that

jju1jjb ¼ 1: Now, taking into account (3.4) we have that

jju1jj2a ¼ �1jju1jj2b ¼ �1:

From (3.1) it follows that jjukm jj
2
a ¼ �km ! �1; and therefore, jjukm jja ! jju1jja: This,

together with (3.2) yields

ukm ! u1 in H 1
0 ð�Þ:

Summarizing, we have proved the following:

Theorem 3.1. There exist �1 2 R and u1 2 V1 such that

aðu1; vÞ ¼ �1 bðu1; vÞ; 8 v 2 V1;

jju1jjb ¼ 1:

�

Moreover, �1 ¼ limk!1�k and there exists a subsequence fukmgm2N0
of fukgk2N0

such

that

ukm ! u1 in H 1
0 ð�Þ:

Remark 3.1. It is important to notice that from any subsequence fð�km ; ukm Þgm2N0

of fð�k ; ukÞgk2N0
, we can extract another subsequence fð�kmn

; ukmn
Þg

n2N0
, such that

ukmn
converges in H 1ð�Þ to some function ~u1 2 V1 that satisfies

að~u1; vÞ ¼ �1 bð~u1; vÞ; 8 v 2 V1;

jj~u1jjb ¼ 1:

�

4. Convergence of Estimators

In this section we will prove that the global a posteriori estimator de¯ned in Sec. 2.3

tends to zero. We will follow the same steps as in Ref. 16, providing the proofs of the

results that are problem dependent. Those geometrical results that are consequences

of the fact that we are only re¯ning will be stated without proof, but with a precise

reference to the result from Ref. 16 being used.

In order not to clutter the notation, we will still call fukgk2N0
to the subsequence

fukmgm2N0
, and fTkgk2N0

to the sequence fTkmgm2N0
. Also, we will replace the sub-

script Tk by k (e.g. N kðTÞ :¼ N Tk ðTÞ and !kðTÞ :¼ !Tk ðTÞ), and whenever � is a

subset of Tk , 	 2
k ð�Þ will denote the sum

P
T2� 	

2
k ðTÞ.

The main result of this section is the following:

Theorem 4.1. (Estimator's convergence) If fTkgk2N0
denote the triangulations

corresponding to the convergent subsequence of discrete eigenpairs from Theorem 3.1,

then

lim
k!1

	kðTkÞ ¼ 0:
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In order to prove this theorem we consider the following decomposition of Tk ,
which was ¯rst established in Ref. 16.

De¯nition 4.1. Given the sequence fTkgk2N0
of triangulations, for each k 2 N0 we

define the following (disjoint) subsets of Tk .

. T 0
k :¼ fT 2 Tk : T 0 is re¯ned at least nd times, for all T 0 2 N kðTÞg;

. T þ
k :¼ fT 2 Tk : T 0 is never re¯ned, for all T 0 2 N kðTÞg;

. T �
k :¼ TknðT 0

k [ T þ
k Þ.

We also de¯ne the three (overlapping) regions in �:

. �0
k :¼

S
T2T 0

k
!kðTÞ;

. �þ
k :¼

S
T2T þ

k
!kðTÞ;

. ��
k :¼

S
T2T �

k
!kðTÞ.

We will prove that 	kðT 0
k Þ; 	kðT �

k Þ and 	kðT þ
k Þ tend to zero as k tends to

in¯nity in Theorems 4.2, 4.3 and 4.4. Since 	 2
k ðTkÞ ¼ 	 2

k ðT 0
k Þ þ 	 2

k ðT þ
k Þ þ 	 2

k ðT �
k Þ,

Theorem 4.1 will follow from these results.

De¯nition 4.2. (Meshsize function) We define hk 2 L1ð�Þ as the piecewise

constant function

hk jT :¼ jT j1=d ; 8T 2 Tk :

For almost every x 2 � there holds that hkðxÞ is monotonically decreasing and

bounded from below by 0. Therefore,

h1ðxÞ :¼ lim
k!1

hkðxÞ

is well-de¯ned for almost every x 2 � and de¯nes a function in L1ð�Þ. Moreover, the

following result holds, see Lemma 4.3 and Corollary 4.1 in Ref. 16.

Lemma 4.1. The sequence fhkgk2N0
converges to h1 uniformly, i.e.

lim
k!1

jjhk � h1jjL1ð�Þ ¼ 0;

and if ��0
k
denotes the characteristic function of �0

k , then

lim
k!1

jjhk��0
k
jjL1ð�Þ ¼ 0:

This lemma is a consequence of the fact that the sequence of triangulations is

obtained by re¯nement only, and that every time an element T 2 Tk is re¯ned into

Tkþ1, hkþ1ðxÞ � ð12Þ1=dhkðxÞ for almost every x 2 T . But it is otherwise independent of

the marking strategy. The next result is also independent of the marking strategy, it

is just a consequence of the fact that uk ! u1, the lower bound and the convergence

of jjhk��0
k
jjL1ð�Þ to zero.

Theorem 4.2. (Estimator's convergence: First part) If fTkgk2N0
denote the trian-

gulations corresponding to the convergent subsequence of discrete eigenpairs
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from Theorem 3.1, then the contribution of T 0
k to the estimator vanishes in the

limit, i.e.

lim
k!1

	kðT 0
k Þ ¼ 0:

Proof. Using Corollary 2.1 with W ¼ V1;w ¼ u1, and � ¼ �1 we have that

	 2
k ðT 0

k Þ ¼
X
T2T 0

k

	 2
k ðTÞ

.
X
T2T 0

k

rðuk �u1Þk k2
!kðTÞ þh 2

T �1u1k k2
!kðTÞ þh 2

T ð1þ�kÞ2jjuk jj2H 1ð!kðTÞÞ

. jjrðuk �u1Þjj2�þjjhk��0
k
jj2L1ð�Þðjj�1u1jj2�þð1þ�kÞ2jjuk jj2H 1ð�ÞÞ:

Since �k !�1 in R and uk ! u1 in H 1ð�Þ, Lemma 4.1 implies the claim.

The following lemma was proved as the ¯rst step of the proof of Proposition 4.2 in

Ref. 16, it is also a consequence of the fact that the sequence of triangulations is

obtained by re¯nement, without coarsening, and it is independent of the speci¯c

problem being considered.

Lemma 4.2. If ��
k is as in Definition 4.1, then

lim
k!1

j��
k j ¼ 0:

From Corollary 2.1, Lemma 4.2 and the fact that uk ! u1 we obtain

Theorem 4.3. (Estimator's convergence: Second part) If fTkgk2N0
denote the tri-

angulations corresponding to the convergent subsequence of discrete eigenpairs from

Theorem 3.1, then the contribution of T �
k to the estimator vanishes in the limit, i.e.

lim
k!1

	kðT �
k Þ ¼ 0:

Proof. Let ð�; uÞ be any eigenpair of (2.1). Then Corollary 2.1 with W ¼ H 1
0 ð�Þ;

w ¼ u, and � ¼ � implies that

	 2
k ðT �

k Þ ¼
X
T2T �

k

	 2
k ðTÞ

.
X
T2T �

k

rðuk � uÞk k2
!kðTÞ þ h 2

T �uk k2
!kðTÞ þ h 2

T ð1þ �kÞ2jjuk jj2H 1ð!kðTÞÞ

. jjrðuk � uÞjj2� �
k
þ �2jjujj2� �

k
þ ð1þ �kÞ2jjuk jj2H 1ð� �

kÞ

. jjrðuk � u1Þjj 2� þ jjrðu1 � uÞjj2� �
k
þ �2jjujj 2� �

k

þð1þ �kÞ2jjuk � u1jj2H 1ð�Þ þ ð1þ �kÞ2jju1jj2H 1ð� �
kÞ:

Taking into account that �k ! �1 in R; uk ! u1 in H 1ð�Þ and Lemma 4.2, the

claim follows.
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In order to prove that the estimator contribution from T þ
k vanishes in the limit,

we make the following

De¯nition 4.3. Let T þ be the set of elements that are never refined, i.e.

T þ :¼
[
k	0

\
m	k

Tm;

and let the set �þ be defined as

�þ :¼
[

T2T þ

T :

It is interesting to observe at this point that

Lemma 4.3. The set �þ is empty if and only if limk!1jjhk jjL1ð�Þ ¼ 0.

Proof. If �þ is empty, then �þ
k and ��

k are empty for all k 2 N0, and jjhk jjL1ð�Þ ¼
jjhk jjL1ð�0

k
Þ which tends to zero by Lemma 4.1. Conversely, if limk!1jjhk jjL1ð�Þ ¼ 0,

then �þ must be empty, otherwise there would exist T 2 T þ and for all k we would

have jjhk jjL1ð�Þ 	 jT j1=d .

This lemma, as Lemma 4.1, is just a geometric observation, and a consequence of

the fact that the sequence of triangulations is shape regular and obtained by

re¯nement, but it is independent of the particular problem being considered.

As an immediate consequence of De¯nition 4.3, and Lemma 4.1 in Ref. 16, we have

that

T þ ¼
[
k	0

T þ
k :

Remark 4.1. Theorems 4.2 and 4.3 hold independently of the marking strategy. In

the next theorem, we will make use for the first time of the assumption (2.16) done on

the module MARK.

Theorem 4.4. (Estimator's convergence: Third part) If fTkgk2N0
denote the

triangulations corresponding to the convergent subsequence of discrete eigenpairs

from Theorem 3.1, then the contribution of T þ
k to the estimator vanishes in the

limit, i.e.

lim
k!1

	kðT þ
k Þ ¼ 0:

Proof. Let T 2 T þ, then there exists k0 such that T 2 Tk , for all k 	 k0. Taking into

account that all marked elements are at least refined once, we have that T 62 Mk .

From assumption (2.16), 	kðTÞ. 	kðMkÞ. Since Mk � T �
k [ T 0

k , Theorems 4.2

and 4.3 imply that

	 2
k ðTÞ. 	 2

k ðMkÞ � 	 2
k ðT �

k Þ þ 	 2
k ðT 0

k Þ ! 0:
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We have thus proved that

	kðTÞ ! 0; for all T 2 T þ:

Now, we will prove that, moreover,X
T2T þ

k

	 2
k ðTÞ ! 0:

To prove this, we resort to a generalized majorized convergence theorem. We ¯rst

de¯ne

�k jT :¼ 1

jT j 	
2
k ðTÞ; for all T 2 T þ

k ; and �k :¼ 0; otherwise:

Then
P

T2T þ
k
	 2
k ðTÞ ¼

R
��kðxÞdx, and �kðxÞ ! 0 as k ! 1 for almost every x 2 �.

It remains to prove that
R
��kðxÞdx ! 0 as k ! 1.

Let k be ¯xed. Due to the de¯nition of T þ
k , for T 2 T þ

k we have that !kðTÞ ¼
!jðTÞ for all j 	 k, and we can drop the subscript and call this set !ðTÞ. Using

Corollary 2.1 we have that if ð�; uÞ is any ¯xed eigenpair of (2.1),

	 2
k ðTÞ . jjrðuk � uÞjj 2!ðTÞ þ jj�ujj2!ðTÞ þ ð1þ �kÞ2jjuk jj2H 1ð!ðTÞÞ

. jjrðuk � u1Þjj2!ðTÞ þ jjru1jj2!ðTÞ þ jjrujj2!ðTÞ þ jj�ujj 2!ðTÞ

þ ð1þ �0Þ2jjuk � u1jj2H 1ð!ðTÞÞ þ ð1þ �0Þ2jju1jj2H 1ð!ðTÞÞ

. ð1þ �0Þ2ðjjuk � u1jj2H 1ð!ðTÞÞ þ c 2
T Þ;

where

c 2
T :¼ jju1jj 2H 1ð!ðTÞÞ þ jj�ujj2!ðTÞ þ jjrujj2!ðTÞ;

and ful¯lls X
T2T þ

k

c 2
T . jju1jj2H 1ð�Þ þ jj�ujj2� þ jjrujj 2� < 1: ð4:1Þ

Let now Mk be de¯ned by

Mk jT :¼
C

jT j ðjjuk � u1jj2H 1ð!ðTÞÞ þ c 2
T Þ; for all T 2 T þ

k ;

Mk :¼ 0; otherwise;

8<
:

where C is chosen so that 0 � �kðxÞ � MkðxÞ, for all x 2 �. If we de¯ne

M jT :¼ C
c 2
T

jT j ; for all T 2 T þ; and M :¼ 0; otherwise;

then Z
�þ

jMkðxÞ �M ðxÞj dx

¼
X

T2T þnT þ
k

Z
T
jMkðxÞ �M ðxÞj dx þ

X
T2T þ

k

Z
T
jMkðxÞ �M ðxÞj dx
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¼
X

T2T þnT þ
k

Z
T
jM ðxÞj dx þ C

X
T2T þ

k

jjuk � u1jj2H 1ð!ðTÞÞ

.C
X

T2T þnT þ
k

c 2
T þ C jjuk � u1jj2H 1ð�Þ:

The terms on the right-hand side tend to zero when k tends to in¯nity, due to (4.1)

and the fact that uk converges to u1 in H 1
0 ð�Þ. Therefore,

Mk ! M ; in L1ð�þÞ:

Hence, using that �kðxÞ ! 0, for almost every x 2 �, we can apply a generalized

majorized convergence theorem25 to conclude that

	 2
k ðT þ

k Þ ¼
X
T2T þ

k

	 2
k ðTÞ ¼

Z
�þ

�kðxÞ dx ! 0;

as k ! 1.

We have proved in this section that 	kðTkÞ ! 0 as k ! 1. In the next section we

will use this result to conclude that ð�1; u1Þ is an eigenpair of the continuous

problem (2.1).

5. The Limiting Pair is an Eigenpair

In this section we will prove that ð�1; u1Þ is an eigenpair of the continuous

problem (2.1). The idea of Morin, Siebert and Veeser16 to prove that u1 is the

exact solution to the continuous problem, consisted in using the reliability of the

a posteriori error estimators, that is, the fact that the error in energy norm is bounded

(up to a constant) by the global error estimator. Such a bound does not hold in this

case unless the underlying triangulation is su±ciently ¯ne (see Theorem 2.1). We do

not enforce such a condition on the initial triangulation T0, since the term su±ciently

¯ne is not easily quanti¯able. Instead we resort to another idea, we will bound

aðu1; vÞ � �1bðu1; vÞ by the residuals of the discrete problems, which are in turn

bounded by the estimators, andwere proved to converge to zero in the previous section.

Theorem 5.1. The limiting pair ð�1; u1Þ of Theorem 3.1 is an eigenpair of the

continuous problem (2.1). That is,

aðu1; vÞ ¼ �1bðu1; vÞ; 8 v 2 H 1
0ð�Þ;

jju1jjb ¼ 1:

�

Proof. We know that jju1jjb ¼ 1 due to Theorem 3.1. It remains to prove that

aðu1; vÞ ¼ �1bðu1; vÞ; 8 v 2 H 1
0 ð�Þ:
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Let v 2 H 1
0 ð�Þ, and let vk 2 Vk be the Scott�Zhang interpolant19,20 of v, which

satisfies

jjv � vk jjT . hT jjrvjj!kðTÞ and v � vkk k@T . h
1=2
T jjrvjj!kðTÞ:

From (2.15) we have

aðuk ; vkÞ ¼ �kbðuk ; vkÞ;
for all k, and then

jaðu1; vÞ � �1bðu1; vÞj
¼ jaðu1; vÞ � �1bðu1; vÞ � aðuk ; vkÞ þ �kbðuk ; vkÞj
¼ jaðuk ; v � vkÞ � �kbðuk ; v � vkÞ þ bð�kuk � �1u1; vÞ þ aðu1 � uk ; vÞj
� jaðuk ; v � vkÞ � �kbðuk ; v � vkÞj þ jbð�kuk � �1u1; vÞj þ jaðu1 � uk ; vÞj:

ð5:1Þ

The second term in (5.1) can be bounded as

jbð�kuk � �1u1; vÞj ¼ j�kbðuk � u1; vÞ þ ð�k � �1Þbðu1; vÞj
� j�k jjbðuk � u1; vÞj þ j�k � �1jjbðu1; vÞj
. �0jjuk � u1jj�jjvjj� þ j�k � �1jjju1jj� jjvjj�
. ð�0jjuk � u1jj� þ j�k � �1jjju1jj�Þjjvjj�:

And the third term in (5.1) is bounded by

jaðu1 � uk ; vÞj. jjrðu1 � ukÞjj�jjrvjj�:

Finally, the ¯rst term in (5.1) can be bounded following the steps of the proof of

the a posteriori upper bound, as follows:

jaðuk ; v � vkÞ � �kbðuk ; v � vkÞj

¼
X
T2Tk

Z
T
Aruk � rðv � vkÞ � �k

Z
T
Bukðv � vkÞ

�����
�����

¼
X
T2Tk

Z
T
ð�r � ðArukÞ � �kBukÞðv � vkÞ þ

Z
@T

ðv � vkÞAruk � n
�����

�����
¼

X
T2Tk

Z
T
Rð�k ; ukÞðv � vkÞ þ

1

2

Z
@T

ðv � vkÞJðukÞ
�����

�����;
with Rð�k ; ukÞ and JðukÞ as de¯ned in (2.4) and (2.5). Now, by H€older and Cauchy�
Schwarz inequalities we obtain

jaðuk ; v � vkÞ � �kbðuk ; v � vkÞj

�
X
T2Tk

jjRð�k ; ukÞjjT jjv � vk jjT þ JðukÞk k@T v � vkk k@T
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.
X
T2Tk

jjRð�k ; ukÞjjThT jjrvjj!kðTÞ þ JðukÞk k@Th
1=2
T jjrvjj!kðTÞ

.
X
T2Tk

h 2
T jjRð�k ; ukÞjj2T þ hT JðukÞk k2

@T

 !
1=2

jjrvjj�

¼ 	kðTkÞjjrvjj�:

Summarizing, we have that

jaðu1; vÞ � �1bðu1; vÞj. ðð1þ �0Þjjuk � u1jjH 1ð�Þ

þ j�k � �1jjju1jj� þ 	kðTkÞÞjjvjjH 1ð�Þ:

Using the convergence of uk to u1 in H 1ð�Þ and �k to �1 in R from Theorem 3.1, and

the convergence of the global estimator to zero from Theorem 4.1, we conclude that

jaðu1; vÞ � �1bðu1; vÞj ¼ 0;

and the proof is complete.

6. Main Result and Concluding Remarks

We conclude this paper by stating and proving our main result, which is a con-

sequence of the results in the previous sections, and discussing its strengths and

weaknesses.

Theorem 6.1. Let fð�k ; ukÞgk2N0
denote the whole sequence of discrete eigenpairs

obtained through the adaptive loop stated in Sec. 2.4. Then, there exists an eigenvalue

� of the continuous problem (2.1) such that

lim
k!1

�k ¼ � and lim
k!1

distH 1
0
ð�Þðuk ;M ð�ÞÞ ¼ 0:

Proof. By Theorem 3.1, taking � :¼ �1, we have that limk!1�k ¼ �; and by

Theorem 5.1, � is an eigenvalue of the continuous problem (2.1). In order to prove

that limk!1distH 1
0 ð�Þðuk ;M ð�ÞÞ ¼ 0 we argue by contradiction. If the result were not

true, then there would exist a number � > 0 and a subsequence fukmgm2N0
of fukgk2N0

such that

distH 1
0
ð�Þðukm ;Mð�ÞÞ > �; 8m 2 N0: ð6:1Þ

By Remark 3.1 it is possible to extract a subsequence of fukmgm2N0
which still

converges to some function ~u1 2 V1. By the arguments of Secs. 4 and 5, ~u1 is an

eigenfunction of the continuous problem (2.1) corresponding to the same eigenvalue

�. That is, a subsequence of fukmgm2N0
converges to an eigenfunction in M ð�Þ, this

contradicts (6.1) and completes the proof.
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Remark 6.1. We have proved that the discrete eigenvalues converge to an

eigenvalue of the continuous problem, and the discrete eigenfunctions converge to the

set of the corresponding continuous eigenfunctions, and this is the main result of this

paper. But there is still an open question: If �k was chosen as the j th eigenvalue of the

discrete problem over Tk , is it true that f�kgk2N0
converges to the j th eigenvalue of

the continuous problem? The answer is affirmative for a large number of problems,

but not necessarily for all. There could be some pathological cases in which looking

for the j th eigenvalue we converge to one that is larger.

We now state an assumption on problem (2.1) that we will prove to be su±cient to

guarantee that the convergence holds to the desired eigenvalue/eigenfunction. More

precise su±cient conditions on problem data A and B to guarantee that this

assumption holds will be stated below.

Assumption 6.1. (Non-Degeneracy Assumption) We will say that problem (2.1)

satisfies the Non-Degeneracy Assumption if whenever u is an eigenfunction of (2.1),

there is no nonempty open subset O of � such that ujO 2 P‘ðOÞ.

Theorem 6.2. Let us assume that the continuous problem (2.1) satisfies the Non-

Degeneracy Assumption 6.1, and let fð�k ; ukÞgk2N0
denote the whole sequence of

discrete eigenpairs obtained through the adaptive loop stated in Sec. 2.4 and � denote

the jth eigenvalue of the continuous problem (2.1). Then,

lim
k!1

�k ¼ � and lim
k!1

distH 1
0 ð�Þðuk ;M ð�ÞÞ ¼ 0:

Before embarking into the proof of this theorem, it is worth mentioning that the

model case of A � I and B � 1 satis¯es Assumption 6.1, due to the fact that the

eigenfunctions of the Laplacian are analytic. A weaker assumption on the coe±cients

A and B that guarantee non-degeneracy of the problem are given in the following:

Lemma 6.1. If A is continuous, and piecewise P1, and B is piecewise constant, then

problem (2.1) satisfies the Non-Degeneracy Assumption 6.1.

Proof. We will argue by contradiction. Let us assume that there exists an eigen-

function u of (2.1) with corresponding eigenvalue �, and a nonempty open subsetO of

� such that ujO 2 P‘ðOÞ. Without loss of generality, we may assume that AjO 2
P1ðOÞ and B is constant over O. Then

�r � ðAruÞ ¼ �Bu; inO:

Since ujO 2 P‘ðOÞ, we have that �r � ðAruÞ 2 P‘�1ðOÞ, and the last equation

implies that ujO 2 P‘�1ðOÞ. Repeating this argument we finally obtain that

ujO � 0;

which cannot be true. In fact, u is a solution of a linear elliptic equation of second

order with uniformly elliptic and Lipschitz leading coefficients and therefore, it

cannot vanish in an open subset of � unless it vanishes over �.13
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Remark 6.2. Searching for other sufficient conditions on the coefficients to

guarantee Assumption 6.1 is out of the scope of this paper. We believe that in the

assumptions of the previous lemma,A can be allowed to be piecewise continuous with

discontinuities along Lipschitz interfaces. The only thing needed is a proof of the fact

that solutions to elliptic problems with coefficients like these cannot vanish in an

open subset of � unless they vanish over all �. We conjecture that this could be

proved using Han's result13 in combination with Hopf's lemma,12 but it will be

subject of future work.

We now proceed to prove Theorem 6.2, which will be a consequence of the

following lemma.

Lemma 6.2. Let fhkgk2N0
denote the sequence of meshsize functions obtained

through the adaptive loop stated in Sec. 2.4. If the continuous problem (2.1) satisfies

the Non-Degeneracy Assumption 6.1, then jjhk jjL1ð�Þ ! 0 as k ! 1.

Proof. We argue by contradiction. By Lemma 4.3, if jjhk jjL1ð�Þ does not tend

to zero, then �þ is not empty, and then there exists T 2 T þ, and thus k0 2 N0

such that T 2 Tk , for all k 	 k0. Since jjukm � u1jjL2ðTÞ ! 0 as m ! 1, and

uk jT 2 P‘ðTÞ, for all k 	 0, using that P‘ðTÞ is a finite-dimensional space we

conclude that

u1jT 2 P‘ðTÞ: ð6:2Þ

Theorem 5.1 claims that u1 is an eigenfunction of (2.1) and thus (6.2) contradicts

Assumption 6.1.

Remark 6.3. It is important to notice that the convergence of hk to zero is not an

assumption, but a consequence of the fact that a subsequence is converging to an

eigenfunction u1 and the Non-Degeneracy Assumption 6.1.

Proof. (of Theorem 6.2) In view of Theorem 6.1 it remains to prove that �k converges

to the j th eigenvalue of (2.1). By Lemma 6.2 the result follows from (2.3).

Remark 6.4. At first sight, the convergence of jjhk jjL1ð�Þ to zero looks like a very

strong statement, especially in the context of adaptivity. But the uniform

convergence of the meshsize to zero should not be confused with quasi-uniformity

of the sequence of triangulations fTkgk2N0
, the latter is not necessary for the former to

hold. Thinking about this more carefully, we realize that if we wish to have (optimal)

convergence of finite element functions to some given function in H 1ð�Þ, then hk must

tend to zero everywhere (pointwise) unless the objective function is itself a polynomial

of degree � ‘ in an open region of �. Lemma 4.1 implies that the convergence of hk to

zero is also uniform, and this does not necessarily destroy optimality.21,6,9

Remark 6.5. A sufficient condition to guarantee that we converge to the desired

eigenvalue is to assume that hk ! 0 as k ! 1. This condition is weaker than the

Non-Degeneracy Assumption, but it is in general impossible to prove a priori.

Convergence of Adaptive Finite Element Methods for Eigenvalue Problems 745



Remark 6.6. Another option to guarantee convergence to the desired eigenvalue is

to start with a mesh which is sufficiently fine. In view of the Minimum�Maximum

principles, it is sufficient to start with a triangulation T0 that is sufficiently fine to

guarantee that �j;T0 < �j0 , where j0 > j is the minimum index such that �j0 > �j . This

condition is verifiable a posteriori if we have a method to compute eigenvalues

approximating from below. Some ideas in this direction are presented in Ref. 1, where

the effect of mass lumping on the computation of discrete eigenvalues is studied.
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