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Abstract

We obtain a comparison of the level sets for two maximal functions on a space of homogeneous
type: the Hardy-Littlewood maximal function of mean values over balls and the dyadic maximal
function of mean values over the dyadic sets introduced by M. Christ in [M. Chrigi{pAtheorem
with remarks on analytic capacity and the Cauchy integral, Collog. Math. 60/61 (1990) 601-628].
As applications to the theory of, weights on this setting, we compare the standard and the dyadic
Muckenhoupt classes and we give an alternative proof of reverse Holder type inequalities.
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1. Introduction

The partition process of a cube RY' involved in the original Calderén—Zygmund de-
composition of the domain of a given integrable functipnsometimes can be substituted
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by a selection method generally provided by a covering lemma. Spaces of homogeneous
type are natural settings in which covering lemmas are available.

In some analytical problems the Calderon—-Zygmund method needs to be applied to a
function defined in a given cube & or a given ball of an abstract metric measure space.
Such is the case if we try to extend the proof given by Coifman and Fefferman [6] of
reverse Holder inequalities for Muckenhoupt weights.

The basic facts concerning Muckenhoupj classes on the euclidean space fox 1
p < oo, are consequences of the implicit reverse Holder inequality contained iA the
condition. From the technical point of view, dealing with the boundedness of operators,
the basic fact used is thatif € A, then there exists a positivg such thatv € A,_.. The
proof of this fact is the key argument in [6] in order to show that A, if and only if the
Hardy—Littlewood maximal function is bounded as an operatoL bw).

To prove ‘A, = A,_.,” Calderon—Zygmund decomposition is the standard and pow-
erful tool. The Calder6n—Zygmund decomposition is associated to the weight to a
special sequence of levels and has to be obtained on cubes or balls in an uniform way.

The first generalization of the Muckenhoupt theory to the setting of quasi-metric mea-
sure spaces with the additional assumption of continuity of the measure of balls as func-
tions of the radius, was given by Calderon in [3].

As it was pointed out by Macias and Segovia in [11], balls of a space of homogeneous
type need not be subspaces of homogeneous type with the inherited measure and metric
structures. Examples of parabolic distancegR3rfor which the family of all balls is not
a uniform family of subspaces of homogeneous type are also given in [11]. Nevertheless
they are able to construct on a general space of homogeneoustygpen) another quasi-
distances equivalent tad (c1d < § < cad, for some constantg andcy) in such a way that
8-balls are uniformly subspaces of homogeneous type. Therefore the Calderon-Zygmund
decomposition technique can be applied to functions given on balls with respect to this
new distance. Actually Macias and Segovia [11] use their above mentioned construction to
give a proof of the reverse Hoélder inequality in the setting of spaces of homogeneous type,
extending the technique introduced by Coifman and Fefferman in [6].

A different proof, of the sufficiency oft, for the L” (w) boundedness of the Hardy—
Littlewood maximal operator, avoiding reverse Hoélder type inequalities, given by Christ
and Fefferman [5] in the euclidean case, can be rather easily adapted to the setting of space
of homogeneous type (see [1]).

In this note we intend to get a Calderon—Zygmund decomposition that goes back to
the original partitioning argument, even in metric measure spaces. This method is based
in the construction of dyadic type families given by Christ in [4]. Our goal is to compare
the level sets of the Hardy—Littlewood maximal function and the level sets of the dyadic
maximal function, built on these dyadic families. As applications we shall compare the
Muckenhoupt classes defined through thballs and through this dyadic sets and prove
reverse Holder inequalities fot, weights on spaces of homogeneous type.

In Section 2 we give the construction, due to Christ [4], of the dyadic fafiip the
general measureless setting of quasi-metric spaces with finite Assouad metric dimension.
We also prove that for a doubling measuren (X, d), Christ’s construction is providing a
tiling sequence of the space with the special property that the fdaglyd, u): Q € D} is
a uniform family of spaces of homogeneous type and we state the Calderén—Zygmund de-
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composition of the domain of a real integrable function. Section 3 contains the elementary
but central comparison of level sets for the dyadic maximal and for the Hardy-Littlewood
maximal functions. In Section 4 we introduce standard and dyagdiéMuckenhoupt
weights, and we prove their equivalence under the assumption of the doubling property.
Section 5 is devoted to apply the result of Section 4 to prove reverse Hoélder inequalities.
Even when the reverse Holder inequality in the dyadic setting can be obtained from the
general results for martingales see [8], we give, for the sake of completeness, an elemen-
tary proof in the spirit of [6].

2. Dyadic type partitions on spaces of homogeneoustype

Let X be a set. A quasi-distance ohis a non-negative symmetric function defined on
X x X such thatd(x, y) = 0 if and only if x = y and there exists a constakitsuch that
the inequality

d(x,y) <K[d(x,2) +d(z, )],

holds for everyx, y, z € X.

A well-known result due to Macias and Segovia (see [10]) provides a distaand a
real number, generally larger than one, such tliais equivalent tqp* =: d’'.

Since a quasi-distanaé on X induces a topology through the neighborhood system
{B(x,r): r > 0} of each pointx € X (see [7]), we consider oX this topology. A basic
corollary of the above mentioned theorem of Macias and Segovia is the fact that for any
quasi-distance/ on X it is always possible to construct an equivalent quasi-distafce
such that everyl’-ball is an open set.

Let us briefly introduce the Assouad dimension of a quasi-metric space. We shall say
that a subset of X is e-dispersed > 0) if d(x, y) > € for everyx andy in A with x # y.

The Assouad dimension &f, dimy X, is the infimum of all those positive numbersuch
that the inequality

#(B(x,Ar)NA) < CA*

holds for some constaiit, everyx > 1, everyx € X, everyr-disperse subset of X and
everyr > 0. It is not difficult to prove that dim X < oo is equivalent to the fact that, for
someN > 0, everyr-disperse subset of X has at mostV points in each balB(x, 2r)
for everyx € X and every > 0.

Let (X, d) be a quasi-metric space with finite Assouad dimension. Assume thdt the
balls are open sets. Take<0s < 1 and;j € Z. We shall say that; is as/-netinX if \;
is a maximal’/-disperse subset df. Notice that for everyj € Z there exists a non-empty
8/-netNj, since of course we are assumiig# ¢1. We can writeN; = {x;: k € K(j)},
where/C(j) is an initial interval of natural numbers that may coincide with alNoin fact
K(j) is finite for somej if and only if it is finite for every;. Actually K(;) is finite for
some;j if and only if (X, d) is bounded.

The first step in the Christ’s construction is to introduce a tree structure on the index set
A= Ujez({j} x K(j)) that is closely related to the metric structureXn

Lemma 2.1 [4, Lemma 13] There exists a partial ordex on A satisfying the following
tree properties
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(1) (j1.k1) < (Jo. ko) impliesjz < j1;

(2) for every(j1,k1) € A and everyj, < j1, there exists a uniqui; € K(j2) such that
(1, k1) < (2, k2); o _

(3) if (1, k1) < (1 — 1, ko), thend (xi, x[27h < 857%,

(@) if dx x < S5, then(in, ko) < (ja — L k2).

For a helpful visualization we may think as a family tree in whiclij1, k1) < (j2, k2)
if and only if (j2, k2) is an ancestor ofj1, k1).

Now we are in position to construct the building blocks of the partitions. Define for
(j, k) € A, the set

ol= | B as) (2.1)
,D=<(j k)

for a positive numbex. Choosingz ands appropriately, we get the desired dyadic prop-
erties for the family Q7 : k € K(j), j € Z}.

Theorem 2.2. Let (X, d) be a quasi-metric space with finite Assouad dimension such that
thed-balls are open sets. Then there exist 0, C > 0, and0 < § < 1 such that the sets

Q,{ satisfy the following properties

(D.1) Q,{ is an open set for evenyj, k) € A;

(D.2) B(x,ﬁ, aaf)'c 01, for every(j, k) € A;

(D.3) O C B(x],C8/), for every(j, k) € A;

(D.4) for every (j,k) € A and everyi < j there exists a uniqué € K(i) such that
0 € 0}; . '

(D.5) for j >i then eitherQ] € Q' or Q] N Q) =9, k € K(j) and ¢ € K(i);

(D.6) there exists a constan¥ such that#{k € K£(j): Qf C Qfl} < N for everyt e
K(j — 1) and everyj € Z; .

(D.7) for every € Z, Q; N Qy =¥ for k # ¢ both in £(j) and the set Jy i (;, Q1 is
dense inX; .

(D.8) X is bounded if and only if there existg, k) € A such thatX = Q-,ﬁ.

Proof. Notice that properties (D.2) to (D.5) can be proved as in [4] since there only the
finiteness of the Assouad dimension is actually used. Property (D.1) follow from the fact

that thed-balls are open sets. From (D.2) and (D.3) it follows that the sequence of pﬁ)ints
such thatQ,{ C Qfl is anas’ -disperse subset df(xg*l, C8/~1). Since(X, d) has finite
Assouad dimension, we get (D.6). The first statement in (D.7) follows from the definition
of Q,{ and (2) in Lemma 2.1. The second follows from the fact that baihgs a maximal
5'-dense subset of for everyi € Z, andU;x( Q,{ 2 Ui Ni If X = B(xo, R), itis
possible to findj, negative enough, such thak® < aé§’. For thisj and everyk € IC(j)

we haveB(x,{, as’) D B(xg, R). Since, from (D.2)Q,€ contains the baIB(x,{, as’), (D.8)
follows. O
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Let us denote byD the class of alblyadicsets defined by (2.1). Witlp; = {Q,’;: ke
K(j)}, we have thaD = UjeZ D;. Given Q andQ’ two elements irfD we say that they

are of the same level i = Q7, Q' = Q7 for some; € Z and some, £ € K(j).
For a given positive numbe, we shall say that two dyadic sef§ andQ; of the same

level j € Z are R-neighbors if the inequality(x,{, x{) < RS/ holds.
The next result is elementary but useful for the subsequent development. Let us write
Nr(Q}) to denote the set of ak-neighbors ofQ; .

Lemma 2.3. For everyR > 0 there exists a numbe¥l = M (R) such that the number of
elements O.N'R(Qi) is less than or equal ta/ for everyj € Z and everyk € K(j).

Proof. Since the setx;: Q) € Nx(Qy)} is §/-disperse and, from the definition of neigh-
boring, is contained in a ball with radiugs/, the finiteness of the Assouad dimension
gives the desired estimate. Moreover we can take N1t19% % whereN is the constant
associated to the finiteness of the metric dimensian.

Let (X, d) be a quasi-metric space with finite Assouad dimension such thattiadis
are open sets. If the spack, d) is complete, in the Cauchy sense, we can apply the results
of Vol'berg and Konyagin [13], Wu [14] and Luukkainen and Saksman [9] to get a Borel
measure: on X satisfying the doubling condition

0< ;L(B(x, 2r)) < A/L(B(x, r)) <00 (2.2)

for some constand, everyx € X and every- > 0. As usual we shall say thék, d, n) is
a space of homogeneous typ& X, d) is a quasi-metric space anpdis a measure defined
on ac-algebraX containing thed-balls that satisfies (2.2). We will refer to the triangle
constantk and the doubling constart as thegeometric constantsf the space.

Let us notice that if X, d, u) is a space of homogeneous type then the fact(tkia/)
has finite Assouad dimension is proved in [7]. So that in a space of homogeneous type the
above construction of dyadic sets is available. But as Christ shows in [4], a result stronger
than (D7) holds in this case: the measure of the boundaries of dyadic sets vanishes.

Theorem 2.4[4]. Let(X, d, n) be a space of homogeneous type suchdHadalls are open
sets and continuous functions are densé&iX), then

w(d Q,’C) =0 forevery(j, k) e A,

whered Q,’; is the boundary OQ,{.

We would like to observe that under metric completeness the density of Lipgthitz
functions with compact support, for songe> 0, can actually be obtained (see [2] and
[12]).

In the next lemma we sketch the proof of an interesting additional feature of these dyadic
families: {(Q, d, n): Q € D} is a uniform family of spaces of homogeneous type for any
doubling Borel measurg on (X, d).
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Lemma 2.5. Let (X, d, 1) be a space of homogeneous type with geometric conskants
and A such thatd-balls are open sets. L& be a dyadic family with constants, a and$.
Then there exists a constaAt(depending only oK, A, C, a and 8), such that for every
(j, k) e A, (Q,’c, d, i) is a space of homogeneous type with geometric conskamaisd A.

Proof. Notice first that if a Borel measure is given on a quasi-metric spac&, p)
with open balls and it satisfies the doubling property, with a doubling congtgntor
the balls centered on a dense subset pthenv also satisfies the doubling property
for every ball with a constanfig that depends only omg and the triangle constant
for p. With this fact in mind, takex € Q\UQ,epaQ’ for a fixed but generap € D.
Let » be a positive given number. Assume th@atbelongs to the levejy € Z, that is

0= Qig € Dj, for somekg € K(jo). With By (x,r) we shall denote thd-balls of the
space(Q, d, ). Observe that if > 2K C§/0, we have thaBo (x,r) = Bo(x,2r) = Q, SO
that the doubling property trivially holds with constant equal to one. Let us, then assume
that 0< r < 2K C870. Pick ji > jo such that X C8/171 < r < 2K C871. Letky € K(j1+1)
be such that ¢ Qﬁ“ C Q. Then

B(x,{iJrl, a8j1+1) C Q,ﬁ+1 C Bo(x,r).

On the other hand,
j 4K .
Bo(x,2r) C B(x,{i“, CK(T + 1)5./1+1)_
Thus

M(BQ(x, 2r)) < /L(B (xlgiﬂ’ CK(4TK 4 1>5j1+1>>
Ap(B(x*H, ashith))
Ap(Bo(x. 1)),

with A depending only ork, A, C,a and$, not on Q. Let us finally observe that since
Bg(x,2r) is an open set, we have thatBg (x, 2r)) > 0 and sinceBg (x, r) is bounded,
w(Bg(x,r)) isfinite. O

<
<

Let us finish this section by proving a dyadic version of Calderén—Zygmund decom-
position. We shall use the standard notation for mean valugs;) = ﬁ fQ fdup, for

Q e Dandmx(f) = ﬁ/x fduif p(X) <ooandmy(f) =0if u(X)=—+oo.
Theorem 2.6. Let (X, d, u) be a space of homogeneous type such éhballs are open
sets. Letf > 0 be au-integrable function defined oX and A a positive number with
A > mx(f). Then there exists a familfy ¢ D such that
if 0 and Q' are distinct elements of, thenQ N Q' =¥; (2.33)
mo(f) > AforeveryQ e F; (2.3b)
mg(f) < for everyQ € D such thatQ 2 Q for someQ e F; (2.3c)
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mo (f) < A for everyQ’ € D such thatQ’ N < U Q) =0. (2.3d)
QeF

Proof. Let H be the family of all dyadic set® € D for whichmg(f) > 1. If H =0,
taking F = @ we trivially have that (2.3a—d) hold true for eve@yf € D = F*. Let us then
assume thak{ # . For eachQ € H, the class of all dyadic sef@ in H such thatQ > Q

is bounded above. Of course this is trugXf, d) is bounded. For the unbounded case, as
felXX,w),mg(f)< ﬁllflll tends to zero if the diameter the dyadic gBtgrows

to infinity and 0" 5 Q. So that for eactD € H there is a unique cub® e D which is
maximal with the propertie® € H andQ > Q. Let F be the class of thos@. In other
words,

={0: 0 is maximal with the property: 5 (f) > 1}.
Properties (2.3a—d) for this clagsfollow directly from its definition. O

3. Comparison of the level sets of the dyadic and the standard maximal functions

Let (X,d, u) be a space of homogeneous type. The non-centered Hardy—Littlewood
maximal function is defined by

Mf(x)—fggm/uw,

for a given locally integrable functioff.

Taking d’ a quasi-distance o equivalent tod such that thel’-balls are open sets,
we have a dyadic famil\D satisfying the results of the previous section. For a locally
integrable functionf we define its dyadic maximal function by

MY f(x) = 55"%@ / | F)]du(y),

for x € Jyep @ andM® f(x) = 0 otherwise.
The basic facts concerning boundedness of the dyadic maximal operator are contained
in the next result.

Theorem 3.1. With the notation introduced above we have

(a) For every integrable functiorf and every positive real numbgrthere exists a disjoint
family 7 c D such that

[xeX: M¥ f(x) >} = U 0.
QeF

(b) The weak typél, 1) inequality
il € X: MY £() > 2}) / Fldu,
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holds for every locally integrable functiofiand every. > 0.
(c) If 1 < p < oo, there exists a constant, > 0 such that the inequality

1M £l < Cpll £l ps
holds for every locally integrabl¢.

Proof. (a) LetA > 0 and f an integrable function. Ik > mx (| f|) we can apply The-
orem 2.6 to| f| and A in order to obtain a familyF of disjoint dyadic cubes satisfying
(2.3a—d). If, on the other hand, < mx(| 1), this is only becaus@ (X) < oco. Sinceu
is doubling we have thaX is bounded and, from (D.8X = Qi for some(j, k) € A.

In this case we take ag the family which contains only the eIemth,{. Notice now
that{M® f > 1} = gz Q- In fact, F is empty if and only ifM® f < . If F has the

only eIementQ,’{ = X, then both sets are the whale For the generic case, notice that if
xeQeF, M¥ f(x) =mg( f]) > . Given now a pointc such thatM®” f(x) > x, we
havem (| f|) > A for someQ € D with x € Q. From the construction of there exists a
cubeQ’ D 0, Q' € F, hencex is an element of the SQUQG}- Q.

(b) From (a) we easily obtain

1 1
w(lrex: 2w =a) = Y w@<; [ isdu<s [in1an.
oeFr UQE.FQ X

(c) From Marcinkiewicz interpolation, we get the? boundedness o#f/?> for 1 <
p<oo. 0O

Of course, inequalities of type (b) and (c) follow also from the inequalt§ f <
C M f which follows from (D2), (D3) and the doubling property far Observe that the
pointwise inequality in the opposite sense is not possible in general, but as the next theo-
rems show a control of the level setsMff in terms of those oM ® f is still possible.

Theorem 3.2. Let (X, d, u) be a space of homogeneous type afif the non-centered
Hardy—Littlewood maximal function. Let be any quasi-distance axi equivalent taf for
which the balls are open sets. LBtbe any dyadic family oiiX, d’, 1) as in Sectior.
Then there exisRg > 0 and L > 0 such that for every locally integrable functighand
every positive real number, we have that

{x: Mf)>rLa}c | ( U Q’) UZ, (3.1)
QeF " Q'eNgy(Q)

whereF is the family associated tg and A given in Theoren3.1, N'g,(Q) denotes the
Ro-neighbors ofQ defined in Sectiof and Z = Ugep 00 is a set of zerqu-measure.

Proof. Let us first notice that by taking large enough it suffices to prove (3.1) for the
centered maximal function

M¢€ =
f=)= fi’?u(B( ))B(f) /ldu
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instead ofM f (x) and for the case in which actually theballs are open sets. The constants
Ro andL will become explicit at the end of our estimates. Let us take a poivtiich does
not belong to the se{thef(UQ,ENRO(Q) Q) U Z. In order to obtain an upper estimate
for the M€ f (x), let us pick a ballB(x, r) centered ak with positive radius- and let us
estimaten g, (| f1). Takej € Z such that/*! < r < §/. Define the subclass of dyadic
sets

Gx,r)={0eDj: ONB(x,r) 0}
Claim. No Q € G(x, r) is contained in & € .

Let us assume that the claim is proved. The farfillgan be partitioned in two disjoint
subfamiliesD! = {Q € D: mo(|f]) > A} and D? = {Q € D: mo(|f]) < A}. From the
claim and Theorem 2.6 we see tigiix, ) C D2. Notice also that the number of elements
of the clasgj(x, r) is bounded by a constanf; which does not depend onor r > 0.
Hence

1
_— d d
1(B(x.r)) / fldu= (B( Z / fldu
B(x,r) Q

GG px,nnod

1(Q)
~Z w(B(x,r)) o (/1)
0eG(x,r)
< M1Aza,

whereA; satisfiesu(Q) < Aou(B(x, r)), which follows from the fact thaD is contained

in the ball centered at with radiusCr for some fixedC. So, we have tha/€ f (x) < LA

with L = M1A;. Let us, finally, prove the claim. Let us assume there egist G(x, r)

and Q € F such thatQ c Q. SinceQ is also a dyadic set, we have that= Qj for
somei < j and somé € K(i). Let us show that for an appropriate choice of the constant
Ro, we have the contradiction: € UQ’eNR0<Q) Q’. Take a pointy € QO N B(x, r), then

d(x,x}) < K[d(x,y) +d(y,x))] < K(r + C8) < K(8/ + C8') < K(1+ C)8'. In other
wordsx is a point in the baIIB(xli, K (1+ C)8") which does not belong to the residual
boundariesZ. Hencex € Q!, for somem € K(i). So that from (D.3){(x, x.,) < C§' then,

d(x,, x}) < K(d(x},,x) +d(x,x])) < K(C§ + K1+ C)5')
=K(C+K(1+0))s".
In other wordsx € Q! and Q, and Q0 = Q! are Rp-neighbors withRy = K(C +
K(1+C)). O

Theorem 3.2 allows us to obtain distribution function estimates for the Hardy—
Littlewood maximal function in terms of the dyadic maximal function for a given doubling
measure on X which is absolutely continuous with respectito
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Theorem 3.3. Let (X, d, u), Mf,d andD as in Theoren8.2 Letv « u be a doubling
measure. Then there exist two positive and finite consfaatsd C such that the inequality

V({Mf > LaY) < Cv({M¥ £ > 1)),
holds for every locally integrabl¢ and everya > 0, wherev*(E) = infv(F) with F D E
andF e X.

Proof. Let L andRg be the numbers given by Theorem 3.2. Let us first observe that, from
Lemma 2.3, (D2) and (D3), there exists a constaft, Rp) such that the inequality

\1( U Q/> < A(v, Ro)v(Q)
Q'eNRy(Q)
holds for everyQ € D. From this inequality and (3.1) we have that

v*({Mf>LA})<v<U< U Q’>>+v(2)

QeF " Q'eNgy(Q)
<Y U o)
QeF " Q'eNry(0)
<A Ro) Y v(0Q)

QeF

:A(v,Ro)v( U Q)

QeF
=A@, ROv({M? f > 1)),
and the result holds with = A(v, Rg). O

4. A, and dyadic-A , Muckenhoupt weights on space of homogeneous type

A non-negative, measurable and locally integrable functiotiefined on the space of
homogeneous typ&X, d, 1), is said to be a Muckenhoupt weight of class(X, d, 1) (1 <
p < oo) if the inequality

(/wdu)(/wﬁ)p_l@u(mf’, (4.1)
B B

holds for some constar and every ballB in X. We say thatw € A1(X, d, w) if there
exists a constar®’ such that the inequality

1
—— | wdu < Cessingw, 4.2
M(B)B/ (4-2)

holds for every ballB in X. Let us observe that the definitions of tlg, classes are
invariant by change of equivalent quasi-distances.



H. Aimar et al. / J. Math. Anal. Appl. 312 (2005) 105-120 115

Assuming thay is a quasi-distance aki such thaty-balls are open sets andl, n, u) is
a space of homogeneous type, we have dyadic fanfiliesD(n) given by the sets defined
in(2.1). Itis easy to see thatif € A, (X, d, u), then the measune(x) du(x) is doubling.

We say that a non-negative, measurable and locally integrable funetiera dyadic
Muckenhoupt weight of classf,y(X, n,m) 1< p < oo (respectivelyp = 1) with respect
to D, if (4.1) (respectively (4.2)) holds witkp € D instead ofB.

Let us notice that ,(X, d, n) impIiesAf;V(X, d’, w) for d’ ~ d with the d’-balls open
sets. In fact, ifw € A, (X, d, u) and Qi is any dyadic set irD, we have

(o)<l f oo [ )

0 o] B(x],C87) B(x] ,C8))

Cun(B (. C87))"

< Cu(Blsf.ad)))"
C(u(QD)".

The converse is generally false. For example the function defind®l by w(x) = 1 if

x <0 andw(x) = x¥/2 if x > 0 belongs toA‘éy but not to A, with respect to the usual
dyadic intervals orR.
The purpose of this section is to prove the next result.

N

Theorem 4.1. Let (X, d, 1) be a space of homogeneous type. & u is doubling measure
on (X, d) such that for somé’ ~ d with thed’-balls being open sets we have that=
™ e AD(X,d', 11), thenw € A,(X, d, 11).

Proof. Sincew € Af,y(X, d’, w), by Holder inequality we get that, for evety € D,

1 1 ) 1/p S 1/p
— dp < —— d r=1d
u(Q)/'f'“ u(Q)(/'““’“) (/“’ “)

0 [ 0
) 1/p

d
( (Q)/'f'w “) ’

wherew(Q) = fQ wdp. Then we get that
M f(0) < C[ME (1£17) )] 77, (4.3)
whererﬁ’g(x) =SUPcp, 0eD w( 3 g lglwdu foreveryx € Ugyep O andM® g(x) =
4.

otherwise. Now, from Theorem 3 3, (4.3) and, sinéedoubling, applylng Theorem 3. 1(b)
in the space of homogeneous type d, v), we get
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s ) (- (&) )

CcPLP
<

wdp

for all locally integrablef and all» > 0. Then, by standard arguments we obtain that
1
weA,(X,d, ). Infact, let us consider a balt and f =w ™ »-1xp. Then

M=t =Y
s T e}

for all ¢ > 0. So that

/wd“”“” <{Mf>ﬁ W dp D

B

S /wf’ldu
“MB)/E ”1d“'_8 B

for all ¢ > 0. Then lettings — 0 we are done. O

Notice that Theorem 4.1 proves that, under the hypothesis of doubling for a given
weight w, the Muckenhoupt character af can be described through its behavior on any
dyadic systenD(n) with n >~ d. Since doubling condition ow, in Theorem 4.1, involves
the family of all balls on(X, d), one may think that the Muckenhoupt charactemois
not completely described by a dyadic family of the typé;). But if we look at the actual
estimate in the proof of Theorem 3.3, we see that the doubling property used involves only
dyadic sets. Moreover what matters is the boundedness of the measure of neighbors of a
dyadic setQ in terms of the measure @ itself. Nevertheless is not difficult to prove that
this notion of doubling is equivalent to the standard one, so that all the information of the
Muckenhoupt character of a weigttcan be given in terms of its behavior on the dyadic
sets. Let us state this remark in the next result.

Corollary 4.2. Let (X, d, 1) be a space of homogeneous type such #hballs are open
sets and leD = D(d). Letw be a non-negative locally integrable function definedxn
Thenw € A,(X,d, ) if and only ifw A‘,l,y(X, d, n) and for eachR > 0 there exists a
constantA (w, R) such that the inequality

w(Q) < A(w, Ryw(Q) (4.4)
holds for everyQ’ € Nz (Q) and for everyQ € D.
Proof. Since it is clear from the definition aR-neighbors of a giverp € D, that the
doubling condition implies (4.4), from Theorem 4.1, we only have to show the converse.

Givenr > 0, let j € Z be such thak (1 + C)8/ < r < K(1+ C)8/~1 whereK is the
triangle constant of andC is the constant in Theorem 2.2. Itis easy to see that there exists
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¢ eZsuch thatQﬁ C B(x, r) since/; is maximal with the property aof/-dispersion. We
shall prove that there exisf& such that
B(x,2r) C < J o)uz
QeNRy(Q))
whereZ = X \ Uex(j) Q,{. To prove this fact, take € B(x, 2r) — Z. Then, there exists
m € K(j) such thaty € Q,’,; Notice that
d(xh. %)) < K[d(xi.y) +d(y. /)]
<K[C8 + K[d(y,x) +d(x,x])]]
< K(C8 +3Kr)
<[KC+3K31+0)/5)80.
Then choosingRo = KC + 3K3(1 + C)/8, we get thatQ,f;l € NRO(Qé). Now, by
Lemma 2.3,
U(B(x,Zr))gv( U Q)—i—v(Z)gCu(Qi)gv(B(x,r)). O
0eN®y(Q))

Let us finally observe that (4.4) is not the “dyadic doubling” obtained naturally m&n
relating the measure of a dyadic set to the measure of its father (first ancest@r: if

Qk eDandQ = Q L are such thad 2 0, then

w(Q) < Cw(Q). (4.5)

In fact, from theA‘;,y condition, the doubling property for and Hélder inequality, we get
the following inequalities:

(/ wdu) (/ w7 du)p_l < C[u@) <[]
5 5
ce ) [
e[
0

H‘

(']1

Ql

which give us (4.5).

5. Application to reverse Holder inequalities

As it was mentioned in the introduction, we shall use the above results to give another
proof of the next theorem.
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Theorem 5.1. Let(X, d, 1) be a space of homogeneous type such that continuous functions
are dense inL1(X) and letw € A,(X,d, n), then there exists a positivesuch thatw e
Ap—e(X, d, 1.

To prove the theorem let us take a quasi-distasdicequivalent tod such thatd’-
balls are open sets and let us construct a dyadic fafik D(d’) associated to this
new quasi-distance. As we have observed in Section 4, sineeA,(X,d, ), then
w e Af,y(X, d’, ). If we prove the desired result in the dyadic setting, i.e.: there exists
a positivee such thatw e Af,y_e(X, d’, u) we are done, since we can apply Theorem 4.1
it

becausev d . is a doubling measure. On the other hand, in order to pﬁﬁ%@ Ay,

will suffice to obtain a reverse Holder inequality in the dyadic context.

Even when the remaining dyadic reverse Hdélder inequality could be obtained from the
martingale setting [8], we shall briefly sketch how the result follows from the analytical
tools given in Theorem 2.6 (Calderon—-Zygmund decomposition) and Lemma 2.5 applying
mutatis mutandihe technique introduced by Coifman and Fefferman in [6].

Lemma 5.2 (Reverse Holder inequalityAssume that the space satisfies the hypotheses of
Theorenb.1and that each ball is an open set. Given a weight Aﬁy with 1< p < o0

there exist positive constan€ and § depending only orp, the Af,"' constant forw and
the geometric constants such that the inequality

1
1 =Ry C
(—M(Q) / [w(x>]1+5du(x))l 5 <= f wx) du(x) (5.1)
0 0

holds for everyQ € D.

Proof. Let w be a weight inAf,y, let Q be a given dyadic set i® and let{i,,: m =
0,1,...} be anincreasing sequence wiif= m o (w). Since(Q, d, ) is a space of homo-
geneous type (Lemma 2.5) we can apply Theorem 2.6 ¥ithQ, f = w andA =1, in
order to obtain a familyF,, C D satisfying (2.3a) to (2.3d). S&2,, = Jy, Q. Notice
that$2,,+1 € £2,,, foreverym =0, 1, 2, ... . The desired inequality (5.1) will follow from
the next statement.

Claim. For eachx € (0, 1), we can choose two numbeds$ > 1 andg < (0, 1) such that
Am = AoM™ and both inequalities

w(82y) <a™p(20) and (5.29)
w(2m) < " w($20) (5.2b)

hold for everyQ and everyn =0, 1, 2,....
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Assuming our claim, let us finish the proof of the lemma. Rick0 such thagmM?® < 1.
Let us estimate the desired mean valuevét? over the seD,

o0
/w1+5du: / W+ Y / Wyt / W dp.
Q Q_-QO mzogm_Qerl m)onozlgm

From the first assertion in our claim, we see that the last term above vanishes. For the first
and the second terms we use (2.3d), the Lebesgue Differentiation Theorem and the second
assertion in the claim in order to get

/ wdp <AJw(Q) + D A w(2m) < (Aé +> Afnﬂﬁ"’) w(Q)
m=0

0 m=0
0 146
:)L‘S 1 MB(m-i-l) m =C<w(Q)> .
o( +m§=O B )w(Q) 20 wu(Q)

Let us finally sketch the proof of the claim. Takee D anda € (0, 1). As in the euclidean
case, itis enough to show that there exits a congtastich that withk,,, = AoM™ we have
the inequalities

w(2nr1N Q") <au(Q) (5.2¢)

for every Q' € F,, and everym =0, 1,2,.... Once (5.2c) is proved, from the standard
Agg’-type inequality, we also have

w(2n+1N 0 < pw (2, (5.2d)

for somep < 1. Adding, overQ’ € F,, in the inequalities (5.2c) and (5.2d), and then
iterating, we obtain (5.2a) and (5.2b).

Let us sketch the proof of (5.2c). Tak# € F,. Since we are dealing with the dyadic
sets inD, the intersection ofQ’ and £2,,,1 is the disjoint union of those dyadic sets
Q" € Fn+1, Which are contained i®’. From property (2.3b) of the Calderén—Zygmund
decomposition at level,, 1, we have

w2wanQh= Y Q"< / wdp
(Q"eF i1 0"<Q)) " e, 1 0720 G
<2 / d
wdpu.
\)\m+1
Q/

Let us now consider the first ancesirof Q’, applying (2.3c), and using the fact that
and Q' have comparablg-measures, we get

Am
u
Am+1

which becomes (5.2c) provided thiat = (£)™ Ao or, in other words\ = £. O

a"

w(2n1NQH < C (2",
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