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Abstract

The pH process dynamic often exhibits severe nonlinear and time-varying behavior and therefore cannot be adequately controlled with

a conventional PI control. This article discusses an alternative approach to pH process control using model-free learning control

(MFLC), which is based on reinforcement learning algorithms. The MFLC control technique is proposed because this algorithm gives a

general solution for acid–base systems, yet is simple enough to be implemented in existing control hardware without a model.

Reinforcement learning is selected because it is a learning technique based on interaction with a dynamic system or process for which a

goal-seeking control task must be performed. This ‘‘on-the-fly’’ learning is suitable for time varying or nonlinear processes for which the

development of a model is too costly, time consuming or even not feasible. Results obtained in a laboratory plant show that MFLC gives

good performance for pH process control. Also, control actions generated by MFLC are much smoother than conventional PID

controller.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

pH control in neutralization processes is a ubiquitous
problem encountered in the chemical and biotechnological
industries. For example, the pH value is controlled in such
chemical processes as fermentation, precipitation, oxida-
tion, flotation and solvent extraction processes. Also,
control of pH in food and beverage production (such as
in bread, liquor, beer, soy sauce, cheese, and milk
production) is an important issue because the enzymatic
reactions are affected by the pH value of the process and
each has its optimum pH critical to the yield. Other pH
control applications in industry, for example, are in the
decomposition section of the Sucono/UOP phenol produc-
tion process. The acid catalyst that is added in the
decomposition section must be neutralized to prevent yield
loss due to side reactions and protect against corrosion in
the fractionation section (Schmidt, 2005).
e front matter r 2006 Elsevier Ltd. All rights reserved.
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In chemical processes, the pH is a measure of the
hydrogen ion concentration, which determines the acidity/
alkalinity of a solution. It can be defined as (for 25 1C,
1 atm)

pH ¼ � log½Hþ�, (1)

where [H+] denotes the hydrogen ion concentration in
mol/l (more precisely, it should be the activity of the
hydrogen ion). The pH of a solution is used as a measure of
[H+] by means of a potential difference in an electrolytic
cell.
The dissociation of weak acids and bases or their salts

involved in the solution determines the number of
hydrogen ions. All weak species have the property, called
buffering, to resist change in the pH. A weak acid, for
example, is not completely dissociated, so it can absorb
hydrogen ions by converting them to undissociated acid
molecules (Kalafatis et al., 2005).
In most pH neutralization processes, the control of pH is

not only a control problem but also comprises chemical
equilibrium, kinetics, thermodynamics and mixing
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Fig. 1. Cycle of reinforcement learning.
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problems all of which must be considered (Gustafsson
et al., 1995). These inherent characteristics of pH processes
are an interesting and challenging one to be solved. An
important problem is that the process buffer capacity
varies with time, which is unknown and dramatically
changes process gain, thus making it difficult for controller
design. For example, if either the concentration in the inlet
flows or the composition of the feed changes, the shape of
the titration curve will be altered. This means that the
process nonlinearity becomes time dependent and the
system switch over several titration curves. Also, due to
the nonlinear dependence of the pH value on the amount of
titrated reactant, the process will be inherently nonlinear.
As a result, it is difficult to develop an appropriate
mathematical model of the pH process for designing a
controller that can exhibit a good performance over a wide
rage of operating conditions.

Many researchers have proposed control strategies for
pH problems based on the titration curve. For example,
Shinskey (1973) designed an adaptive control strategy by
resorting to three regions in the titration curve. A general
dynamic model for fast acid–base reaction was presented
by Gustafsson and Waller (1983), using invariance reac-
tions. Wright and Kravaris (1991) defined an alternative
control objective using a strong acid equivalent of a
mixture of electrolytes, which is linear in state, using a
linear control law. As the reaction invariance is unmea-
sured online and the linear system is unobservable, Henson
and Seborg (1994) presented an indirect adaptive nonlinear
controller. The controller was designed by augmenting the
state feedback controller and combining an input–output
linearizing controller with reduced-order, open loop
observer which provides online estimates of the reaction
invariance.

As alternative methods to overcome the nonlinearities
and time-varying characteristics of pH processes; Sung and
Lee (1995) proposed online identification, using a setpoint
change for PID autotuning; Norquay et al. (1998) used a
Wiener model for representing nonlinear process behavior
and designed a controller using a model predictive control
law; the linearization of a pH system using the Wiener
model was also proposed by Kalafatis et al. (2005),
followed by the application of linearizing feedback pH
control.

Alternative strategies based on intelligent control have
been proposed by some researchers; applying fuzzy control,
neural networks or different combinations of intelligent
and model-based methods. For example, fuzzy logic
(Sabharwal and Chen, 1996; Biasizzo et al., 1997) and
neural networks (Ramirez and Jackson, 1999; Loh et al.,
1995) have been implemented on pH control. Fuzzy self-
tuning PI control (Babuska et al., 2002) and fuzzy internal
model control (Edgar and Postlethwaite, 2000) have also
been implemented to control pH processes. Neural net-
works and adaptive controllers (Krishnapura and Jutan,
2000), PID using linearization through neural networks
(Chen and Huang, 2004), and genetic algorithms combined
with internal model control (Mwembeshi et al., 2004) have
been reported to address the problem of proper control the
pH in a chemical process.
As has been discussed in the above referenced works,

tight and robust pH control is often difficult to achieve due
to the inherent uncertain, nonlinear and time-varying
characteristics of pH neutralization processes. Unfortu-
nately, the above-mentioned literature on pH control
approaches presents some weaknesses, such as
�
 complexity of the control structures (which could be
difficult to implement on existing control systems),

�
 conservativeness (the controller takes a long time to

reject disturbances and reach the desired reference),

�
 difficulty of tuning, which makes it a time-consuming

task (some of these controllers have many tuning
parameters, or require many experiments before they
can be applied to the process).

This paper discusses an alternative approach to solve the
pH control problem by applying model-free learning control

(MFLC), based on reinforcement learning algorithms
(Sutton and Barto, 1998), and hierarchical reinforcement

learning (Sutton et al., 1999). These control algorithms are
based on learning directly from the closed-loop behavior of
the plant.
Compared to other control techniques based on learn-

ing, reinforcement learning has some clear advantages:
�
 It can optimize the control signal upon choosing actions
during the online interaction between an agent (con-
troller) and an environment (process/systems). This can
be seen in Fig. 1.

�
 It is possible to include previous process knowledge in

the controller design.

�
 The control algorithm is quite simple from a computa-

tional point of view, so it can be implemented using low-
cost hardware.

�
 It is possible to understand reinforcement learning from

an optimal control point of view, which makes it
attractive for control and plant engineers.
The first part of this paper examines the reinforcement

learning idea in detail. It is followed by the Q-learning
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algorithm and an illustrative simulated example of the
pH control problem. The second part introduces hierarch-
ical reinforcement learning in order to speed up learning.
The hierarchical reinforcement learning idea is based
on temporal extended action, in the form of multi-step

action (MSA) and macro-actions algorithms. Finally,
for comparison of the proposed algorithms, online results
on a pilot plant are shown and compared to the PID
controller.

2. Model-free learning control algorithm

One of the main advantages of using reinforcement
learning for automatic control is that the controller
modifies its control policy as it gathers experience online,
which makes it adequate for time-varying or nonlinear
systems. After a revision of reinforcement learning algo-
rithms, the proposed MFLC is presented.

2.1. Reinforcement learning algorithms

The learning algorithm in reinforcement learning em-
phasizes the interaction between an active decision-making
agent (intelligent controller) and its target dynamic system
(Fig. 1). In the latter, a desired behavior or control goal is
permanently sought despite imperfect knowledge about
system dynamics and the influence of external disturbances,
including other controllers. The reward function can also
incorporate information on one or more preference indices.
These preferences define the most desirable ways for
achieving a control goal (or objective) and are the
basis for assigning rewards (or penalties) to a learning
controller.

An agent (which corresponds to the controller in
conventional process control) interacts with its environ-
ments (the process or plant). They interact on a continuous
basis: the agent selects an action and then the environment
responds to the executed action and presents a new
situation to the agent. These responses of the environment
are communicated to the agent through a scalar reinforce-
ment signal, which indicates that the action chosen by the
agent in the current state is good or bad. This is depicted in
Fig. 1, where the dashed line represents a unit delay.

There are four essential factors for dealing with the
reinforcement learning problem;
�
 A policy defines the agent’s behavior of what to do, i.e.
what action to take at each state.

�
 A reward function specifies the overall goal of the agent

that gives the clue concerning what is good to do and
what is not a desirable outcome following an action.

�
 A value function is the value of a state or a state-action

which indicates how good a controller’s behavior is from
the point of view of the control goal.

�
 The model of the environment gives a predictive

capability for state to state transitions depending on
the applied actions.
Based on this, reinforcement learning can be defined as
an on-line learning (‘learning what to do by doing’)

approach to find an optimal decision policy in multi-stage
decision problems, i.e. how to map perceptions of process
states or histories to control actions, so as to maximize an
externally provided scalar reward signal. Compared to
other learning approaches, in simple terms, it is possible to
describe reinforcement learning (Sutton and Barto, 1998)
as an automatic learning method based on the use of
‘‘critic’’ (instead of a ‘‘teacher’’, as in other learning
methods). The only feedback provided by the ‘‘critic’’ is a
scalar reinforcement signal, which can be thought of as a
reward or a punishment.

2.2. Q-learning algorithm

From the different proposed algorithms of reinforcement
learning, this paper proposes the application of MFLC
based on the Q-learning algorithm for pH process control
as this algorithm is guaranteed to converge to the
correct Q-values, with the probability one if the environ-
ment is stationary, and depends on the current state and
the action taken in it. In Q-learning, the learning task is
based on estimating the cumulative future reward or value,
which makes it interesting for process control. This
predicted value is used for selecting the action from those
available in each visited state. The value of the reinforce-
ment at each time reflects the control objectives, which
might involve cost, errors, or profits (Sutton and Barto,
1998).
In the proposed algorithm, the agent should take

future decisions into account to assess the goodness of
the current decision or action. If the sequence of actions is
infinite, discounted return criteria will be used: a discount
factor (g, 0pgp1) is introduced, to weight more heavily
near-term reinforcements. In addition, the objective of the
agent is to maximize the return function (R(t)),
which represents the expected total value at time t applying
a given action in the present state. It can be evaluated
from the reinforcements at time t+k (denoted by rt+k) as
follows:

RðtÞ ¼
X1
k¼0

gkrtþk. (2)

To clearly distinguish between the effect on Rt of the
action at time t (denoted at), from the effect on Rt of
decisions to be taken later in sequel, the action-value
function Q(st, at) is defined as follows: at time step t, the
action-value function approximates the expected value of
Rt upon executing at when st is observed and acting
optimally thereafter:

Qðst; atÞ ¼ EfRtjst ¼ s; at ¼ ag. (3)

This is the central part of the algorithm: the estimation
of the so-called Q-function gives the benefit of applying
action at when the system is in state st. Eq. (3) can be
rewritten as an immediate reinforcement plus a sum of



ARTICLE IN PRESS
S. Syafiie et al. / Engineering Applications of Artificial Intelligence 20 (2007) 767–782770
future reinforcements.

Qpðst; atÞ ¼ Ep Rðst; atÞ þ
XT

k¼1

gkRðstþk; atþkÞ

( )
. (4)

The agent observes the present state, st, and selects and
executes an action, at, according to the evaluation of the
return that it makes at this stage, the value function is
updated. The benefits, both now and in the future, must
take into account: when action at has been selected and
applied to the plant, the system moves to the next state,
st+1, and receives a next reinforcement signal, rt+1. Hence,
the equation is updated by substituting the sum of future
reinforcements with the estimated value function. The
expectation of taking action, at, in the next state, st+1, is
replaced by a fraction of the difference. The update
equation can be written as

Qpðst; atÞ  Qpðst; atÞ þ at½rtþ1

þ g max
b2Astþ1

Qpðstþ1; bÞ �Qpðst; atÞ�, ð5Þ

where
�
 Astþ1
is the set of possible actions in the next state.
�
 The learning rate, 0pap1, is a tuning parameter, that
can be used to optimize the speed of learning (Although
too small learning rates might induce slow learning,
while too large learning rates might induce oscillations).

�
 The discount factor, g, is used to weight near term

reinforcements more heavily than distant future
reinforcements: If g is small, the agent learns to
behave only for short-term reward; the closer g is to 1
the greater the weight assigned to long-term reinforce-
ments.

The Eq. (5) is known as the Q-learning algorithm which
is used to improve optimal control.

The agent knows exactly neither the optimal value
function nor the correct estimation of the dynamic
environment. If the agent knows this value correctly, the
policy can select a greedy action that maximizes the value
function at each state. If this estimation and prediction are
good enough, therefore, a good policy is greedy action; this
is called exploitation. However, the agent does not know
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Fig. 2. MFLC architecture
the correct optimal value function. In order to know the
optimal value functions, the agent should execute trial
actions, i.e. actions that are not optimal with respect to the
current value function; this is called exploration.
In this study, the e-greedy policy explores and exploits

the available actions with e probability of choosing an
apparently nonoptimal action. This means that the action
which has maximum Q-value will be selected with (1�e)
probability and the rest will explore and exploit nonmax-
imum-Q-value-actions. The exploration of choosing non-
maximum-Q-value-actions is chosen based on uniform
distribution.
It is noteworthy to clarify what on-line learning is about.

As new experience is acquired and incorporated into the
control policy, the controller behavior is continuously
adapting to the process dynamics. Hence, the MFLC is
learning ‘‘on-the-fly’’ how to act better to achieve the
control goal (defined by rewards).

2.3. MFLC algorithm

The proposed MFLC algorithm is an online learning
algorithm based on the value function. The value function,
which is a mapping of history of visiting states and
executing actions, gives a clue for the agent to select an
action in given state. The agent takes into account that
taking action in the current state predicts it will be giving
the maximum cumulative future reward. This predicted
value is used by policy for selecting an action from those
available in each visited state. The policy implicitly
observes the future reward upon choosing an action in
state, st. Choosing an action in st will be criticized as ‘‘best
or worse’’, based on observation of the future state and
reward. This MFLC approach can be seen in Fig. 2. The
value of the reinforcement at each time reflects the control
objectives, which might involve cost, errors, or profits
(Sutton and Barto, 1998).
The algorithm developed for the learning system is as

follows:
1.
C

ba
Observe the state st based on tracking error.

2.
 Select an action at, from the set of available actions in

state st.
alculate U Plant
ut yt

Controller

sed on Q-Learning.
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Fig. 3. Titration curve strong acid–strong base system of the model.
Update the entry in the Q-value table for state st and
action at, and save it at Q(st, at) using Eq. (5).

2.4. Illustrative simulated example

This illustrative example study uses the mathematical
model proposed by Kwok et al. (2003). The dynamic model
of the process is only used to study, via simulation, how the
proposed control algorithm performs in controlling a pH
process, whereas the learning control algorithms are
model-free. The dynamic of the pH neutralization process
can be described by a quasi-linear equation. This model
assumes that the system is in an ideal condition without
any pollutant influence. It is represented by the following
differential equation:

V
dG

dt
¼ �ðFA þ FBÞG þ CAFA � CBFB, (6)

where G is the distance from neutrality and is given by
G ¼ [H+]–[OH�], V is the tank volume, CA and CB are the
concentration of acid and base, respectively and FA and FB

are the flow rate of acid and base, respectively. The value of
G is zero at neutral point, pH ¼ 7. The measurement
equation is derived as follows:

pH ¼ �log10ðG þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ 4KW

q
Þ þ log10 2, (7)

where Kw ¼ 10�14 (mol/l)2 is taken. The high nonlinearity
is introduced by this output equation between the
measurement pH value and state G. To make the
simulation behave as a real plant, a white noise of pH
measurement is introduced based on Gaussian distribu-
tions. The distribution is weighted by 0.1.

From the above model, the operating conditions used in
the simulation are listed in Table 1. The manipulated flow
is varied from 0.00 to 0.21 l/m and the acid process flow
continuously supplied into the continuous stirred tank
reactor (CSTR) is 0.11 l/m.

The titration curve of the strong acid–strong base system
generated from Eqs. (6) and (7) is presented in Fig. 3. It
clearly shows that the system is highly nonlinear when the
pH varies from 2 to 12. Therefore, controlling the system in
the whole range is difficult.
le 1

erating parameters

ong acid flow FA 0.11 l/min

ong base flow FB min 0.00 l/min

FB max 0.21 l/min

id normality CA 0.001mol/l

e normality CB 0.001mol/l

k volume V 1 l
2.5. The environment definition

The environment is described as follows: the symbolic
states are defined to be 5, in which state 3 is a goal state.
State 1 is when the pH is higher sp+0.5, state 2 is smaller
than sp+0.5 and higher than sp+0.2, whereas state 3 is
smaller than sp+0.2 and higher than sp�0.2, and states 4
and 5 follow the rule of states 2 and 1, respectively. Every
state has 2 actions except for the goal state which has only
1 action. The positive reward is introduced when the
system reaches goal state and negative reward 1 when the
system is outside the goal state. Details of the environment
definition will be discussed later, in the online application.

2.6. The agent description

The agent defined for the illustrative example is as
follows: The value of the meta-parameters for the agent

were selected to be: discount factor, g ¼ 0.90 and learning
rate, a ¼ 0.1. The agent selects an optimum action based
on (1�e), where e is 0.1, to allow the agent to explore other
actions which have no maximum value function.
The selected action is weighted to have a control signal,

which is calculated as

ut ¼ ut�1 þ kðat � awÞ, (8)

where at is the action chosen by the agent and aw is the wait

action which the action is defined to have no manipulation
of the previous control signal. For example, if the system
has three actions, where action one is to increase the
previous control signal, action two is to maintain the
previous control signal and action three is to decrease it. In
this case, action two is called wait action. The controller
gain, k ¼ 1� 10�7, is a tuning parameter that can be
selected to weight how much to increase or decrease
previous control signal upon chosen action. The overall
available actions are defined to be 5.
The responses of the limited available actions in the

simulated process are presented in Fig. 4, which clearly
shows that the agent quickly learns to reach the goal state.
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The process, after learning, remains in the goal state and
close to the desired setpoint. More detailed of the MFLC
application will be discussed later.

2.7. Hierarchical reinforcement learning

In standard reinforcement learning frameworks dis-
cussed above, a learning agent interacts with an environ-
ment at some discrete time scale (t ¼ 1,2,3,y). At each
time step, t, the environment is in some state, st. In the
current state, st, the agent selects an action, at, and executes
it, the environment responds to the action and presents the
agent the state transition, st+1, and the reward, rt+1. State
transition is depend on the preceding state and action, also
may depend on it in a stochastic fashion. The mapping
from state to action called policy is to learn to maximize
discounted return by the agent.

Standard reinforcement learning algorithm, as in
Q-learning, is difficult to implement in real complex
problems: these algorithms scale slowly with increasing
problem size, granularity of states or control actions.
Among others, one intuitive reason for this is that the
number of decisions from the start state to the goal state
increase exponentially.

According to the problem size, hierarchical approaches
based on temporal abstraction have been proposed to keep
tractable the number of decision to be taken to reach the
goal state. Temporal abstraction can enable the agent to
improve performance more rapidly and to use this solution
to reduce the number of trials required to obtain acceptable
performance. Temporal abstraction can be defined as an
explicit representation of extended actions, as policies
together with a termination condition (Precup, 2000).
The original one-step action is called a primitive action.
Semi Markov decision processes (SMDPs) is the theory
used to deal with temporal abstraction as a minimal
extension of the reinforcement learning framework.
SMDPs is an appropriate MDP for modeling continuous-
time discrete-event systems.
Several reinforcement learning algorithms resorting to

hierarchical temporal abstraction approaches have recently
been proposed: hierarchy of abstract machine (HAM)
(Parr, 1998); MaxQ (Dietterich, 1997) and multi-step-
actions (MSA) (Riedmiller, 1998). The first two methods
are based on the notion that the whole task is decomposed
into subtasks each of which corresponds to a subgoal.
MSA is a method that enables the agent to learn
to experience multiple-fixed-time-scale, for example for
m-time-step termination condition (Riedmiller, 1998). The
macro-actions used in this paper refers to the temporal
extended action proposed by Sutton et al. (1999), in which
they use the term of Option. Options may be either multiple
step policies or primitive actions while macro-actions are
restricted to temporally extended actions (McGovern and
Sutton, 1998).
The discussion below focuses on MSA and macro-

actions algorithms applied to the pH process. Both
algorithms have no decomposition in subprograms, also
decomposition in the process to be controlled (pH process)
is unknown in advance.

2.7.1. Multi step actions

The concept of MSA (Schoknecht and Riedmiller, 2003)
is applied to pH control because it is suited to systems
where no decomposition in subproblems is known in
advance. As in the general framework defined by Sutton
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et al. (1999), MSA is a special type of semi-Markov option.
A Markov option would require a state-dependent
termination condition. In the MSA algorithms, the
termination condition is applied after executing a sequence
of m primitive actions.

The MSA method enables an intelligent control to learn
a control policy by using multiple time scales simulta-
neously. The MSA consists of several identical actions on
the primitive time scale. This algorithm is possible to
increase in responsiveness and add flexibility to the
controller behavior. In addition, giving a learning con-
troller the possibility of using MSA to reach the goal can
improve the speed of learning and reduce control efforts.
This approach has been successfully applied in a simple
thermostat control (Riedmiller, 1998; Schoknecht and
Riedmiller, 2003). Thus, we think that the algorithm can
be extended to complex and highly nonlinear problems,
such as pH control problem.

The idea of MSA is based on a set of all multiple step
actions of degree m, defined as AðmÞ ¼ famja 2 Að1Þg, where
am denotes the MSA that arises if action a is executed in m

consecutive time steps (Schoknecht and Riedmiller, 2003).
The next action will be executed after the whole MSA has
been applied. Thus, the MSA has a time-dependent
termination condition after m primitive time steps. This
can be seen in Fig. 5. The selected action, at, will be applied
for m time-steps. The next state, sm, after the execution of
action, at, for m time-steps, will be used by the agent to
select a new action.

The concept of MSA can be integrated into learning
algorithms, such as Q-learning. For example, when the
agent executes action am of degree m in state s, the
environment makes transition to state sn after m time steps.
The state-action value can be updated as follows:

Qðst; a
mÞ  Qðst; a

mÞ þ a½rsam

þ gm max
an2A

Qðsn; a
m
n Þ �Qðst; a

mÞ�, ð9Þ

where

rsam¼

Xiþm�1

t¼i

gt�irsta,

where Q(st, am) is Q-value for state-action in time t, and
Q(sn, an

m) is Q-value for next state, a is learning rate, and g
is discount factor. When action am with degree m is selected
in si, the environment makes transition to si+m with reward
rsiam . When executing am, all actions ai, i ¼ 1, 2, y, m�1
are executed implicitly. The transition from si to state si+m
Agent Environment

Conditions 

(m)

at

SmSt

Fig. 5. Multi-step actions idea.
contains all information necessary to update the Q-values
for those lower-level actions at all intermediate states.
The MSA algorithm developed for the learning system is

as follows:
1.
 Observe the state st
2.
 Select an action at, this action is chosen from state st

using e-greedy policy

3.
 Apply the selected action at for n time steps

4.
 Do until terminating condition m ¼ n

4.1. Read the resulting state st+m

4.2. Update Q-value using Eq. (9)
2.7.2. Macro-actions

Macro-actions are policies with termination conditions.
Each macro action is specified by a closed-loop policy,
which determines the primitive action when the macro
actions are in force, and by a completion function, which
determines when the macro action ends. At each time step,
the agent can choose either a macro action or a primitive
action, unless it is already executing a macro action. Once
the agent has chosen a specific macro action, it selects the
primitive actions in accordance with the macro-action’s
policy until the macro-action’s termination condition is
satisfied. The idea is drawn in Fig. 6. The Selected macro
action, at, will be executed until the termination condition
is satisfied. After that, the agent observes the next state, sm,
and selects either primitive or macro actions.
To provide for learning when selecting macro-actions,

the notion of the optimal action-value function is extended
to Q*, to include macro-actions. This extended action-
value function can be defined as Q*(s, am) for each state s

and macro-action am, as the maximum expected return
given that the agent start macro-actions am in state s. This
definition naturally leads to update rule: upon each
termination of a macro action, its value is updated using
the cumulative discounted reward received while executing
the macro-actions and the maximum value at the resulting
state. More precisely, after a multi-step transition from
state st to state sn using macro action am, the approximate
action value Q(sn, am) is updated by

Qðst; amÞ  Qðst; amÞ

þ a rþ gn max
a2A

Qðsn; aÞ �Qðst; amÞ

� �
, ð10Þ
Agent Environment

Conditions

SmSt

Fig. 6. Macro actions idea.
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where the max is taken over both action and macro-
actions, and

r ¼ rtþ1 þ grtþ2 þ � � � þ gn�1rtþn

a is positive step size parameter or learning rate and g is a
discounted factor.

The macro-actions algorithm developed for the learning
system is as follows:
1.
 Observe the state st
2.
 Select either primitive or macro action

3.
 If macro action is selected, apply the selected one until

termination condition is satisfied

4.
Fig. 7. State definition and control objective and definition of states: dash

line presents a reference.
Update Q-value using Eq. (10)

Compared to standard reinforcement learning, these
hierarchical reinforcement learning algorithms are pro-
posed for the pH process because it can extract more
training examples from the same experiences of taking
action and applying it until the termination condition is
reached. By experiencing a sequence identical actions
applying for pH process, the agent can speed up learning
and planning to maintain the process in the desired pH
value.

MFLC uses the zero initial condition of Q-function. This
value is updated by time upon taking actions and the
process behavior. When the environment changes, for
instance, due to setpoint changes, the action-value function
is immediately reset to its initial condition. Resetting
Q-value to the initial condition makes it possible for the
agent to learn new environment without any influence from
learning the past environment.

3. Application to neutralization process

This section describes the sequence of steps proposed in
the implementation of the MFLC algorithm to a general
neutralization process.

3.1. States and reward

In a neutralization process, the main control objective is
to maintain the pH inside a band of 7d around the desired
setpoint (the width of this band is defined by measurement
noise in the process and the allowed tolerance). Therefore,
the desired reference may be within this range and the
tolerance could be allowed within this range. This band is
defined as the goal state. In MFLC, the rest of the states
corresponds to values of the pH uniformly distributed
outside this band, as depicted in Fig. 7.

To classify the pH measurement where the process is in
current time and to select an action available in each state,
based on practical experience, 21 symbolic states are
proposed, where the goal state (the state towards which
the dynamics must converge) is state number 11, which
corresponds to the desired pH band. The actions in every
state are defined as shown in Fig. 8 and in Table 2, where
the goal state has only one possible action, namely no
control action. When the system is in the goal band, the
agent does not need to learn the environment, therefore,
the agent just has one possible action. In other words, when
the process is in the goal band, the agent successfully learns
the environment. This selection between a number of states
and actions corresponds to a trade-off between controller
complexity and control accuracy.
The probability of the system moving to a new state

from the current state depends on the system behavior
following the execution of the chosen action. For instance,
if the process is in state 1, and the agent chooses action 2,
the process may move either to state 2 or to another state,
or stay in state 1.
States are defined by a parameter that refers to the

setpoint, r, as a desired output. The goal state is restricted
by boundary values: upper, r+d, and lower, r�d, as shown
in Fig. 7. The goal of the control task is to maintain the
process in the goal state, or return it to the goal state,
despite the occurrence of any disturbance. To achieve this,
maximum reward is introduced in the goal state. When the
system is outside the goal band, the controller is punished
by a negative reward. This reward function is applied in
each state as a single number, as shown in Eq. (11).

reward ¼
1 if pH is in goal band

�1 otherwise

�
. (11)
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Fig. 8. Available actions in every state.

Table 2

Available actions in every state

State Actions

1 21

2 19

3 17

4 15

5 13

6 11

7 9

8 7

9 5

10 3

11 1

12 3

13 5

14 7

15 9

16 11

17 13

18 15

19 17

20 19

21 21
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3.2. Termination conditions

The MSA termination condition is applied after apply-
ing a sequence of identical actions for m time steps. In this
study, the identical actions will be applied for 10, 20 and 30
times for every executing action.

The termination conditions for macro-actions applica-
tion are when the process reaches, over or goes far away
from the goal band. The idea is shown in Fig. 9. Therefore,
in this application, there are 3 termination conditions
introduced. For instance, when the process is in state 8, the
agent can either select macro actions or primitive action. If
the agent selects macro actions, the agent will execute this
until the termination conditions are reached. The idea for
termination condition is if the system, for example, is
in state 8 the agent selects macro actions and makes
transition to the next state and receives a reward. If the
next state is goal state the macro actions are terminated or
if the next state is pass goal state, for example the next state
is state 12, the macro actions are terminated. Also, if the
next state goes far away from goal state, for example next
state is state 5, the macro actions terminate. However, if
the next state is neither goal state nor passes goal state nor
goes far away from goal state, the agent continues
executing macro actions. Therefore, there is no macro
actions in the goal state, because the agent has already
learned the system.

4. Experimental results

This section describes the plant setup, discusses the
application of MFLC to various pH process controls on a
laboratory plant and discusses some online results.

4.1. Description of the experimental setup

The experimental setup, shown in Figs. 10 and 11,
consists of a CSTR where a process stream, such as diluted
sodium acetate (NaCH3COO) to be maintained at a certain
pH value, is titrated with a solution of hydrochloric acid
(HCl). The solution of sodium acetate is prepared and
stored in a storage tank. Different concentrations and pH
values of the process stream sodium acetate can be
achieved by adding varying amounts into this storage
tank. This process stream is fed from the storage tank using
a pump. The reaction occurs in the CSTR, which has
overflows, therefore the volume of liquid in the tank can be
considered constant (1 l).
The control variable ut is the flowrate of the titrating

stream (normalized to the maximum value), which is
applied using a peristaltic pump (ISMATEC MS-1
REGLO/6-160).
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Fig. 9. Implementation of macro action and definition of termination conditions.

process stream titrating stream

effluent stream

PCpHreactor

Fig. 10. pH neutralization process plant.
Fig. 11. pH neutralization real laboratory plant.
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The output variable, yt, is the logarithmic hydrogen ion
concentration (pH) in the reactor. It is assumed that the
mixing in the tank is homogeneous, therefore the
concentration in the effluent stream is similar to the
concentration in the reactor. The pH value in the mixture is
measured using an Ag–AgCl electrode (Crison 52-00) and
transmitted using a pH-meter (Kent EIL9143). The
electrode dynamic response exhibits appreciable and
asymmetric inertia. The pH measurement and the control
signals are transmitted through an A/D interface (Compu-
terBoards CIO-AD16, 0–5V). The plant is controlled and
monitored from a personal computer, using Matlab and
the Real-Time Toolbox for online control.
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4.2. Parameter selection

In this study, the solution of sodium acetate is prepared
with variable concentrations (to check the robustness of the
controllers) that change during the operation. The titrating
solution of hydrochloric acid is prepared for concentra-
tions of 71% in volume.

As mentioned above, the defined system has 21 states. In
this implementation, the parameters d and Z are selected to
be d ¼ 0.05 and Z ¼ 0.1, based on the level of measurement
noise and the desired pH operating range. From the
parameters d and Z, it can be defined that the agent is in
state 1 when the measured pH is higher than r+d+9Z.
State 2 is defined when the pH is lower than r+d+9Z and
higher than r+d+8Z. The rest of the states are defined
accordingly (see Fig. 7).

In MFLC, the e-greedy policy, is applied for choosing an
action in every visited state of the pH process. The
parameter e used in the e-greedy policy is selected to be
e ¼ 0.1, to leave space for the agent to explore the available
actions. This means that exploration (choosing an action
that does not have maximum action-value) will be selected
with a probability of 1 out of 10, which represents a good
compromise for the plant, given its time-varying and
nonlinear characteristics (less experience would be neces-
sary if the plant were linear and the concentration less
uncertain).

The value of the meta—parameters selected for the agent
are: discount factor (g) of 0.98 and learning rate (a) of 0.1.
These learning parameters chosen for the agent are tuned
to weight rewards and speed up learning, based on compact
dealing of slow learning, oscillations, short and long-term
reinforcement.

4.3. Control actions

In reinforcement learning, the agent selects an action and
executes it in current time and receives the next reward.
From the chosen action, the control signal is calculated in
MFLC as follows:

ut ¼ ut�1 þ kðaw � atÞ, (12)

where at is the optimal action (chosen by the agent from
those available actions in every visited state), and aw is a
numerical value of the wait action (where there is no
variation of the previous control signal). As the process
stream is a base, from Eq. (8) wait action and chosen action
switch places as shown in Eq. (12).

From the defined actions, the agent selects an action in
each visited state. Following Eq. (12), the variation of
numerical value of the chosen action is then weighted by a
gain to increase (or decrease) the previous control signal.
The controller gain, k, of Eq. (12) is selected in different
experiments to be 1� 10�5, 2� 10�5 and 3� 10�5 to study
the effect of gain. This control signal is then bounded on
the range 0.04–1, which corresponds to the range where the
actuator operates correctly.
4.4. Experimental results and discussion

4.4.1. MFLC algorithms for NaCH3COO–HCL system

Application of the proposed MFLC controller to the
laboratory plant showed good result. The responses of the
plant to some changes in setpoint and comparison with a
constant PID controller can be seen in Fig. 12a for the
sodium acetate–hydrochloride acid system. The PID
controller was tuned based on normal conditions at
pH ¼ 5, where correction gain and proportional gain are
chosen to be 0.01 and 0.001, respectively. Derivative time
and integral time are selected to be 1. The comparison
shows that the responses of the proposed MFLC algorithm
settle in reference faster than the PID controller. The
responses of the plant show that MFLC controller based
on reinforcement learning algorithms is much closer to the
reference signals while the PID controller has higher
overshoots. The control signal, Fig. 12b shows that the
MFLC controller manipulates the actuator in a smoother
way than a PID controller. Since the MFLC allows a
tolerance error of the process being on the band, the
control signal is smoother when the process is close to the
reference and within the goal band.
Another set of experiments are done by alternative gain

selections, k, as mentioned above. The different gains
(1� 10�5, 2� 10�5 and 3� 10�5) are applied to study the
effect of the gain influence. The responses plotted in
Fig. 12c show that even very small changes in the gain give
slightly different responses of the plant due to the inherent
nonlinearity of the process. Among the gains considered
during the experiment, it shows that with the MFLC
controller at gain k ¼ 1� 10�5 the responses of the process
are found to be fairly satisfactory. This gain shows that the
responses of the plant settle on the goal state faster than
when using the other two gains. This can be seen in detail
in Fig. 12.
From the control signal (shown in Fig. 12b), it can also

be seen that the agent learns to maintain the pH in the goal
band around the reference by adequately increasing and
decreasing the control signal sent to the actuator. The
agent increases or decreases the control signal when the
process is outside the goal band. When the system is in
the goal band, the control signal is maintained, allowing
the process to remain within the tolerance error (the width
of the goal band).

4.4.2. MSA algorithms for NaCH3COO–HCL system

From the defined system, which has 21 states and 205
actions, the MSA algorithms were developed and applied
to pH control. The online responses of the applied
algorithms for NaCH3COO–HCl system can be seen in
Fig. 13. To study the effect of simultaneously taking and
executing the identical actions, the MSA algorithm is
applied for 10, 20 and 30 identical actions.
The online comparison responses of applied identical

actions to the pH process can be seen in Fig. 13a. It clearly
shows that the responses are good enough and lay close
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to the reference. The MSA responses of applying 30
step-actions show that the peak is a little higher in some
cases, and lower in other cases, but that overall it is
reasonably well. However, the responses of appliying 20
step-actions are suitable for these systems and better than
others.

The pattern of the control signal for these MSA
algorithms is similar (Fig. 13b). The algorithms manipulate
the controller smoothly.

4.4.3. Macro-actions algorithms for NaCH3COO–HCL

system

The application of macro actions with three termination
conditions have been applied to pH process. The responses
of the MFLC application for controlling pH process are
shown in Fig. 14 comparing to Q-learning standard and
MSA algorithms. The responses show that the online
results of macro actions reach the goal band faster, but
produce oscillations around reference. This is because the
control keeps on increasing or decreasing the control signal
with the same increment from the first time macro actions
are selected even though the system is close to the
goal band.
Due to the present of titrant (acid) when the system

reaches the goal band is higher or lower than it is needed
for reaction, the process behaves to response to the titrant
and presents the situation, and the controller acts to
control the situation by selecting actions (Figs. 14a and 15).
It clearly shows that the controller sharply increases or
decreases the control signal until the system reaches the
goal band. By the moment, the process responses to the
present of reactant, the controller acts to maintain the
process by adequately reducing and increasing the control
signal.
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4.4.4. MFLC algorithms for sodium hydroxide (NaOH)–

HCL system

To check the robustness of the MFLC controller, when
applied to other neutralization processes, the algorithm has
also been applied to neutralize a process stream for a strong
acid–strong base system. The process stream of NAOH is
titrated with HCl. This solution (NaOH) is prepared with
an unknown concentration and the titrating stream (HCl) is
prepared for 71% in volume. This process has a very deep
titration curve, which makes it quite difficult to control if
the concentrations are not exactly known.

The parameters of the MFLC Controller algorithm
remain the same as before, except that the nontuning
parameter, the controller gain, k, is decreased and set of
5� 10�7 (to compensate for the higher gain of the plant).
The responses for the NaOH–HCl system are presented in
Fig. 16a. The corresponding control signal is shown in
Fig. 16b. It can be seen in Fig. 16a that oscillations in the
responses are observed around the reference, but the
controller manipulates the control signal to maintain the
process within the control band. Since the process is highly
nonlinear, the responses of the plant, due to small-
manipulated variable changes, exhibit small oscillations
around the setpoint. The controller tracks the reference
correctly.

5. Conclusions

Since the MFLC algorithm is based on learning directly
from the closed-loop behavior of the pH plant, this
approach gives a general solution for acid–base systems,
simple to implement in existing control hardware and easy
to design without a detailed understanding of plant
dynamics.
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The MFLC controller algorithm, based on the one-
step ahead Q-learning look-up table, has been presented.
The MFLC has been developed for general pH neutraliza-
tion processes. The optimal control actions are selected
using the e-greedy policy. Tuning parameters are
provided in the algorithm that have a clear meaning
(representing the variation in the plant, desired degree of
exploration, etc.).

The behavior of the MFLC algorithm applied to a
laboratory pH plant gives a good performance in a wide
range of pH values, and for different processes. The
controller shows that in some cases the controller acts
aggressively when the pH is far from the control band but
get smoother as it approaches. In general, the controller
performs reasonably well.
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