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ABSTRACT: Mutations leading to activation of proto-
oncogenic protein kinases (PKs) are a type of drivers cru-
cial for understanding tumorogenesis and as targets for
antitumor drugs. However, bioinformatics tools so far de-
veloped to differentiate driver mutations, typically based
on conservation considerations, systematically fail to rec-
ognize activating mutations in PKs. Here, we present the
first comprehensive analysis of the 407 activating muta-
tions described in the literature, which affect 41 PKs. Un-
expectedly, we found that these mutations do not associate
with conserved positions and do not directly affect ATP
binding or catalytic residues. Instead, they cluster around
three segments that have been demonstrated to act, in
some PKs, as “molecular brakes” of the kinase activity.
This finding led us to hypothesize that an auto inhibitory
mechanism mediated by such “brakes” is present in all
PKs and that the majority of activating mutations act by
releasing it. Our results also demonstrate that activating
mutations of PKs constitute a distinct group of drivers
and that specific bioinformatics tools are needed to iden-
tify them in the numerous cancer sequencing projects cur-
rently underway. The clustering in three segments should
represent the starting point of such tools, a hypothesis that
we tested by identifying two somatic mutations in EPHA7
that might be functionally relevant.
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INTRODUCTION
More than 1% of human genes contribute to cancer, a disease

that arises as a result of somatic mutations that confer a growth
advantage to tumor cells [Futreal et al., 2004]. These mutations are
known as “driver” mutations, whereas those that appear incidentally
and do not contribute to the tumor phenotype are called “passen-
ger” or “neutral” mutations. Driver mutations can be divided in
two groups: (1) “loss-of-function” mutations and (2) activating
mutations [Fearon and Vogelstein, 1990]. The “loss-of-function”
mutations are those that lead to a complete or partial inactivation of
tumor suppressors. Examples of tumor suppressor genes, also called
antioncogenes, are TP53 (MIM #191171), RB1 (MIM #614041), and
PTEN (MIM #601728). In contrast, activating or gain-of-function
mutations transform proto-oncogenes into oncogenes by inducing
increased activity of the corresponding protein, which can be ac-
companied by a loss of regulation. Proto-oncogenic transcription
factors (such as MYC; MIM #190080), regulatory GTPases (RAS
family) and receptor, and cytoplasmic protein kinases (PKs) are ac-
tivated by this type of mutation [Croce, 2008]. In particular, activat-
ing mutations in proto-oncogenic PKs are frequent driver events in
many human tumor types [Manning et al., 2002; Futreal et al., 2004;
Greenman et al., 2007] and inhibitors of mutated PKs are effective
anticancer drugs. Imatinib in gastrointestinal stromal tumors har-
boring KIT (MIM #164920) or PDGFRA (MIM #173490) activating
mutations [Dagher et al., 2002; Siddiqui and Scott, 2007], gefinitib
and erlotinib in lung cancer with EGFR (MIM #131550) activating
mutations [Pao et al., 2004; Rosell et al., 2009], and vemurafenib and
dabrafenib in melanoma-carrying BRAF (MIM #164757) activating
mutations [Bollag et al., 2010; Hauschild et al., 2012] are all used in
clinical practice. Germline gain-of-function mutations of some PKs
also give rise to human hereditary disorders, such as raniosynostosis
[Pollock et al., 2007] or inherited lymphoedema [Karkkainen et al.,
2000].

Thousands of changes in DNA are being identified through the
genomic sequencing of human malignancies and other diseases.
However, most are likely to be passenger mutations or even poly-
morphisms [Greenman et al., 2007]. Driver mutations often occur
at frequencies indistinguishable from those of passenger mutations
[Fröhling et al., 2007; Wood et al., 2007; Loriaux et al., 2008] and
discriminating between the two types of mutations is a significant
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challenge facing the fields of genomics, cancer biology, and thera-
peutics that is further compounded by the lack of curated sets of
true driver and passenger cancer mutations. Two types of meth-
ods have been developed to identify driver mutations, but both fail
to discriminate most activating mutations of proto-oncogenic PKs.
The first type of method relies on the detection of recurrently altered
positions and is limited by the difficulty of assessing the background
mutation rate due to the marked variation in mutation frequency
among individual tumors [Gonzalez-Perez et al., 2012]. In addi-
tion, this type of method is usually unable to detect mutations with
a low rate of recurrence, present in only a small fraction of tumors.
The second type of method attempts to discriminate driver from
passenger mutations by considering evolutionary conservation as
well as structural conformation, functional relevance, and other
properties of both the original and substituted residues [Reva et al.,
2011; Gonzalez-Perez et al., 2012; Hashimoto et al., 2012; Shihab
et al., 2013]. The principle underlying this type of method is that
a mutation that changes a conserved, functionally, or structurally
relevant residue is likely to be a driver. However, this principle can
only be properly applied to inactivating mutations and has never
been demonstrated in the case of gain-of-function mutations [Shi
and Moult, 2011]. In fact, although the activation of some particu-
lar PKs by specific mutations has been described in detail, it is not
known whether there is a general mechanism through which they
exert their functional effects.

Here, we report the results of a novel evidence-based approach
whereby we comprehensively analyzed all activating mutations of
PKs described in the literature. We found that they constitute a
distinct group of driver mutations that do not directly affect con-
served, catalytic, or ATP-binding residues. Instead, they cluster in
three segments that act as “molecular brakes” of the kinase activity
in class III–IV receptor tyrosine kinases (RTKs) [Chen et al., 2007,
2013]. This finding led us to hypothesize that an autoinhibitory
mechanism mediated by structurally equivalent “molecular brakes”
is present in all PKs. Our results also indicate that current methods
to identify driver mutations are not useful in the case of activating
mutations of proto-oncogenic PKs and that new, specific tools are
needed.

Material and Methods

Systematic Search for Primary Activating Mutations in
Human PKs

To compile our comprehensive list of activating mutations in PKs,
we performed a two-step systematic search for each of the 518 PKs
present in the “complete kinase” study of the Catalogue of Somatic
Mutations in Cancer (COSMIC) database [Forbes et al., 2011]. First,
we introduced the word “mutation” together with the name of the
kinase in PubMed. If the number of articles retrieved was higher
than 500, we added the terms “activating,” “gain-of-function,” and
“constitutive activation.” We then reviewed all the articles that ap-
peared. Next, we computationally calculated a relative frequency for
all mutations in the 518 PKs by dividing the number of tumors
carrying the mutation by the total number of tumors where the cor-
responding gene has been sequenced (according to COSMIC) and
then multiplying the resulting figure by 1,000. Finally, all mutations
with a relative frequency above two (0.2%) were checked in PubMed
by introducing the name of the mutation (e.g., p.P267R).

Only primary mutations with experimental evidence demon-
strating their activating role were included in our database.
EGFR mutations conferring a response rate to erlotinib higher

than 50%, according to the EGFR somatic mutations database
(http://www.somaticmutations-egfr.info/), were also added. As a
result of our search, we found 407 primary activating mutations
in 41 PKs (Supp. Table S1). For each mutation, we included the
PubMed reference describing it as activating, as well as the rela-
tive frequency we had calculated for it, and the disease(s) where it
was first described. When a mutation was absent in human can-
cers (according to the COSMIC database), it was assigned a relative
frequency of 0. The relative frequency of the T790M mutation of
EGFR could not be calculated since COSMIC does not differentiate
primary and secondary mutations. To facilitate further analyses,
for each PK in our list, we compiled its Uniprot [Consortium,
2012] and NCBI Reference Sequence accession, E.C. number
(http://www.chem.qmul.ac.uk/iubmb/enzyme/), and Pfam acces-
sion [Punta et al., 2012] of the kinase domain.

During the compilation of our list and subsequent analyses, we
detected some inconsistencies in the databases that could easily lead
to confusion. For example, in the case of the hepatocyte growth fac-
tor receptor (MET), the canonical sequence according to Uniprot is
isoform 1, but COSMIC uses isoform 2 as a reference. Moreover, in
other cases, including that of EGFR, the numbering of residues in the
protein data base (pdb) differs from the numbering in Uniprot. In
addition, some genes have different names in COSMIC and Uniprot
(e.g., TIE2 = TEK and KPCG = PRKCG). In our study, we systemat-
ically used the Uniprot names, canonical forms, and numbering.

Sequence Retrieval, Multiple Sequence Alignment, and
Frequency Calculations

We retrieved 1,377 tyrosine kinase (TK) sequences (E.C num-
ber: 2.7.10., classification) and 4,420 serine/threonine kinase (STK)
sequences (E.C number 2.7.11.) belonging to all species from the
Uniprot database. Kinase domain boundaries were those defined in
the database.

For both families of kinases, multiple sequence alignment (MSA)
was performed with muscle, provided in T coffee version 9.02.r1228
(www.tcoffee.org) [Taly et al., 2011]. To map the mutations in the
kinase domain, the EGFR HUMAN receptor was taken as the refer-
ence sequence and 3D structure for TKs (Uniprot accession P00533,
pdb code 1M14), and the BRAF HUMAN as the reference for STKs
(Uniprot accession P15056, pdb code 4E26). The juxtamembrane
(JM) region of RTKs was defined as the sequence between the first
cytoplasmic residue and the first kinase domain residue. For the JM
region of the PDGFR subfamily, the KIT HUMAN was selected as
the reference sequence and structure (Uniprot accession P10721,
pdb code 1T45). Although hundreds of kinase domain structures
are known, none of the STKs have the activation loop complete
and only a few crystallographic structures include the complete JM
region, so partial mapping was necessary in some cases.

A position was labeled as mutated when looking at the entire
family alignment, at least one activating mutation was found in this
position. When a deletion or insertion was present, all the altered
positions were labeled as mutated (e.g., for EGFR HUMAN deletion
p.K746 E750del, the positions 746, 747, 748, 749, and 750 were la-
beled). Mutated positions were then mapped by projecting the MSA
onto the 3D reference structure (EGFR, BRAF, or KIT). The number
of different activating mutations and the number of mutated kinases
were then computed for every position, and a normalized frequency
of activating mutations per position was calculated. First, an ac-
cumulated relative frequency was obtained by adding the relative
frequencies of all activating mutations affecting a particular posi-
tion. This frequency was then normalized according to the following
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formula:

Normalized frequency

=
log10 ([accumalated relative frequency in a position] × 100,000)

� accumulated relative frequencies in all positions

Normalized frequencies of activating mutations in each position
were represented, as well as the absolute numbers of mutated ki-
nases and different activating mutations in each position. Molecular
graphics were generated with the UCSF Chimera package [Pettersen
et al., 2004].

The same process was repeated for mutations of unknown effects.
We retrieved all COSMIC mutations from the 41 PKs under study
and eliminated the activating mutations using a perl curated script.
We also eliminated the mutations located in activating positions
that were poorly defined in the COSMIC database (e.g., mutations
p.L858? in EGFR or p.V600? in BRAF). The total number of muta-
tions of unknown effects, the number of kinases affected, and the
normalized frequencies were calculated for every position and rep-
resented. The normalized frequencies of activating mutations and
mutations of unknown effects were also used to calculate central
moving averages with n = 13, which were subsequently plotted.

Conservation

Conservation was calculated as the Kullback–Leibler relative
entropy [Cover and Thomas, 1991] using an amino acid back-
ground frequency distribution obtained from the Uniprot database
[Consortium, 2012]. The MSAs were first corrected for sequence re-
dundancy using sequence weighting by 62% identity clustering and
including pseudocounts to correct for low counts [Marino-Buslje
et al., 2010].

Statistical Calculations

We performed a multistep statistical analysis of the distribution
of mutations within the kinase domain of TKs, using the R pack-
age program. First, we represented box plots from the normalized
frequencies of activating mutations and mutations of unknown ef-
fects. The plots were subsequently recalculated excluding EGFR (see
Supp. Figs.).

We then used two nonparametric tests to determine whether the
distributions of the normalized frequencies of mutations were sig-
nificantly different: Wilcoxon and Kolmogorov–Smirnov tests. We
were unable to perform a normality test for two reasons. First, all
frequency values were associated with a particular position within
the amino acid sequence of the kinase domain and were not inter-
changeable. Second, there were many positions with no activating
mutations and, therefore, with a value of zero. The results of the
Wilcoxon and Kolmogorov–Smirnov tests are shown in the Sup-
porting Information.

To examine whether, in contrast to putative passenger mutations,
activating mutations are preferentially located in segments HS2 and
HS3, we calculated 2×2 contingency tables with the sum of the
normalized frequencies and the number of different mutations per
position and applied a two-tailed Fisher’s exact test. Finally, we
studied the correlation of the distribution of mutations within each
HS segment using the Spearman test (see Supporting Information).

Colony Transformation Assays

A human cDNA for EPHA7 (MIM #602190; GenBank acces-
sion: BC126151.1) was purchased from Open Biosystems (Waltham,

MA). The p.D776N and p.S684I mutations were created using a
QuikChange Lightning site-directed mutagenesis kit (Agilent Tech-
nologies, Santa Clara, CA) as per the manufacturer’s instructions
with the following primers:

EPHA7-D776N-F: 5′-ctcgtttgtaaagtgtcaaattttggcctgtcccgag-3′

EPHA7-D776N-R: 5′-ctcgggacaggccaaaatttgacactttacaaacgag-3′

EPHA7-S684I-F: 5′-gactttttgtgtgaagcaatcatcatggggcagtttgac-3′

EPHA7-S684I-R: 5′-gtcaaactgccccatgatgattgcttcacacaaaaagtc-3′

Wild-type EPHA7 and the EPHA7-D776N and EPHA7-S684I
constructs were then cloned into the pBabe construct. These con-
structs, as well as a pBabe-HRAS-G12V and an empty pBabe vector,
were then transduced into 293-GPG cells using FuGene (Promega,
Madison, WI) as per the manufacturer’s instructions. Supernatant
containing amphotropic retrovirus was harvested 72 hr following
transfection and used to transduce NIH3T3 cells with 4 μg/mL
of polybrene. After transduced cells reached confluence, they were
selected with 1 μg/mL puromycin for 7 days.

7.5 × 103 cells were then plated in 10 replicates in a CytoSelect
96-well soft agar colony transformation assay (Cell BioLabs, San
Diego, CA) as per the manufacturer’s instructions. After 1 week,
the agar was dissolved and cells were lysed and then incubated with
CyQuant dye. Fluorescence was quantitated with a plate reader using
a 485/520-nm filter set. The significance of differences in fluores-
cence intensity was calculated using a student’s t test. Equivalent
levels of EphA7 expression in 3T3 cells were confirmed by West-
ern blotting. Whole cell lysates from transfected cells were loaded
onto a polyacrylamide gel and blotted with anti-EphA7 (sc-1015,
Santa Cruz Biotechnology, Santa Cruz CA) and anti-actine (A2228,
Sigma–Aldrich, St. Louis, MO) antibodies. For the analysis of sig-
nal transducers, cells were plated in DMEM with 0.5% fetal bovine
serum. After 12 hr of serum starvation, whole cell lysates were
harvested and loaded on a polyacrylimide gel, and blotted with
antibodies against ERK, p-ERK (Thr202/Tyr204), STAT3, p-STAT3
(Ser727), Akt and p-Akt (all from Cell Signaling Biotechnologies,
Danvers, MA), and anti-EPHA7.

Online Prediction Tools

Three online tools to predict the functional impact of muta-
tions were tested: MutationAssesor (http://mutationassessor.org/)
version 1.0, release 1 [Reva et al., 2011], TRANSformed Functional
Impact for Cancer (transFIC) (http://bg.upf.edu/transfic/home)
version 1.0 [Gonzalez-Perez et al., 2012], and Functional Analy-
sis through Hidden Markov Models (FATHMM) (http://fathmm.
biocompute.org.uk./index.html) version 2.3 [Shihab et al., 2013].
In all cases, the instructions provided in the corresponding Web-
sites were followed. These tools can only be applied to missense
mutations. In consequence, they were run against the 250 activating
missense mutations of PKs of our curated set. The results obtained
on the Websites were downloaded and analyzed.

The Mutation Assesor categorizes predicted functional impact of
mutations as “low,” “medium,” or “high.” The transFIC uses the
same categorization but offers three different results per mutation,
based on the transformation of the scores given by three well-known
tools (SIFT, http://sift.jcvi.org/; PoliPhen 2, http://genetics.bwh.
harvard.edu/pph2/dokuwiki/downloads; and MutationAssesor).
Finally, FATHMM classifies mutations as “cancer”-associated or
“passenger/other.” It is the only tool that offers the option of chang-
ing one of the parameters, the prediction threshold. Using the de-
fault value (–0.75), basically all mutations are considered “cancer,”
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Figure 1. Description of activating mutations in PKs. Classification of activating mutations in (A) all PKs, (B) TKs, and (C) STKs. Amino acids
affected by missense activating mutations in (D) TKs and (E) STKs. The blue bars indicate the percentage of activating mutations that alter each
amino acid. The purple bars represent the relative abundance of the amino acid in TKs or STKs. Capital letters at the bottom of the bars represent
the amino acid.

and the instructions of the Website suggest a more discriminating
threshold of –3.0, which we selected for our analysis.

Results

Description of the Activating Mutations Reported in PKs

Based on our search of the literature and the COSMIC database
[COSMIC; Forbes et al., 2011], we compiled a curated, compre-
hensive list of all the primary point mutations and short inser-
tion/deletions in PKs that have been shown to lead to constitutive
activation. We found 407 primary activating mutations: 360 in 27
TKs, 41 in 11 STKs, and six in three dual-specificity kinases (Supp.
Table S1). The majority of these mutations are cancer associated. As
expected, gain-of-function mutations in “druggable” kinases, such
as BRAF (18 mutations), KIT (79 mutations), and EGFR (66 muta-
tions), have been extensively studied and reported in the literature
and in COSMIC. Some of the cancer-associated mutations have fre-
quently been detected, especially in specific malignancies, whereas

others have been found in only a few tumor samples. For this rea-
son, a relative frequency was calculated for each activating mutation
(Supp. Table S1). The 79 activating mutations that did not appear in
COSMIC, some related to rare genetic diseases and a few artificially
generated, were assigned a relative frequency of zero.

Of the 407 activating mutations, 250 (61%) are missense, 150
(37%) in-frame insertions/deletions, and 7 (2%) nonsense muta-
tions, which are much more likely to produce an inactive protein
(Fig. 1A–C). Activating in-frame insertions/deletions occur exclu-
sively in seven TKs. Interestingly, 45% of the activating missense
mutations in TKs affect a C, D, K, V, or Y, although these five
residues represent only 22% of the total amino acid content of the
TKs under study. In contrast, only 17% of the activating missense
mutations in TKs affect A, H, L, P, Q, S, or T, which represent 42%
of the total amino acid content (Fig. 1D). The spectrum seems to
be somewhat different in STKs, where 62% of activating missense
mutations affect F, G, P, S, V, or Y, which together constitute 31%
of the total amino acid content, and only 13% affect A, C, D, H,
I, L, M, N, Q, or W, which constitute 45% of the total amino acid
content (Fig. 1E).
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Table 1. The Three Hypermutated Segments (HS) Clustering Acti-
vating Mutations in TKs

Hypermutated segment HS1 HS2 HS3

Position (referred to EGFR) 673–720a 745–791 833–871
Subdomainsb JM + I (N-

terminal)
II (C-terminal)

+ III + IV + V
(N-terminal)

VIB + VII + VIII
(two amino
acids
N-terminal)

Total number of residues 48 47 39
Number of residues

affected by activating
mutations

45 (94%) 33 (70%) 23 (59%)

Number of TKs with
activating mutations

6 15 15

Number of different
activating mutations
described

133 76 71

aResidues 550–597 of c-KIT.
bSubdomains in the kinase domain are defined according to Hanks and Hunter (1995)

Activating Mutations of TKs Cluster in Two Hypermutated
Segments Within the Kinase Domain (HS2 and HS3),
Whereas Mutations of Unknown Effect are Almost
Uniformly Scattered

In TKs, 179 activating mutations in 21 proteins were located in the
kinase domain. We mapped these mutations by projecting the MSA
of the entire TK family onto the 3D structure of the human EGFR.
We selected EGFR as a reference because it is a well-established ge-
netic driver of tumorigenesis in several human tumor types, it is a
TK in which numerous activating mutations have been described,
and it has been characterized structurally in numerous crystallo-
graphic studies. An accumulated frequency of activating mutations
was then calculated for each position in the amino acid sequence
and subsequently normalized. We successfully mapped 176 of the
179 mutations; the other three mutations, affecting residues with no
equivalent position in EGFR, were excluded from the analysis. We
found that 147 of the 176 mutations (84%) were clustered in two
hypermutated segments (HS2 and HS3) (Table 1). This clustering
was apparent both in terms of normalized frequencies (Fig. 2A–C)

Figure 2. Activating mutations cluster in two hypermutated segments of the kinase domain. A–C: Distribution of mutations in the kinase domain of
TKs, depicted in the ribbon representation of the human EGFR structure (pdb code 1M14). Mutated positions are shown in orange, and the diameter
of the ribbon is proportional to the normalized frequency of mutations affecting each position, ranging from 0 to 4.43. A: Activating mutations in
all TKs analyzed. B: Activating mutations in TKs excluding EGFR. C: Mutations of unknown effect. The position of hypermutated segments HS2,
HS3, and the C-terminus of the segment HS1 is shown. The arrow indicates the hotspot L861 in EGFR (V600 in BRAF). D: Central moving average
(n = 13) plot of the normalized frequencies of mutations in each position of the kinase domain. In red, activating mutations in all TKs analyzed; in
blue, activating mutations in TKs excluding EGFR; in yellow, mutations of unknown effects. The black bars show the position of the hypermutated
segments HS2 and NS3. A minor clustering was also apparent in the case of mutations of unknown effect, perhaps because some may be as yet
unrecognized activating mutations. Significant differences were observed between the distribution of activating mutations and that of mutations
of unknown effect as well as between the distribution of activating mutations excluding EGFR and that of mutations of unknown effect excluding
EGFR (Wilcoxon and Kolmogorov–Smirnov P < 2.2 10–16). The red bars show the location of the molecular brake regions that have been described
in class III–IV RTKs. The arrows indicate the three key residues involved in the network of hydrogen bonds of the brake (positions 549, 565, and 641
in FGFR2; corresponding to 776, 791, and 852 in EGFR).
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Table 2. The Three Hypermutated Segments (HS) Clustering Acti-
vating Mutations in TKs, Excluding EGFR Mutations

Hypermutated segment HS1 HS2 HS3

Position (referred to EGFR) 673–720a 755–791 846–871
Subdomainsb JM (all) + I

(N-terminal)
III + IV + V
(N-terminal)

VIB (two amino
acid

C-terminal)
+ VII + VIII
(two amino

acid
N-terminal)

Total number of residues 48 37 26
Number of residues affected by

activating mutations
38 (90%) 18 (47%) 15 (58%)

Number of TKs with activating
mutations

5 14 14

Number of different activating
mutations described

120 40 56

aResidues 550–597 of c-KIT.
bSubdomains in the kinase domain are defined according to Hanks and Hunter (1995)

and in terms of the absolute number of different mutations and TKs
affected (Supp. Fig. S1). The distribution could also be visualized
in a central moving average plot, which gave a two-peak profile
(Fig. 2D). In contrast, when we mapped the hundreds of COSMIC
mutations in the TKs under study that have not been described as
activating, they were almost uniformly scattered within the kinase
domain (Fig. 2, Supp. Fig. S1). The distribution of these putative
passenger mutations was significantly different from that of the
activating mutations by both the Wilcoxon and the Kolmogorov–
Smirnov tests (P < 2.2 10–16) (Supp. Fig. S2, Supp. Table S2), and the
clustering of the activating mutations in the HS2 and HS3 was statis-
tically significant in a two-tailed Fisher’s exact text (P < 0.0001) when
compared with the distribution of the putative passenger mutations
(Supp. Table S3).

The HS2, which clusters 76 activating mutations in 15 differ-
ent kinases, comprises the C-terminal half of the subdomain SDII,
the entire SDIII (αC-helix) plus SDIV (kinase hinge), and the N-
terminal half of the SDV. The HS3, which clusters 71 mutations in
15 TKs, includes the subdomains VIB (catalytic loop), VII (activa-
tion loop), and two N-terminal residues of VIII (P+I loop) (Table 1
and Supp. Table S4). In the HS2 segment, a hotspot in position 776
clusters seven activating mutations in four kinases, and in the HS3
segment, a hotspot in position 861 clusters 22 activating mutations
in six different TKs. In silico studies have shown that both HS2 and
HS3 are regions where nonsynonymous, cancer-associated single-
base changes in PKs are preferentially located and have also reported
the hotspot in position 861 and a uniform distribution within the ki-
nase domain of common, nondisease-associated single-base changes
[Torkamani et al., 2008a; Dixit et al., 2009; Lee et al., 2009].

The EGFR TK alone accounts for 54 mutations in the kinase do-
main. When we compared the distribution of activating mutations
within the HS2 including and excluding EGFR, the Spearman’s co-
efficient showed a weak correlation (P = 0.3) (Supp. Table S5). While
30 activating mutations are present in the SDII of EGFR, only one
is present in the remaining 20 TKs. Thus, activating mutations in
the SDII, most of which are in-frame insertions/deletions, seem
to be a particularity of EGFR (Fig. 2, Supp. Fig. S1). In addition,
EGFR accounts for half of the activating mutations in the catalytic
loop (VIB region). In consequence, if EGFR is excluded, the two HS
could be redefined to comprise fewer amino acids (Table 2 and Supp.
Table S4).

Activating Mutations of TKs Do Not Affect Catalytic or
ATP-Binding Residues and Do Not Correlate with
Conserved Positions

Of the 179 activating mutations within the kinase domain in our
curated set, only five affect either the ATP binding (K745 and D855)
or the key catalytic residues (D837, A839, R841, and N842, in human
EGFR numbering) [Porter et al., 2004]. Four of these five mutations
have been described in EGFR (p.K745 E749del, p.K745 A750del,
p.A839T, and p.D855G) and one is an artificial mutation generated
in NTRK1 (p.D668N). A significant number of congenital disease-
associated single-nucleotide polymorphisms in PKs have also been
reported to affect residues not directly involved in ATP binding or
catalysis but rather buried in the catalytic core [Torkamani et al.,
2008b].

To examine whether activating mutations are associated with
conserved residues, we calculated conservation, as measured as the
Kullback–Leibler divergence score [Cover and Thomas, 1991; mod-
ified by Marino-Buslje et al., 2010], for each position in the TK
domain. Subsequently, we evaluated the predictive potential of the
calculated conservation of the residues in terms of the area under
the roc curve (AUC). An AUC of 1 means perfect predictive value,
whereas 0.5 indicates a random process. We obtained an AUC value
of 0.4, indicating that conservation scores do not correlate with
positions harboring activating mutations. In fact, these positions
do not have a specific pattern of conservation (Fig. 3 and Supp.
Fig. S3).

An Additional Hypermutated Segment (HS1) is Apparent in
RTKs, Particularly of the PDGFR Family

One hundred and twenty-one activating mutations were located
in the JM region of the four RTKs analyzed belonging to the PDGFR
family, plus EGFR and RET, 72 of which corresponded to KIT and
34 to FLT3. Twelve additional mutations mapped to the first nine
residues of the kinase domain. This led us to define another hy-
permutated segment (HS1), comprising the JM region plus the
N-terminus of the SDI (Tables 1 and 2). The JM region of the four
PDGFR family receptors was aligned, and activating mutation po-
sitions were mapped onto the KIT structure. Most of the mutations
were located in residues 551–578 (Fig. 4A, Supp. Fig. S4). EGFR
and RET were excluded from the alignment due to the significant
differences in the JM amino acid sequence.

Finally, two isolated short segments that cluster activating muta-
tions were identified in the extracellular domain of the three FGF
receptors analyzed, mapping in residues 248–249 and 370–373 of
FGFR3. They encompassed three and six point mutations, respec-
tively, almost all of which resulted in a new cysteine residue.

Activating Mutations in STKs Also Seem to Cluster in the
Hypermutated Segments HS1–HS3

In STKs, 23 mutations in six different proteins were located
within the kinase domain. In this case, we used human BRAF as a
reference structure in the MSA. Due to the low number of activating
mutations reported in STKs, statistical analysis was impossible and
caution must be exercised when analyzing our results. However,
activating mutations in STKs also seem to cluster in the HS3 seg-
ment defined for TKs (10 mutations) and, to a lesser extent, in HS1
and HS2 (five and four mutations, respectively) (Fig. 4B and Supp.
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Figure 3. Activating mutations do not directly affect ATP binding or catalytic residues and do not concentrate in conserved regions. Plot showing
the normalized frequency of activating mutations (with EGFR as reference) in all TKs (orange bars) and in TKs excluding EGFR (yellow bars), the KL
conservation score (green bars), and the frequency of mutations of unknown effect in each TK position (gray bars). Blue dots indicate ATP-binding
sites; red dots, catalytic residues. Activating mutations are present in conserved, partially conserved, and variable regions
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Figure 4. Activating mutations in the JM domain and in STKs. A: Distribution of activating mutations in the JM domain of RTKs belonging to the
PDGFR family. Activating mutations are depicted in the ribbon representation of the autoinhibited human c-KIT structure (pdb code 1T45). Mutated
positions are shown in green, and the diameter of the ribbon is proportional to the normalized frequency of activating mutations affecting each
position, ranging from 0 to 3.33. The approximate positions of the JM binding and the JM switch motifs are shown, and the c-kit activation loop is
shown in purple (see also Supp. Fig. S4). B: Distribution of activating mutations in STKs. Mutations are depicted on the ribbon representation of the
human BRAF structure (pdb code 4E26). Mutated positions are shown in dark blue, and the diameter of the ribbon is proportional to the normalized
frequency of activating mutations affecting each position, ranging from 0 to 4.12. The arrow indicates the position of the V600 hotspot in BRAF (L861
in EGFR).

Tables S4 and S6). In addition, the most frequently mutated residue
in BRAF (V600) overlaps with the 861 activating mutation hotspot
of TKs.

Two Newly Described Mutations of Epha7 Located in an HS
Might Have a Functional Effect

Our findings seemed to indicate that mutations in PKs located
within a hypermutated segment are more likely to be drivers and
should thus be prioritized for validation experiments needed to
prove their functional effects. We tested this hypothesis on the 66
mutations of unknown functional effects in 43 TKs described by
three whole-genome sequencing reports of human tumors [Kan
et al., 2010; Puente et al., 2011; Zhang et al., 2012]. Only 17 of
these mutations, affecting 16 TK genes, mapped within a hypermu-
tated segment (Supp. Table S7). We selected two mutants in EPHA7
(p.S684 and p.D776N) for validation since the role of mutant forms
of Epha7 in tumorigenesis is unclear.

We used a quantitative, fluorescence-based growth assay to de-
termine the functional effects of expression of wild-type Epha7 and
the two mutant forms. Consistent with prior data, we found that
expression of HRASG12V induced growth, whereas expression of
wild-type Epha7 was growth suppressive [Oricchio et al., 2011]. Two
Epha7 bands were apparent by Western blotting of the cell lysates;
the upper band, which corresponds to the full-length protein, and
the lower band, which corresponds to a truncated receptor. Trun-
cated forms of Epha7 lacking the kinase domain have been reported
to inhibit Epha7 and Epha2 activation and to have tumor suppres-
sor properties [Holmberg et al., 2000; Oricchio et al., 2011]. The
growth-suppressive effects of Epha7 were reverted by introduction
of the p.S684I or p.D776N mutation. Epha7 wild-type and mu-
tant forms were expressed at equivalent levels in these cells (Supp.
Fig. S5). Eph receptors are known to have paradoxical effects, and
they can both promote and inhibit tumorigenicity by triggering
a variety of cell-signaling pathways [Pasquale, 2010]. We analyzed
three signaling effectors in our transfected cells, and we found that

the p.D776N mutant protein was significantly more efficient than
Epha7 wild type in inducing the phosphorylation of STAT-3. Taken
together, these data suggest that p.S684I and p.D776N in Epha7 can
be functionally relevant and deserve further experimental validation
as putative activating mutations.

Discussion
In this study, we have compiled the first curated set of activating

mutations in PKs, comprising 407 mutations in 41 different pro-
teins. These data are disseminated in hundreds of articles describing
one or few cases each and in several data bases. We have found that
most activating mutations are missense, with a significant percent-
age of small insertions/deletions that affect exclusively seven TKs.
We have next assessed their equivalence through MSA and structural
superimposition to evaluate the frequency of mutated positions or
segments through all the kinase family. Using this approach, we have
discovered that activating mutations cluster in three hypermutated
segments (HS1, HS2, and HS3), whereas mutations of unknown ef-
fects are almost uniformly scattered throughout the kinase domain
of PKs. We have also found two hotspots harboring activating mu-
tations, one located in the HS2 (position 776, EGFR numbering)
and another in the HS3 (position 861, EGFR numbering).

PKs control key biological processes and their activity is tightly
regulated. In their basal state, most PKs are autoinhibited and pos-
sess very low levels of intrinsic kinase activity but are activated in
nonpathological conditions by phosphorylation and/or binding of
ligands or activator proteins. A so-called molecular brake respon-
sible for this autoinhibited state has been experimentally demon-
strated in FGFR2, and structural analyses have observed it in other
class III–IV RTKs [Chen et al., 2007, 2013]. Key regulatory regions
of the FGFR2 kinase domain (the hinge plus αC-helix and the acti-
vation loop) have been shown to act in concert to maintain the au-
toinhibited state through a network of hydrogen bonds between the
triad of residues E565 (in the kinase hinge), N549 (in the loop after
the αC), and K641 (immediately before the activation loop) (Supp.
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Fig. S6). When wild-type FGFR2 is activated after ligand binding
and phosphorylation of the A loop, the network dissociates, allowing
two critical changes in the kinase domain. The N-lobe of the kinase
undergoes an inward rotation (6.7◦) toward the C-lobe, which coin-
cides with a major rearrangement of the phosphorylated A-loop at
the local level. These coupled structural changes align the catalytic
residues from different regions, including the A-loop, the catalytic
loop and the αC helix, to promote peptide substrate and ATP bind-
ing and to increase catalytic efficiency. As a result, the kinase domain
toggles from the autoinhibited, structurally rigid state to the active,
more dynamic and conformationally heterogeneous state. Eleven
pathogenic activating mutations of FGFR2 have been demonstrated
to release the molecular brake, either by directly disrupting the net-
work of hydrogen bonds (p.N549H, p.N549T, p.E565G, p.E565A,
and p.K641R) or by indirectly disengaging it through allosteric
communication (p.K526E and p.K659E/M/N/Q/T). This molecular
brake does not seem to be exclusive to TKs; crystallographic analyses
of the STK PAK1 have revealed the presence of a similar network
of hydrogen bonds in the kinase domain that is disengaged in the
activated PAK1 structure [Lei et al., 2000, 2005].

HS2 and HS3 coincide with the two molecular brake regions
described in class III–IV RTKs. The HS2 comprises the SDIII (αC-
helix), the SDIV, and the N-terminus of the SDV (hinge). The HS3
includes the SDVII (activation loop) together with the residues lo-
cated in its immediate vicinity (Fig. 2D). The three residues forming
the network of hydrogen bonds of the brake are all within one of the
hypermutated segments (Supp. Fig. S6), similarly to the other two
residues affected by the activating mutations of FGFR2 mentioned
above (K526 and K659). In addition, the two mutational hotspots,
776 in HS2 and 861 in HS3, are located in residues that play a par-
ticular role in the brake: 776 (N549 in FGFR2) directly participates
in the network of hydrogen bonds [Chen et al., 2007], and L861
in EGFR packs against the αC-helix, preventing the formation of
an ion pair (K745/D772) associated with the active conformation
[Zhang et al., 2006].

In the RTKs of the PDGFR family, the JM domain has also been
demonstrated to inhibit the kinase domain, with two motifs play-
ing a prominent role: the JM binding (JM-B) and the switch mo-
tif (JM-S) (residues 553–559 and 560–571 in c-KIT) [Chan et al.,
2003; Griffith et al., 2004]. Our third hypermutated segment (HS1)
coincides with the JM domain, and moreover, mutations within
HS1 cluster around the JM-B and the JM-S motifs (Fig. 4A, Supp.
Fig. S4).

Taken together, our findings lead us to hypothesize that an autoin-
hibitory mechanism mediated by structurally equivalent molecular
brake regions is present in all PKs, and that the vast majority of ac-
tivating mutations found in human tumors and other pathologies
act by releasing this brake and consequently shifting the dynamic
equilibrium of the PK toward the active form. The fact that this
active form is a more conformationally dynamic and heterogeneous
state can help to explain why a variety of pathogenic mutations in a
wide range of residues within the molecular brake regions can result
in activation of the kinase domain.

The molecular brake hypothesis can also account for the acti-
vating deletions in the SDII exclusive of EGFR. In EGFR, the last
residues of the SDII form a loop that stabilizes the αC-helix in
a displaced position and interacts closely with the inactive helical
conformation of the A loop [Zhang et al., 2006; Shan et al., 2012].
Therefore, the SDII of EGFR acts as an additional “molecular brake”
that does not seem to be present in other PKs, and disappearance of
the loop due to cancer-associated deletions has an activating effect.

With the advent of high-throughput sequencing, large numbers
of somatic mutations are being discovered in cancer-sequencing

projects, exceeding our capacity to validate their effect through ex-
perimental functional studies and making it essential to have bioin-
formatics tools to predict the impact of the mutations and prioritize
them for further analysis. In particular, identifying driver muta-
tions is one of the main goals of genome resequencing, and many
computational methods have been developed for this purpose. So
far, these methods have only considered missense mutations and
have not differentiated between inactivating/loss-of-function and
activating/gain-of-function mutations, using the same criteria and
algorithms for both types of drivers. In addition, due to the lack of
curated sets of driver mutations, these computational methods have
been validated on mutations with pronounced phenotypic effects
that usually involve a loss of function of the mutated gene.

The first high-throughput methods developed to identify driver
mutations relied on the detection of recurrent alterations, calcu-
lating the probability of detecting by chance the frequency of a
particular mutation across the tumor samples analyzed. However,
these methods have several limitations; the background mutation
rate is difficult to assess correctly, and genes that are mutated in only
a small fraction (<1%) of tumors can still act as drivers [Wood et al.,
2007]. In addition, they are likely to favor early driver genes over
those that are mutated at a later stage of tumor progression. In re-
cent years, new methods have been developed to classify mutations
based on data other than the frequency of a mutation. These meth-
ods can only be applied to missense mutations and are based on
the assumption that driver mutations will preferentially affect con-
served residues. Therefore, they rely more or less on sophisticated
methods to calculate the conservation of individual residues. Three
of these methods offer their predictions online through their Web
Pages: MutationAssesor [Reva et al., 2011], transFIC [Gonzalez-
Perez et al., 2012], and FATHMM [Shihab et al., 2013] (see Material
and Methods). The MutationAssessor assigns “functional impact
scores” to residue changes using evolutionary conservation patterns
derived from protein family MSAs, whereas transFIC offers three
scores per mutation, complementing the evaluation of violations of
evolutionary constraints by other tools with a “baseline tolerance”
of germline alterations. Finally, FATHMM assigns a score by inter-
rogating sequence conservation through the underlying amino acid
probabilities modeled by the internal match states of several hidden
Markov models.

When we tested the 250 activating missense mutations of PKs
of our curated set in MutationAssessor, only 16 were assigned a
“high” functional impact, whereas mutations such as p.V600E in
BRAF or p.T790M and p.L861Q in EGFR were qualified as “neu-
tral” or “low impact.” TransFITC only categorized 92 mutations as
“high impact” in at least two of its three scores, whereas p.V600E
and p.V600K in BRAF and p.T790M and p.L861Q in EGFR were
again only assigned “medium” or “low” impact scores. With the
FATHMM discriminating threshold of –3.0, 35 mutations were
scored as “cancer-associated,” whereas the remaining 215 were qual-
ified as “passenger.” These three tools thus seem unable to recog-
nize well-established activating mutations, leading us to doubt their
ability to screen whole-genome sequencing data in search of new
gain-of-function mutations of proto-oncogenic PKs.

In the present study, we have demonstrated that these activating
mutations do not correlate with conserved positions and that, in
fact, positions harboring activating mutations do not have a specific
pattern of conservation. Therefore, although conservation-based
methods might be useful in the case of loss-of-function alterations,
we cannot recommend their use for predicting gain-of-function
mutations; at least in PKs. Conserved residues usually play key roles
either in catalysis or folding of proteins. They have been optimized
by a long evolutionary process and replacing them with another
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residue will almost invariably lead to a less active protein, either
through direct loss of catalytic activity or through incorrect folding.
In fact, it is well known that replacement of such residues by site-
directed mutagenesis is usually deleterious.

Our work demonstrates that gain-of-function mutations of PKs
represent a distinct, homogeneous group of drivers and that spe-
cific computational methods should be developed to discriminate
them. The new methods to predict activating mutations cannot rely
on evolutionary and conservation information or on the role of
residues in catalysis or ATP binding. Instead, they should be based
on an analysis of the clustering of activating mutations like the
one presented here. We have demonstrated the feasibility of this
approach by analyzing 66 cancer-associated somatic mutations of
unknown effect and identifying two in the EPHA7 gene that can be
functionally relevant and deserve further experimental validation.
In addition to the clustering analysis, the new methods to identify
activating mutations in PKs could incorporate the different frequen-
cies of amino acids affected by this type of mutation (see Fig. 1D
and E), taking into account their chemical properties. These new
methods might eventually lead to the discovery of hitherto unknown
gain-of-function mutations, which will expand our knowledge of
the oncogenic process and constitute potential targets for the design
of new drugs. Finally, further investigation will determine whether
the same principles and models can be generalized to activating
mutations of proto-oncogenes that do not codify PKs, such as MYC
or RAS.
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