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Abstract: In this article, a time-of-flight detection technique in the frequency domain is 

described for an ultrasonic Local Positioning System (LPS) based on encoded beacons. 

Beacon transmissions have been synchronized and become simultaneous by means of the 

DS-CDMA (Direct-Sequence Code Division Multiple Access) technique. Every beacon 

has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the 

receiver, from which the distance to each beacon can be obtained, is based on the 

application of the Generalized Cross-Correlation (GCC), by using the cross-spectral 

density between the received signal and the sequence to be detected. Prior filtering to 

enhance the frequency components around the carrier frequency (40 kHz) has improved 

estimations when obtaining the correlation function maximum, which implies an 

improvement in distance measurement precision. Positioning has been achieved by using 

hyperbolic trilateration, based on the Time Differences of Arrival (TDOA) between a 

reference beacon and the others.  
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OPEN ACCESS



Sensors 2011, 11                    

 

 

10327

1. Introduction 

The term LPS (Local Positioning System) refers to a system used for location and positioning in 

indoor (or at least reduced) environments where the use of positioning techniques based on GPS is 

very limited due to the weakness of the GPS signals. These kinds of systems are the keystone for the 

implementation of intelligent spaces able to interact with people and robots. Nowadays there are a lot 

of applications that can be developed in modern buildings with an effective LPS [1]. As examples the 

guidance of people inside buildings [2], the study of the people’s behavior in some contexts [3], the 

development of healthcare and entertainment applications [4] or some indoor robot applications [5] can 

be highlighted. 

LPSs have been developed using different technologies such as infrared [6], RF [7], or ultrasound [8], 

when ultrasonic signals are used there are several beacons emitting in the covered area and different 

mobile devices whose positions are going to be calculated. In this process, the system measures the 

time of arrival (TOA) or the time-differences of arrival (TDOA) to estimate the distance or distance 

difference between each mobile node and the different beacons. TDOA permits that the emitters and 

each receiver to not be synchronized by means of radio-frequency or infrared signals (asynchronous 

detection), which simplifies the hardware; the disadvantage is that it is necessary to use one more 

beacon as reference. Due to the existence of several emitters sharing the same channel, it is essential to 

use a method to avoid the interferences between them, like frequency division for multiple access 

(FDMA), time division for multiple access (TDMA) or code division for multiple access (CDMA). 

The last one is a spread spectrum technique that consists of codifying each emission with a different 

code, and then allowing the identification of each beacon code at the receiver among all the received 

signals. CDMA is well known and widely used in ultrasonic applications [9].  

The determination of TOA (or TDOA) implies the measurement of time delay in the arrival of a 

signal (or difference of delays in the arrival of two signals) to a receiver. In the case of natural sounds, 

including speech, intense work has been developed during the last years. The methods used deal with 

the random nature of these signals and their high relative bandwidth. Different algorithms have been 

compared in [10] in terms of the suitable sampling frequency to implement them, in the time domain 

(standard cross correlation -CC-, generalized cross correlation -GCC-) and in the frequency domain 

and envelope analysis (generalized phase spectrum -GPS-, envelope combined with GPS). In the case 

analyzed in this paper, the signals used are in the ultrasonic frequencies band for air with a lower 

relative bandwidth than sound. They are also coded and modulated before they are transmitted. 

Additionally different signals emitted from different beacons share simultaneously the same channel 

and are received with only one receiver.  

This paper presents an ultrasonic LPS, such as that shown in Figure 1, based on a group of 

transmitter beacons located at known positions, which transmit simultaneously and periodically by 

using DS-CDMA (Direct-Sequence Code Division Multiple Access) technique [11]. Each beacon 

emits a BPSK-modulated 255-bit Kasami code with a 40 kHz carrier [12]. The modulation symbol is 

formed by one or several carrier cycles (m) in order to provide more energy to the channel. An 

important feature of this LPS is the absence of synchronization between the beacons and the receiver. 

This means that it becomes necessary to use a positioning algorithm based on hyperbolic trilateration, 

by using as distance measurement the time differences of arrival (TDOA) between a reference beacon 
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and the others, given the asynchronous feature of the LPS described. In order to estimate every signal’s 

instant of arrival at the receiver, the received signal is sampled and stored in a temporary buffer with 

enough sample size to store at least one complete transmission period (approximately 40 ms).  

Figure 1. Block diagram of the ultrasonic LPS. 

 

As has been mentioned, each beacon has assigned a code or sequence for encoding the emission. 

The arrival instant for each emission is often determined by the correlation between the received signal 

and the code to be detected. This process is known as matched filtering, and it is based on detecting at 

what instant it provides a correlation maximum. A block diagram of the receiver is shown in Figure 2, 

which basically consists of an acquisition system based on an 8-bit ADC (fs = 400 kHz) and a  

high-speed processing unit based on a DSP or FPGA [13]. 

Figure 2. Block diagram of the receiver. 

 
 

The Inter-Symbol Interference (ISI) caused by the fact that the Auto-Correlation (AC) function of 

the sequences used, and the Cross-Correlation (CC) between them, is not null near the maximum, 

implies that it is sometimes difficult to detect the real position of the maxima [14]. In order to improve 

the detection process, without applying typical communications algorithms as MAI (Multiple Access 
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Interference) or ISI cancellation, which usually involve a high computational load, the use of 

generalized cross-correlation (GCC) is proposed [15], which is widely employed in acoustics to 

estimate the delay time between signals [16,17]. 

This article is organized as follows: in Section 2 the positioning system model reported here is 

described, and the classical detection process based on cross-correlation. In Section 3, GCC is 

explained, as well as its application to detect sequences or codes assigned to each beacon. In Section 4, 

some results obtained for the detection process by applying GCC are provided, and compared with 

those obtained from CC. Finally, some conclusions are discussed in Section 5. 

2. Positioning System Model 

In the positioning system model (see Figure 3) the beacons are considered as a set of K transmitters. 

Every emitted signal, xj(t), is the encoded emission of the beacon j and is the result of the BPSK 

modulation of a binary code cj with a carrier pm(t), and the convolution of this modulated signal with 

the impulse response of the transmitter, ht(t). Considering that hj(t, τj) is the response of the channel for 

the beacon j, τj is the delay in receiving the sequence assigned to beacon j and η(t) is a zero-mean 

Gaussian noise and variance σ2, the received signal y(t) is given by Equation (1): 

1

( ) ( )* ( , ) ( )
K

j j
j

y t x t h t t 


   (1) 

and in terms of discrete-time, the received signal y[n] is defined by Equation (2): 

1

[ ] [ ]* [ ] [ ]
K

j j
j

y n x n h n n


   (2) 

By applying the convolution process, the received signal y[n] becomes: 

1 0

[ ] [ ] [ ] [ ]
K P

j j
j l

y n h l x n l n
 

     (3) 

where xj[n] is the discrete-time version of the transmitted signal by the beacon j; K is the number of 

beacons; P is the number of samples in the analysis window or capture buffer; hj[l] is the impulse 

response of the physical channel between the beacon j and the receiver, characterised by signal delay 

and attenuation; and η[n] is a zero-mean Gaussian noise.  

Considering the detection process of a beacon j, it is necessary to carry out the correlation between 

the received signal y[n] and the sequence (or code) to be detected sj[n]. The correlation function is 

given by Equation (4): 

, , ,
1

[ ] [ ] [ ] [ ] [ ] [ ]
j j j i j

K

s j j s s j y s s
k i

i j

n y k s n k R n D R n R n 


 


        
(4) 

Both the auto-correlation function of the sequence transmitted by the beacon j (when xi = xj) and the 

cross-correlations between the sequence transmitted by the beacon j and the other beacons can be 

identified in Equation (4). The last term in Equation (4) represents the cross-correlation between  

the sequence to be detected and the noise. The function is maximum for n = Dj which corresponds to 

the arrival instant of the sequence assigned to the beacon j. The second term in Equation (4) is the 
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cross-correlation between all the other sequences i (i ≠ j) or beacons and the received signal y[n], and 

represents the interference due to multiple access (MAI). The last term means the correlation between 

noise and the sequence assigned to the beacon j. The arrival instant of the sequence j, in samples, is 

provided by Equation (5):  

arg max [ ]
jj s

n
D n  (5) 

The time difference of arrival (TDOA) between a reference beacon i and another beacon j, 

considering the sampling time Ts, is given by Equation (6):  

 arg max [ ] arg max [ ]
i j

ij ij

s s
n n

Ts D

Ts n n



 

 

 
 (6) 

Figure 3. Block diagram of the proposed positioning system model. 

 

3. Generalized Cross-Correlation 

Another method for computing the arrival instant of a sequence j assigned to a beacon is based on 

the inverse Fourier transform of the cross-spectral density between the received signal and the 

sequence to be detected. This method is known as Generalized Cross-Correlation (GCC), and it is 

widely used by many authors as a method for estimating the delay in reception of a signal at two 

receivers positioned at a specific distance from a communication source [15]. In particular, it is 

commonly used for the detection of an acoustic signal source and for locating it in a determined 

environment. In this case, the receivers are a set of microphones [18]. 

If it is considered that the received signal y(t) and the signal to be detected x(t), have been filtered 

prior to carrying out the cross-correlation process by using the filters Hy(f) and Hx(f), respectively, the 

cross-spectral density, related to the cross-correlation, is defined by Equation (7): 
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where Hy(f) and Hx(f) are the frequency response of the filters of the received signal y(t) and the  

signal to be detected x(t), and Gxy(f) is the cross-spectral density between them. The generalised  

cross-correlation function is obtained from its inverse transform in Equation (8): 

 1( ) ( ) ( )GCC
xy xyR F f G f    (8) 

where Ф(f) = Hx(f)Hy*(f) represents the correlation filter. 

Regarding a discrete-time analysis, the generalised cross-correlation in discrete time, between the 

received signal y[n] and the sequence sj[n] to be detected, is given by Equation (9): 
21
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where Y*[k] is the conjugate of the discrete Fourier transform for the discrete version of the received 

signal y[n]; Sj[k] and Фj[k] are the discrete Fourier transforms of the sequence sj[n] to be detected  

and the weight function respectively. The weight function represents a previous filtering of the 

received signal and the sequence to be detected, which accentuates the peak or the maximum of the 

cross-correlation function at the instant of arrival of the sequence. In the frequency domain, this filter 

is equivalent to applying a weight function to the cross-spectral density function between the received 

signal and the sequence to be detected. As E{Sj[k]Y*[k]} = GSj,y[k] represents the cross-spectral density 

between y[n] and sj[n], where the operators E{·} and * are the expected value and the conjugated 

complex operator; then, Equation (9) can be expressed as Equation (10): 
21

,
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   (10) 

Note that if Фj[k] = 1, the GCC function Equation (10) becomes the standard version of the  

cross-correlation of the two signals obtained from the inverse Fourier transform for their cross-spectral 

density. An approximation to the expression gives an estimation of the GCC function by considering a 

limited number N of samples. The estimated instant n = Dj corresponds to the maximum of the 

function in Equation (10), and represents the arrival of the sequence j at the receiver, which is given by 

Equation (11): 
^

arg max [ ]
j

GCC
j s

n
D n  (11) 

Filtering has two objectives. First, it accentuates the signal to be correlated in those frequencies 

where the signal-to-noise ratio is higher; therefore, Фj(f) depends on the signal spectrum and noise. 

Secondly, the filtering yields the most accentuated peak possible at the correct instant for obtaining a 

good temporary resolution. However, the accentuated maxima are more sensitive to errors produced by 

finite observation times, particularly in the case of low signal-to-noise ratios. The choice of the filter is 

thus a trade-off between temporary resolution and stability. The way in which this calculation is 

carried out has been studied by several authors, taking into account two criteria: temporary resolution 

and error due to noise. Several filtering expressions have been analysed in [15]. 

The filtering function known as PHAse Transform (PHAT filtering), is widely used to estimate 

signal delay between two receivers located at a given distance from the acoustic source or transmitter. 

Its expression in this case, considering beacons as transmitters whose signal is sj[n], and the received 

signal y[n], is provided in Equation (12): 
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The advantage over the other filtering functions analysed in [15] is that it notably improves 

estimation in environments with a certain level of reverberation. Assuming that the noise is completely 

uncorrelated, peaks in the correlation function are much narrower, near a true delta function at the 

instant of arrival of the sequence, with an absence of sidelobes. This is because the delay information 

is present in certain frequency phases and it is not affected by the transform, since the applied filtering 

enhances the real instant of arrival of the sequence or delay, and eliminates spurious delays, to a 

greater or lesser extent, depending on noise power. 

Detection of the Signal from the Beacons 

Since beacons are considered as emitters whose transmitted signal is sj[n], and the received signal 

y[n], the estimation of the arrival instant for each beacon, when applying the GCC with PHAT 

filtering, requires a more complex analysis in order to apply the correlation between the received 

signal and the sequence to be detected, as the received signal is a composition of as many emitting 

sources or signals as available beacons. Figure 4 shows the estimation process of the arrival instant of 

sequences for GCC with a pre-filtering function, in time domain. 

Figure 4. Block diagram of the estimation process of the arrival instant for a sequence j 

based on GCC.  

 

Let consider the received signal from the beacons, defined as Equation (13): 

 
(13) 

where K is the number of beacons; Sj[n] is the sequence assigned to the beacon j; hj[n] is the channel 

response for the beacon j; and η[n] is the noise. The cross power spectrum between the received signal 

y[n] and the sequence Sj[n] to be detected is Equation (14):  
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where Ф௦,௦ೕ(ω) is the cross spectrum between each transmitted sequence Si[n] and the sequence Sj[n] 

to be detected. The cross correlation between the received signal and the sequence j, based on the 

inverse Fourier transform, Equation (15): 
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where ܴ௦,௦ೕ[n − Dj] is the auto-correlation of the sequence Sj[n] to be detected, and ܴ௦,௦ೕ[n – Di] is the 

correlation between each transmitted sequence Si[n] (apart from that to be detected), and the sequence 

to be detected Sj[n]. It is assumed that ܴே,௦ೕ[n] = 0 since noise is considered uncorrelated. By applying 

the phase transform (PHAT), the weight function or filter becomes Equation (16):  

,

1
( )

ˆ ( )
j

j

y s




 


 
(16) 

where Ф௬,௦ೕ(ω) is the estimation of the cross power spectrum between the received signal and the 

sequence to be detected, computed from the estimation of their spectra ܻ(ω) and ఫܵ (ω), respectively. 

The GCC estimated with the PHAT filter is defined by Equation (17): 

 

(17) 

In this case, it is possible to state Equation (18): 

 

(18) 

Thus, ܴ௬,௦ೕ
ሺሻ[k] is not an ideal delta, but an attenuated delta at instant Dj and some sidelobes. This is 

provided by the other sequences that interfere in the correlation process due to their pseudo-orthogonality. 

Furthermore, the more the signal-to-noise ratio reduces, the more the detection process worsens due to 

the spectral contribution of the noise power. An alternative is to use, as a PHAT filter, the inverse 

module of the Fourier transform of the auto-correlation of the sequence to be detected. This is: 

 

(19) 
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As the auto-correlation spectrum is a real and positive function: 
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As can be observed, the searched sequence becomes a unitary delta, whereas the deltas for the other 

sequences are weighted by Equation (22). Since the sequences are pseudo-orthogonal, their values 

become much less than one. 
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4. Results 

4.1. Simulation Results 

In order to compare the sequence detection method based on cross-correlation (CC) between the 

received signal and the sequence assigned to each beacon with the method based on generalised  

cross-correlation (GCC) and on applying phase transform (PHAT) filtering, a LPS with two beacons 

have been considered. The beacons have been located in a 2D system at positions (x1 = 0, y1 = 300 cm) 

and (x2 = 300 cm, y2 = 300 cm), whereas the receiver is located at (rx = 0, ry = 151 cm). In other words, 

the receiver is practically equidistant from both beacons (see Figure 5). For the emission, 255-bit 

Kasami codes, with one carrier cycle as modulation symbol (m = 1), have been used. 

Figure 5. Position of the beacons and the receiver for the analysis of the detection process. 
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Figure 6 shows the detection process in the absence of noise and considering ideal beacons, based 

on cross-correlation between the received signal and the sequences to be detected in the time domain. 

It can be observed the correlation function maxima, as well as the appearance of sidelobes as a 

consequence of the ultrasonic signal modulation process, which generates a widening of the spectrum.  

Figure 6. Beacon detection in the absence of noise by applying the cross-correlation (CC) 

method in the time domain. 

 
 

Figure 7 shows how the method based on GCC with PHAT filtering noticeably improves detection: 

sidelobes have practically disappeared, and the detection instant becomes almost a delta. 

Figure 7. Beacon detection in the absence of noise, by applying generalised cross-correlation 

(GCC) with PHAT filtering. 
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Prior filtering of the signals based on phase transform (PHAT) accentuates the frequencies around 

the carrier. Then, when the Fourier transform-based correlation is applied, a delta is obtained at the 

sequence arrival instant. Figure 8 shows the detection process for a signal-to-noise ratio of 0 dB, where 

the GCC method still improves detection, despite the appearance of sidelobes in the frequency 

response generated by noise, which implies high values around the carrier frequency.  

Figure 8. Beacon detection with a signal-noise ratio of 0 dB, by applying generalised 

cross-correlation (GCC) with PHAT filtering. 
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edge effects caused by modulation when CC is applied are shown in Figure 9, whereas the detection 
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Figure 9. Beacon detection by applying CC, for a modulation symbol formed by four 

carrier cycles (m = 4).  
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Figure 10. Beacon detection by applying generalised cross-correlation (GCC) with PHAT 

filtering, for a modulation symbol formed by four carrier cycles (m = 4). 

 

4.2. Real Results 
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Figure 11. Measured 328ST160 transducer performance: (a) Impedance/Phase angle vs. 

frequency; (b) Sound pressure level (SPL) vs. frequency. 
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Two beacons have been used for transmission and the receiver has been positioned on the floor. 

Figure 12 shows the experimental setup diagram. The beacons are excited by a dual-channel Tabor 5062 

Arbitrary Waveform Generator followed by a Tabor 9200 voltage amplifier. The receiver is a  

Brüel & Kjaer 4939 microphone with a 2670 preamplifier which output has been captured by an 

UltraSoundGate 116 Hm, an Avisoft ultrasonic signal acquisition system [20]. A computer enables the 

acquisition at 400 kHz sampling frequency and performs all the post processing using Matlab. 

Figure 12. Experimental setup diagram. 

 

When the receiver is in the position 1 (according to the diagram shown in Figure 12), the detection 

process results for a modulation symbol with one carrier cycle (m = 1) by applying CC and GCC, are 

shown in Figure 13(a,b), respectively. 

Figure 13. Beacon detection in the position 1 with real signals (m = 1) applying: (a) CC 

and (b) GCC. 
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In the same position 1, the results obtained when using a modulation symbol with four carrier 

cycles (m = 4) by applying CC and GCC, are shown in Figure 14(a,b), respectively.  

Figure 14. Beacon detection in the position 1 with real signals (m = 4) applying: (a) CC 

and (b) GCC. 

(a) (b) 

 

In both cases (with m = 1 in Figure 13 and with m = 4 in Figure 14), it can be observed that the use 

of the GCC provides a significant enhancement of the peaks regarding the lateral values affected by 

the modulation process and the characteristics of the transmission channel. 

Figure 15. DTOAs measured in positions 1 and 2 when emit beacons 1 and 2 (Figure 12) 

using standard correlation (CC) and GCC. 
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Figure 15 shows the results obtained, using standard correlation (CC) and GCC, in the measurement 

of the DTOA between the signals emitted from the beacons 1 and 2 when they are received in 

positions 1 and 2 (according to Figure 12). The results are expressed in samples (the sampling period 

used is 2.5 µs), as the difference between the maximum peaks of both correlations, the corresponding 

to beacons 1 and 2. The test has been repeated 20 times, and the values of the mean and the standard 

deviation have been included for every case. The expected values for position 1 and 2 have been 

measured by using a laser distance meter.  

For the position 1, in which both signals arrive with a considerable delay, CC gives a most 

repetitive result (although looking at Figures 13 and 14, the main peak in the correlations is clearer for 

GCC). Nevertheless, for the position 2, in which both signals arrive almost simultaneously, the 

interference between them affects more to the CC, giving an erroneous result in the computation of the 

DTOA. In this case the GCC allows computing the DTOA correctly. Figure 16(a,b) show the output of 

the correlation process for the signals received in this position 2 by using CC and GCC respectively.  

It can be verified how the use of GCC gives better results because the main peaks in every 

representation have less secondary peaks around.  

Figure 16. Beacon detection in the position 2 with real signals (m = 1) applying: (a) CC 

and (b) GCC. 

(a) (b) 

5. Conclusions 

A method based on the GCC for obtaining the TDOA of two signals coming from different beacons 

to the same receiver has been proposed in this work. It has been applied to an ultrasonic LPS, whose 

beacons emit encoded signals by means of Kasami sequences. The detection algorithm is based on the 

cross-spectral density between the received signal and the modulated sequences to be detected (each 

one related to its corresponding beacon). 

The proposed algorithm provides a significant reduction in the lateral lobe effects, when compared 

with standard correlation, caused by the modulation process, the interference between emissions and 

the characteristics (attenuation, multipath, etc.) of the channel. The detection of the maximum peak to 

determine the arrival instant of each sequence is then easier.  
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The algorithm has been tested with simulated and real data comparing its performance with that 

obtained when a basic correlation (CC) is used. GCC gives always a clearer maximum peak than CC 

with less significant secondary peaks around the main one. When the signals arrive to the receiver with 

a considerable delay (milliseconds) the performance of both detection algorithms, CC and GCC, is 

similar, being the CC less sensible to the noise and distortion introduced by the transducer. On the 

other hand, when the signals arrive to the receiver almost simultaneously (very low DTOA), the GCC 

allows to compute the DTOA while the CC fails (because the interference between both signals and its 

influence in the secondary peaks). 
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