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A density function is generally not well defined in functional data context, but we can define a surrogate
of a probability density, also called pseudo-density, when the small ball probability can be approximated
by the product of two independent functions, one depending only on the centre of the ball. The aim of
this paper is to study two kernel methods for estimating a surrogate probability density for functional
data. We present asymptotic properties of these estimators: the convergence in probability and their rates.
Simulations are given, including a functional version of smoother bootstrap selection of the parameters of
the estimate.
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1. Introduction

Developing statistical methods for analysing functional data sets, presently called functional
data analysis, has become an increasingly important area in recent years. Functional data are
present in different fields such as engineering, medicine, physics, chemometrics, economy, etc.
Many multivariate statistical techniques, concerning parametric models, have been extended to
functional data and good overviews on this topic can be found in Ramsay and Silverman (2002,
2005) or Bosq (2000). More recently, new studies have been carried out in order to propose
nonparametric methods, taking into account functional data (see Ferraty and Vieu (2006), for
large discussion and references). See also Ferraty and Romain (2010) for a recent overview on
functional data analysis.

In functional data analysis, the concept of probability density for a random function is an
important subject of study. It is closely related to the concept of mode of the distribution of a
random function, studied by Gasser, Hall, and Presnell (1998), Hall and Heckman (2002) and
Ferraty and Vieu (2006, chap. 9). Delaigle and Hall (2010) proved that a probability density
function generally does not exist for functional data and developed notions of density and mode
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2 F. Ferraty et al.

when functional data are considered in the space determined by the eigenfunctions of principal
component analysis.

In this paper, we develop a k-nearest neighbour (kNN) method for estimating an infinite-
dimensional analogue of a probability density when the small ball probability associated with the
functional data can be approximated, when the radius of the ball tends to zero, as product of two
independent functions, one depending only on the centre of the ball and the other on the radius.

The estimates of the surrogate density function give an useful exploratory tool for functional
data set analysis and in particular for curves classification by means of estimates of the functional
mode, obtained from the estimators proposed in this paper.

The principal interest in the kNN method comes from the nature of the smoothing parameter,
some recent works were presented by Burba, Ferraty, and Vieu (2009) and Lian (2011). Unlike
the traditional kernel method, where the smoothing parameter is a real positive number called
bandwidth, the smoothing parameter in the kNN method is the number of neighbours k and takes
its values in a discrete set. This feature represents a real advantage over the traditional kernel
method from an implementation point of view. The other very important aspect of this method is
that it allows the construction of a neighbourhood adapted to the local structure of the data.

This paper is organised as follows. In Section 2, we present our model and our surrogate for
density function. In Section 3, we define a kernel estimator and prove its asymptotic properties,
which will be needed in Section 4 to prove the asymptotic properties of the kNN estimator.
Section 5 is devoted to some important corollaries. Computational issues including a functional
bootstrapping step for automatic selection of the parameters of the estimate are discussed in
Section 6. Technical proofs are reported in Appendix 1.

2. The model

Let {Xi}i=1,...,n be n random variables independent and identically distributed as X and valued in F .
(F , d) is a semi-metric space, F is not necessarily of finite dimension and we do not suppose the
existence of a density for the functional random variable X, nor the existence of some dominating
measure for the model.

For χ ∈ F , let B(χ , ε) be the ball of centre χ and radius ε for the topology associated with the
semi-metric d:

B(χ , ε) = {χ ′ ∈ F |d(χ ′, χ) ≤ ε}.
We assume that there exist functions φ(.) and f (.) such that for all χ ∈ F ,

P(X ∈ B(χ , ε)) ∼ f (χ)φ(ε) as ε −→ 0, (1)

which means P(X ∈ B(χ , ε)) = f (χ)φ(ε) + o(φ(ε)) as ε → 0. Then, the object we want to esti-
mate is the operator f , that can be considered as an infinite-dimensional analogue of the concept
of probability density, while φ may be interpreted as a volume parameter. In order to identify in
a unique way the functions in Equation (1), we assume that

E(f (X)) = 1, (2)

and in this way, we obtain what we shall call pseudo-density.
When F = R

p, that is, we are in the case of finite-dimensional spaces, taking f as the probability
density, it can be seen that φ(ε) = Cpε

p, where Cp is the volume of the unit ball in R
p. Some

examples fulfilling the decomposition mentioned above can be found in Ferraty, Laksaci, and
Vieu (2006).
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Journal of Nonparametric Statistics 3

Condition (1) is widely used in nonparametric functional data analysis to compensate for the
lack of existence of dominating measures and of standard density function (Gasser et al. 1998;
Masry 2005; Delaigle and Hall 2010; Delsol 2009).

The condition (2) is necessary for the identifiability of the model, but this is not the only possible
choice. Our choice is useful to simplify the proof of the consistency of the estimators studied in this
paper. Section 5 provides a direct corollary that can be applied to other identifiability conditions.

3. Kernel estimator

For a fixed χ ∈ F , the kernel estimator of f (χ) can be written as

f̂ (χ) = (1/n)
∑n

i=1 K(h−1d(χ , Xi))

(1/n(n − 1))
∑n

i=1

∑
j �=i K(h−1d(Xj, Xi))

, (3)

where K is an asymmetrical kernel and h = hn is a sequence of positive real numbers which
decreases to zero as n goes to infinity. To establish consistency, we need some hypotheses on the
distribution of X and on the fixed χ :

(H1) (H1a) ∀ε > 0, ϕχ(ε) := P(X ∈ B(χ , ε)) > 0,
(H1b) supχ∈F |ϕχ(ε)/φ(ε) − f (χ)| = o(1).

(H2) The functions f (.) and φ(.) are such that
(H2a) φ(.) is increasing on a neighbourhood of zero, strictly positive and tends to zero as
ε goes to zero.
(H2b) f (.) is bounded and f (χ) > 0.

We also need conditions on the parameters of the estimator f̂ :

(H3) The kernel K = 1[0,1] or K is non-negative, with compact support [0, 1], the derivative K ′
exists on [0, 1] and satisfies, for two real numbers −∞ < C2 < C1 < 0, C2 < K ′ < C1.

In the case of continuous kernel, we also suppose that there exists a function ζ0(.) with∫ 1
0 ζ0(u) du > 0 such that for all u ∈ [0, 1],

lim
ε→0

φ(uε)

φ(ε)
:= lim

ε→0
ζε(u) = ζ0(u).

(H4) The bandwidth h satisfies limn→∞ 1/nφ(h) = 0.

Remark 3.1 (a) The existence of a function ζ0 as in assumption (H3) is closely related to the
semi-metric. The standard Ornstein–Uhlenbeck, general diffusion, general Gaussian and fractal
processes are, among others, examples where such functions exist (for further details, see Ferraty,
Mas, and Vieu (2007)).

(b) In the case of continuous kernel fiunctions under assumptions (H1), (H2a) and (H3), it is
easily seen that

∃C3 > 0, ∃ε0, ∀ε < ε0,
∫ ε

0
ϕχ(u) du > C3εϕχ(ε).

(c) Observe that assumptions (H1b) and (H4) imply limn→∞ 1/nϕχ(h) = 0.

Remark 3.2 The surrogate can be used to define a notion of central tendency in a population
of functional variables. A functional mode χmod of f might be defined as a value χ ∈ F which
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4 F. Ferraty et al.

gives a local maximum of f (.) (provided that exists a local maximum). In a sample S, χmod can
be estimated by

χ̂mod = arg max
ξ∈S

f̂ (ξ). (4)

This estimation is very easy to compute since in order to maximise f̂ , we just have to compute
the numerator of Equation (3).

Theorem 3.3 Under assumptions (H1)–(H4), we have

plimn→∞ f̂ (χ) = f (χ),

where plim denotes convergence in probability.

First of all, we recall a result that will be widely used in the following. This result comes from
Ferraty and Vieu (2006, p. 44, Lemmas 4.3 and 4.4) and it states that, under (H3) (in case of
continuous kernel, in order that Remark 3.1 (b) holds, (H1) and (H2a) are also required), there
exist constants 0 < C < C′ < ∞ such that, for h small enough

∀χ ∈ F , Cϕχ(h) ≤ E[K(h−1d(χ , X1))] ≤ C′ϕχ(h). (5)

Proof of Theorem 3.3 Let r̂1(χ) and r̂2(χ) be the following quantities:

r̂1(χ) = 1

n

n∑
i=1

K(h−1d(χ , Xi))

fh(χ)
,

r̂2(χ) = 1

n(n − 1)

n∑
i=1

∑
j �=i

K(h−1d(Xj, Xi))

fh(χ)
, (6)

where fh(χ) = E[K(h−1d(χ , X1))].
Note that Equation (5) and (H1a) ensure that fh(χ) > 0. We have clearly that f̂ (χ) =

r̂1(χ)/r̂2(χ). We consider the decomposition:

r̂1(χ)

r̂2(χ)
− f (χ) = r̂1(χ)

(
1

r̂2(χ)
− f (χ)

)
+ (r̂1(χ) − 1)f (χ). (7)

Using Chebyshev’s inequality and Equation (5), it is easily seen that r̂1(χ) converges in probability
to 1, so the second term in the right-hand side of Equation (7) converges in probability to zero.
Using again that r̂1(χ) converges in probability to 1 and Lemma 3.4, we obtain the claimed
result. �

Lemma 3.4 Under assumptions (H1)–(H4)

plim
n→∞

r̂2(χ) = 1

f (χ)
.

The proof of this lemma is available in Appendix 1.
To complete the consistency property stated for the functional kernel density estimate f̂ (χ)

defined in Equation (3), Theorem 3.5 states the rate of pointwise probability convergence. To do
that, we will consider the following additional assumption:

(H1b′)] supχ∈F |ϕχ(h)/φ(h) − f (χ)| = O(un).
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Journal of Nonparametric Statistics 5

Theorem 3.5 Under assumptions (H1a), (H1b′), (H2)–(H4), we have

f̂ (χ) − f (χ) = O(un) + Op

(
1√

nφ(h)

)
.

Remark 3.6 If the bandwidth h is chosen to satisfy un ∼ 1/
√

nφ(h), then, Theorem 3.5 leads to

f̂ (χ) − f (χ) = Op

(
1√

nφ(h)

)
.

Proof of Theorem 3.5 The demonstration of this result follows step by step the proof of
Theorem 3.3 by using that r̂1(χ) − 1 = Op(1/

√
nϕχ(h)); the proof of this result is immediate

using Chebyshev’s inequality and Equation (5), together with Lemma 3.7. �

Lemma 3.7 Under assumptions (H1a), (H1b′), (H2)–(H4), we have

r̂2(χ) − 1

f (χ)
= O(un) + Op

(
1√
n

)
.

The proof of this lemma can be found in Appendix 1.
It is shown that the rate of convergence is of the nonparametric type and is mainly determined

by the numerator of the estimator. More precisely, Lemma 3.7 shows how the denominator has the
speeder parametric rate, as it is usual with averaged nonparametric estimates (see Ferraty, Sued,
and Vieu (2012), for instance).

4. kNN kernel estimator

For a fixed χ ∈ F , the kNN kernel estimator can be written as

f̂kNN (χ) = (1/n)
∑n

i=1 K(Hn,k(χ)−1d(χ , Xi))

(1/n(n − 1))
∑n

i=1

∑
j �=i K

(
Hn,k(χ)−1d(Xj, Xi)

) , (8)

where K is an asymmetrical kernel and Hn,k(χ) is defined as follows:

Hn,k(χ) = min

{
h ∈ R

+ :
n∑

i=1

1B(χ ,h)(Xi) = k

}
. (9)

It is clear that Hn,k(χ) is a positive random variable which depends on (X1, . . . , Xn).

Remark 4.1 A kNN estimator of the functional mode χmod (Remark 3.2) in a sample S can be
defined by replacing f̂ with f̂kNN in Equation (4).

To establish consistency, we need some additional assumptions:

(H2a′) ∀ε > 0, φ(ε) > 0 with φ(.) continuous and strictly increasing on a neighbourhood of
zero and φ(0) = 0.
(H4′) k = kn is a sequence of positive real numbers such that kn → ∞ and kn/n → 0.

First, we state the convergence in probability of f̂kNN defined by Equation (8).
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6 F. Ferraty et al.

Theorem 4.2 Under assumptions (H1), (H2a′), (H2b), (H3) and (H4′), we have

plim
n→∞

f̂kNN (χ) = f (χ).

Then, we establish the rate of probability convergence:

Theorem 4.3 Under assumptions (H1a), (H1b′), (H2a′), (H2b), (H3) and (H4′), we have

f̂kNN (χ) − f (χ) = O(un) + Op

(
1√
k

)
.

Remark 4.4 If k is chosen to satisfy un ∼ 1/
√

k, then, Theorem 4.3 leads to

f̂kNN (χ) − f (χ) = Op

(
1√
k

)
.

To prove Theorems 4.2 and 4.3, we need the following lemmas that give the same kind of
results of Lemmas 4.1 and 4.2 of Burba et al. (2009), but using convergence in probability. For
convenience, we will use the same notation as in Burba et al. (2009).

Let (Ai)i=1,...,n be n random variables valued in (�, A) where (�, A) is a general measurable
space. We note G : R × (� × �) → R

+ a measurable function such that

(L0) : ∀t, t′ ∈ R, t ≤ t′ =⇒ G(t, z) ≤ G(t′, z) ∀z ∈ � × �.

Let T be a real random variable (r.r.v.) and χ a fixed value in �, we define ∀n ∈ N\{0}

cn(T) =
∑n

i=1 G(T , (χ ,Ai))

(1/(n − 1))
∑n

i=1

∑
j �=i G(T , (Aj,Ai))

.

Let c be a non-random positive real number, (Dn)n∈N be a sequence of r.r.v. and (vn)n∈N a
decreasing positive sequence.

Lemma 4.5 (i) If l = lim vn �= 0 and if, for all increasing sequence βn ∈ (0, 1) with lim βn �= 1,
there exist two sequences of r.r.v. (D−

n (βn))n∈N and (D+
n (βn))n∈N such that

(L1) D−
n (βn) ≤ D+

n (βn) ∀n ∈ N and plimn→∞1{D−
n (βn)≤Dn≤D+

n (βn)} = 1.
(L2)

∑n
i=1 G(D−

n (βn), (χ , Ai))/
∑n

i=1 G(D+
n (βn), (χ , Ai)) − βn = Op(vn).

(L3) cn(D−
n (βn)) − c = Op(vn) and cn(D+

n (βn)) − c = Op(vn).
Then, cn(Dn) − c = Op(vn).

(ii) If l = 0 and if (L1), (L2) and (L3) are checked for any increasing sequence βn ∈ (0, 1) with
βn − 1 = O(vn), then the same result holds.

Lemma 4.6 (i) If l′ = lim vn �= 0 and if, for all increasing sequence βn ∈ (0, 1) with lim βn �= 1,
there exist two sequences of r.r.v. (D−

n (βn))n∈N and (D+
n (βn))n∈N such that

(L1) D−
n (βn) ≤ D+

n (βn) ∀n ∈ N and plimn→∞1{D−
n (βn)≤Dn≤D+

n (βn)} = 1.
(L′

2)
∑n

i=1 G(D−
n (βn), (χ , Ai))/

∑n
i=1 G(D+

n (βn), (χ , Ai)) − βn = op(vn).
(L′

3) cn(D−
n (βn)) − c = op(vn) and cn(D+

n (βn)) − c = op(vn).
Then, cn(Dn) − c = op(vn).

(ii) If l′ = 0 and if (L1), (L′
2) and (L′

3) are checked for any increasing sequence βn ∈ (0, 1) with
βn − 1 = O(vn), then the same result holds.

In Appendix 1, it can be found only the sketch of proof of Lemma 4.5. The schemes of both
proofs are likely the same as for Lemmas 4.1 and 4.2 of Burba et al. (2009).
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Journal of Nonparametric Statistics 7

Proof of Theorem 4.2 We use Lemma 4.6 (i) with vn = 1, cn(Hn,k(χ)) = f̂kNN (χ) and c = f (χ).
Under the same conditions as in Theorem 3.3, the estimator r̂1(χ) defined in Equation (6)

converges in probability to 1 and

1

φ(h)
E[K(h−1d(χ ′, Xi))] = α1f (χ ′) + o(1) ∀χ ′ ∈ F , (10)

where α1 is a positive suitable constant (the proof for K = 1[0,1] is straightforward using (H1b),
and for K continuous can be found in Ezzahrioui and Ould-Saïd (2008)), combining these results,
we have

plim
n→∞

1

nφ(h)

n∑
i=1

K(h−1d(χ , Xi)) = α1f (χ). (11)

Let βn ∈ (0, 1), we choose D−
n (βn) and D+

n (βn) such that

φ(D−
n (βn)) =

√
β

f (χ)

k

n
,

φ(D+
n (βn)) = 1√

βf (χ)

k

n
,

where β is the limit of the sequence βn. Using Theorem 3.3 with h− = D−
n (βn) =

φ−1((
√

β/f (χ))(k/n)) and h+ = D+
n (βn) = φ−1((1/

√
βf (χ))(k/n)), we obtain

cn(D
−
n (βn)) − c = op(1) and cn(D

+
n (βn)) − c = op(1),

then (L′
3) is checked. Now, by applying Equation (11) both with h− and h+ and using probability

convergence properties of ratios of random variables, we have

plim
n→∞

∑n
i=1 K([D−

n (βn)]−1d(χ , Xi))∑n
i=1 K([D+

n (βn)]−1d(χ , Xi))
= β,

so (L′
2) is checked. It remains just to verify (L1). The first part is immediate. For the second one,

note that for all ε > 0, we can write

P(|1{D−
n (βn)≤Dn≤D+

n (βn)} − 1|ε) ≤ P

(
n∑

i=1

1B(χ ,h−)(Xi) ≥ k

)
+ P

(
n∑

i=1

1B(χ ,h+)(Xi) < k

)
.

Then, using Lemma 4.3 of Burba et al. (2009) in the right-hand side of the above inequality, we
obtain

P(|1{D−
n (βn)≤Dn≤D+

n (βn)} − 1| > ε) < (ec−−1−log(c−))−k + (e(1−c+)2/2c+
)−k ,

where c− = k/nϕx(h−) = [√β(1 + o(1))]−1 and c+ = k/nϕx(h+) = √
β[1 + o(1)]−1. Since

β �= 1, c− − 1 − log(c−) and (1 − c+)2/2c+ are strictly positive for n large enough. From the
above, it follows that

lim
n→∞ P(|1{D−

n (βn)≤Dn≤D+
n (βn)} − 1| > ε) = 0 ∀ε > 0.

So, (L1) is checked and the proof is complete. �

Proof of Theorem 4.3 We can proceed analogously to the proof of Theorem 4.2, but in this case,
we have to use Lemma 4.5 (ii), with vn = 1/

√
k, in place of Lemma 4.6 (i).
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8 F. Ferraty et al.

Under the same conditions as in Theorem 3.5, the estimator r̂1(χ) defined in Equation (6)
satisfies r̂1(χ) − 1 = Op(1/

√
nϕχ(h)) and

1

φ(h)
E[K(h−1d(χ ′, Xi))] = α1f (χ ′) + O(un) ∀χ ′ ∈ F , (12)

where α1 is a positive suitable constant (using (H1b′), the proof for K = 1[0,1] is straightforward
and the proof for K continuous can be found in Ezzahrioui and Ould-Saïd (2008)), combining
these results, we have

1

nφ(h)

n∑
i=1

K(h−1d(χ , Xi)) − α1f (χ) = O(un) + Op

(
1√

nφ(h)

)
. (13)

Let βn ∈ (0, 1) be an increasing sequence such that βn − 1 = O(1/
√

k), we choose D−
n (βn) and

D+
n (βn) such that

φ(D−
n (βn)) =

√
βn

f (χ)

k

n
,

φ(D+
n (βn)) = 1√

βnf (χ)

k

n
.

Using Theorem 3.5 with h− = D−
n (βn) = φ−1((

√
βn/f (χ))(k/n)) and h+ = D+

n (βn) =
φ−1((1/

√
βnf (χ))(k/n)) and that βn converges to 1, we obtain

cn(D
−
n (βn)) − c = O(un) + Op

(
1√
k

)
and cn(D

+
n (βn)) − c = O(un) + Op(1/

√
k),

then (L3) is checked. Now, by applying Equation (13) both with h− and h+ and using probability
convergence properties of ratios of random variables and that βn − 1 = O(1/

√
k), we have∑n

i=1 K([D−
n (βn)]−1d(χ , Xi))∑n

i=1 K([D+
n (βn)]−1d(χ , Xi))

− βn = O(un) + Op

(
1√
k

)
,

so (L2) is checked. The verification of (L1) is likely the same as in the previous proof, the difference
is in using that βn − 1 = O(1/

√
k). �

5. Some important corollaries

Corollary 5.1 provides a consistent estimator for φ(h).

Corollary 5.1 Under assumptions (H1)–(H4), the estimator

φ̂(h) = (1/n)
∑n

i=1 1B(χ ,h)(Xi)

f̂ (χ)
(14)

satisfies

plim
n→∞

φ̂(h) − φ(h) = 0. (15)

And, under assumptions (H1a), (H1b’), (H2)–(H4), we have

lim
n→∞ φ̂(h) − φ(h) = O(unφ(h)) + Op

(√
φ(h)

n

)
. (16)
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Journal of Nonparametric Statistics 9

Proof Let ϕ̂χ (h) = (1/n)
∑n

i=1 1B(χ ,h)(Xi) be the plug-in estimator of the concentration function
ϕχ(h) and the numerator of Equation (14). We consider the decomposition

φ̂(h) − φ(h) = 1

f̂ (χ)
[ϕ̂χ (h) − ϕχ(h)] − 1

f̂ (χ)
[φ(h)f (χ) − ϕχ(h)] − φ(h)

f̂ (χ)
[f̂ (χ) − f (χ)].

To prove Equation (15), the first term in the above decomposition will be treated by
using Theorem 3.3 and that ϕ̂χ (h) − ϕχ(h) = Op(

√
φ(h)/n), the second by using (H1b) and

Theorem 3.3 and the last term by using Theorem 3.3 and (H2a).
The proof of Equation (16) follows step by step the proof of Equation (15), by using Theorem 3.5

and (H1b′) in place of Theorem 3.3 and (H1b). �

The following corollary states one of the principal advantages of the kNN-estimator of f when
we are considering the asymmetrical box kernel.

Corollary 5.2 If the kernel K = 1[0,1], the kNN estimator of f takes the simple form

f̂kNN (χ) = k∑n
i=1 ki/(n − 1)

,

where ki = #{j �= i : Xj ∈ B(Xi, Hn,k)}.

As we mentioned in Section 2, the identifiability condition can be replaced by another simpler
to verify. If instead the model of Section 2, we assume that there exist functions φ0(.) and f0(.) such
that for all χ ∈ F , P(X ∈ B(χ , ε)) ∼ f0(χ)φ0(ε), as ε → 0, and for a fixed χ0 ∈ F , f0(χ0) = 1.
In this model, the condition of identifiability does not depend on the distribution of X and φ0(ε) =
P(X ∈ B(χ0, ε)). The functions f and φ in Equation (1) differ from f0 and φ0, respectively, in a
constant and therefore, the proof of Corollary 5.3 is immediate.

Corollary 5.3 Let f̂ (χ) be the kernel estimator defined in Equation (3) and f̂kNN (χ) be the
kNN estimator defined in Equation (8). Under the same assumptions of Theorems 3.3 and 4.2,
respectively, the estimators f̂0(χ) = f̂ (χ)/f̂ (χ0) and f̂0,kNN (χ) = f̂kNN (χ)/f̂kNN (χ0) are consistent
(in probability) for f0(χ). Furthermore, under the same assumptions of Theorem 3.5, f̂0(χ) has
the same rate of convergence of f̂ (χ) and, under the same assumptions of Theorems 4.3, f̂0,kNN (χ)

has the same rate of convergence of f̂kNN (χ).

6. Computational issues

From the practical point of view, the kNN estimator shows some advantages over the kernel
estimator. One of them is that the smoothing parameter k takes its values in a discrete set, which
simplifies the implementation. Moreover, the kNN method takes into account the local structure
of the data.

Although the kNN estimator suffers from some standard weaknesses (the estimated pseudo-
density is discontinuous and far from zero even in the case of large regions with no observed
samples), it has no impact in the situation of pointwise estimation.

In this section, we propose to illustrate the behaviour of the kNN estimator through a simulation
study. Due to the difficulty of finding an explicit expression for the small ball probability, especially
for the pseudo-density, we propose only two situations. In the first situation, we consider a very
simple space of smooth curves, that basically has dimension 1, in which the probability of the
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10 F. Ferraty et al.

small ball can be computed explicitly and satisfy the model (1). In the second situation, we
consider an infinite-dimensional space of rough curves (Brownian motions) but in this case, the
decomposition (1) is valid only for balls centred at some smooth function χ .

In both situations, we will discuss the effects of the various parameters: kernel, number of neigh-
bours and sample size.As usual in nonparametric statistics, the smoothing factor (here, the number
of neighbours) will play a key role. A specific procedure, based on functional bootstrapping, will
be introduced for selecting it in a data-driven way.

6.1. Smooth curves

6.1.1. The curves and the model

We build the simulated sample, of size 200, from the random curve constructed in the following
way:

X(t) = a sin(t), t ∈ [0, π ],
where a is a random real variable drawn from an exponential distribution with mean 1. If we
consider the standard L2[0, π ] semi-metric

d(χ , χ ′) =
√∫ π

0
(χ(t) − χ ′(t))2 dt,

for an χ(t) = b sin(t), with b > 0, we have

P(X ∈ B(χ , ε)) ∼ e1−b(e(ε
√

2/π)−1 − e−(ε
√

2/π)−1) as ε −→ 0.

Then, the function f0(χ) is given by f0(χ) = exp(1 − ‖χ‖/√π/2), where ‖ · ‖ is the L2[0, π ]
norm, and satisfies that f0(b sin(·)) = e1−b for all b > 0. Observe that f0(sin(·)) = 1.

We split the simulated sample into two sets: the learning sample (Xi)i=1,...,100 used to build the
estimator and the 100 fixed curves (Xi)i=101,...,200 at which the true and estimated f0 are evalu-
ated. Moreover, the curves Xi’s are discretized on the same grid generated from 101 equispaced
measurements in [0, π ].

We predict the values (f0(Xi))i=101,...,200 using the kNN estimator f̂0,kNN (χ) = f̂kNN (χ)/

f̂kNN (sin(·)) (see Corollary 5.3), where f̂kNN (χ) is defined in Equation (8). We use the standard
L2[0, π ]-distance as semi-metric.

6.1.2. Choosing the kernel K

Figure 1 shows the predicted versus the true values of (f0(Xi))i=101,...,200, using the asymmet-
rical box kernel and k = 20 (Figure 1(a)) and the asymmetrical quadratic kernel and k = 29
(Figure 1(b)) in the kNN estimator. Note that MSEP is the mean square error of prediction (i.e.
the sum of square errors between predicted and true values of (f0(Xi))i=101,...,200). The values of
k are chosen to attain the minimum MSEP.

Since both kernels show similar results, from now on we will use the asymmetrical box kernel
because the kNN estimator has a simple form when we use it (Corollary 5.2).

6.1.3. Size of the sample

Let us now look at the effect of the sample size. Since f0(b sin(·)) = e1−b, it can be viewed as a
function of b. Figure 2 shows the true function f0(b sin(·)) as a function of b (solid line) and, the
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Figure 1. Predicted versus true values of (f0(Xi))i=101,...,200: (a) kNN estimator with asymmetrical box kernel and
k = 20 and (b) kNN estimator with asymmetrical quadratic kernel and k = 29.
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Figure 2. Predictive values of (f0(bi sin(·)))i=101,...,200 computed through kNN estimators. The solid line is the true
function f0(b sin(·)) as a function of b. Sample sizes: (a) 100, (b) 200 and (c) 500.

values bi corresponding to the fixed curves (Xi = bi sin(·))i=101,...,200 versus the predicted values
(f0,kNN (bi sin(·)))i=101,...,200 computed from three different samples of size n = 100 (Figure 2(a)),
n = 200 (Figure 2(b)) and n = 500 (Figure 2(c)). The sample of size n = 100 is the learning
sample (Xi)i=101,...,200 used above. For each sample, the minimum MSEP is achieved for the
chosen value of k. It is seen that for values of b less than or equal to 1.5, increasing the sample
size does not produce an improvement, but it does for the values of b greater than 1.5. From now
on, in the simulations, we will use the sample size n = 100.

6.1.4. Choosing k

We compute the values of the MSEP corresponding to the learning sample (Xi)i=1,...,100 and the
fixed curves (Xi = bi sin(·))i=101,...,200 for a grid of values of k. The values of the MSEP behave
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12 F. Ferraty et al.

as a convex function between k = 10 and 50. The minimum MSEP is attained at k = 20 but
between k = 17 and 35, the values of the MSEP are very close to the minimum. The question of
data-driven choice of k is, therefore, a key one.

We propose an automatic procedure to select the number of neighbours using a kind of smoothed
bootstrap and following the ideas of Faraway and Jhun (1990) for univariate data. We describe
the method using the learning sample (Xi)i=1,...,100 and the fixed curves (Xi)i=101,...,200 used above.
We construct initial kNN estimates of the true values (f0(Xi))i=101,...,200 with k0 as the num-
ber of neighbours, they will be denoted by (f̂0,kNN (Xi; k0))i=101,...,200. For i = 101, . . . , 200, we
have hi := Hn,k0(Xi), with Hn,k(χ) defined in Equation (9). The next step is based on a kind
of smoothed bootstrap; for each discretised curve in the learning sample (Xi(t1), . . . , Xi(t101)),
we defined Xi

m,r(tj) = X∗
m,r(tj) + Zi(tj), where (X∗

m,r(t1), . . . , X∗
m,r(t101))m=1,...,100 is a standard

bootstrap replication drawn from the original discretised trajectories of the learning sample for
r = 1, . . . , B, where B is the number of bootstrap samples to be taken, and (Zi(t1), . . . , Zi(t101))

is normally distributed with the mean zero and covariance matrix hi�x, where �x is the sample
covariance of the discretised learning sample (this construction is adapted from Cuevas, Febrero,
and Fraiman (2006)).We obtain the bootstrap choice of the number of neighbours k̂B by minimising
the expression

BMSE(k) = (100B)−1
100∑
i=1

B∑
r=1

(f̂ ∗
0,kNN (Xi; k) − f̂0,kNN (Xi; k0))

2,

where f̂ ∗
0,kNN (Xi; k) is the kNN estimator of (f0(Xi)) computed using the smoothed bootstrap

sample (Xi
m,r(t1), . . . , Xi

m,r(t101))m=1,...,100 and with k as the number of neighbours.
To improve the computational time of the method, we can use only some of the fixed curves.

They must be chosen carefully, in order to obtain a representative subset (for example, we can
reorder the fixed curves with respect to their seminorms and conserve a subset of equispaced
curves). For the simulated sample, we used k0 = 50 (half of the learning sample size) and B = 10
and we obtained k̂B = 18 using only 21 fixed curves and k̂B = 25 using the complete set of fixed
curves, both bootstrap choices give reasonable MSEPs.

It is possible to iterate this bootstrap method, that is, use the bootstrap choice of the number
of neighbours as the new initial choice and apply the method again. Table 1 shows the number
of neighbours k̂B corresponding to the first (second row) and second iteration (fifth row) of the
bootstrap method for 10 different samples simulated as we described at the beginning of this
section (a learning sample with sample size n = 100 and a sample of fixed curves with the same
sample size). The bootstrap method was applied with the same parameters as above and using

Table 1. Number of neighbours k̂B corresponding to the first (second row) and second iteration (fifth row)
of the bootstrap method for 10 different simulated samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

First iteration
kopt 32 32 10 30 13 20 6 29 16 24
k̂B 19 18 13 16 19 14 17 17 13 17
MSEP 0.05 0.36 0.28 0.21 0.14 0.22 0.13 0.25 0.15 0.08
Bootstrap MSEP 0.07 0.36 0.31 0.27 0.22 0.5 0.31 0.39 0.20 0.09

Second iteration
k̂B 16 17 12 16 18 16 16 17 13 19
Bootstrap MSEP 0.13 0.30 0.28 0.27 0.22 0.28 0.28 0.40 0.20 0.09

Notes: The first row shows the number of neighbours that minimises the MSEP, the fourth and sixth rows correspond to
the MSEP obtained from the first and second iteration of the bootstrap method, respectively, and the third row shows the
minimum MSEPs.
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Figure 3. Boxplots of the relative errors over curves of the form χb(t) = b sin(t), each boxplot corresponds to a value of
b specified in the x-axis. (a) Results corresponding to the bootstrap method and (b) the number of neighbours minimising
the MSEP.

only 21 fixed curves. Also are shown the number of neighbours that minimises the MSEP (first
row) and the MSEP obtained for each choice of k (fourth and sixth rows correspond to the MSEP
obtained from the first and second iteration of the bootstrap method, respectively, and the third
row shows the minimum MSEPs). For the 10 simulated samples, the plots of the MSEP versus
the number of neighbours k have a range of values of k containing the optimal choice where the
variation of the MSEP is convex and very small. All the bootstrap choices lie within this range.
It is seen that the second iteration does not produce an improvement with respect to the first
iteration, this supports the fact that the bootstrap method does not depend significantly on the
initial value of k0.

6.1.5. Final analysis

Finally, we simulate 50 samples of curves as described above with sample sizes n = 100,
{(Xij)j=1,...,101}i=1,...,50. For each sample we compute, for a set of fixed curves of the form
χb(t) = b sin(t), the relative errors (f̂0(χb) − f0(χb))/f0(χb). The kernel used to compute f̂0(.) is
the asymmetrical box kernel and for each sample, the number of neighbours k is chosen through
the bootstrap method described above using B = 10. According to the analysis above, the boot-
strap method is stable with respect to the choice of the initial parameter, so we use k0 = 50 and
we only perform one iteration of the method.

The results are reported by means of boxplots in Figure 3. Figure 3(a) shows the results for
the bootstrap method and Figure 3(b) the results corresponding to the number of neighbours that
minimises the MSEP. In both panels, the relative errors are small for values of b less than or equal
to 1.5, and increase with b for b > 1.5. This is because the probability of occurrence decreases as
b increases.

Table 2 shows the MSEP for each curve of the form χb(t) = b sin(t), over the 50 simulated
samples, using the bootstrap method (first row) and minimising the MSEP (second row).

6.2. Brownian motion

Let X = {Xt}t∈[0,1] be the standard Brownian motion. The standard Brownian motion can be
viewed as a map into the space L2[0, 1]. In this case, Theorem 3.1 of Li and Shao (2001) provides
a similar result for small ball probabilities. For all absolutely continuous function χ : [0, 1] → R
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14 F. Ferraty et al.

Table 2. MSEP for each curve χb(t) = b sin(t) over the 50 simulated samples.

b 0.1 1.25 0.5 0.75 1.25 1.5 2 2.5 3 4 5

BMSEP(b) 0.69 0.49 0.18 0.06 0.04 0.12 0.03 0.03 0.03 0.04 0.05
MSEP(b) 0.23 0.13 0.09 0.05 0.03 0.05 0.03 0.03 0.03 0.03 0.04

Note: The first row corresponds to the results from bootstrap method and the second to the number of neighbours minimising
the MSEP.

with χ(0) = 0 and
∫ 1

0 χ ′(t)2 dt < ∞, the small ball probabilities of Brownian motion satisfy

P(X ∈ B(χ , ε)) ∼ exp

{
−1

2

∫ 1

0
χ ′(t)2 dt

}
P(X ∈ B(0, ε)) as ε −→ 0.

Note that the above equation does not correspond exactly to the model (1) because the centre of
the ball is not a Brownian motion. However, it can be of interest to estimate the function f0(χ)

given by

f0(χ) = exp

{
−1

2

∫ 1

0
χ ′(t)2 dt

}
,

where χ is an absolutely continuous function.
We will use the proposed kNN estimator to estimate from a Brownian motion sample the

values of the function f0 (which satisfies f0(0) = 1) evaluated in a sample of absolutely continuous
functions (fixed curves). The results will be compared with the true values of f0 in the sample of
absolutely continuous curves. In order to do that, we consider two simulated standard Brownian
motion samples {Xi}n

i=1, one of size n = 100 and the other of size n = 1000. The curves Xi’s are
rough and are discretised on the same grid generated from 100 equispaced measurements in [0, 1].

We also consider a simulated sample of m = 100 random curves of the formYi(t) = ∫ t
0 Wi(s) ds,

where Wi(s) is a Brownian motion. The curves of the sample (Yi(t))i=1,...,100 are absolutely contin-
uous with Yi(0) = 0 and

∫ 1
0 Y′

i(t)
2 dt < ∞ so, we can estimate the values of (f0(Yi(t)))i=1,...,100.

The curves Yi’s are discretised on the same grid of the Xi’s. We are obliged to consider a sample
from a different population process in order to compare the estimates obtained in the simula-
tion with their true values. But in a practical context, we can estimate the surrogate density
corresponding to model (1) in any standard Brownian motion path.

0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n=100, k=56, MSEP=0.009

True values

P
re

di
ct

ed
 v

al
ue

s

P
re

di
ct

ed
 v

al
ue

s

(a)

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

n=1000, k=117, MSEP=0.003

True values

(b)

Figure 4. Predicted versus true values of (f0(Yi))i=1,...,100) obtained from the sample of size (a) n = 100 and (b)
n = 1000.
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We predict the values (f0(Yi))i=1,...,100 using the kNN kernel estimator f̂0,kNN (χ) =
f̂kNN (χ)/f̂kNN (0) (Corollary 5.3), where f̂kNN (χ) is defined in Equation (8), with each sample
{Xi}n

i=1. We use the standard L2[0, 1]-distance as semi-metric and the asymmetrical box kernel.
The number of neighbours was chosen to achieve the minimum MSEP. The results are shown in
Figure 4.

In this case, the results obtained from the sample with n = 1000 are much better than the results
obtained from the sample with n = 100. The MSEP and the ratio between the optimal number of
neighbours and n corresponding to n = 1000 are significantly smaller than those corresponding
to n = 100. Note that, although the model (1) is not satisfied exactly, the performance of the kNN
estimator is quite good, especially for large n.

7. Conclusions

In this paper, we have presented kernel and kNN kernel estimators of a surrogate for density of
a random function. We show the pointwise convergence in probability of these estimators and
we established their rates of convergence. It is important to note that both rates are similar, but
the kNN method is more natural in the infinite-dimension context. Its main qualities are that the
smoothing parameter k takes its values in a discrete set, it has a simple form when the asymmetrical
box kernel is used and it takes into account the local structure of the data. Simulations show that
the proposed kNN estimator combines both easiness of implementation and good behaviour on
finite sample sizes, as well for smooth curves as for rough ones. Of course, treatment of rough
curves needs higher sample size to deal with the computational issues, a functional bootstrapping
method is proposed.
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Appendix 1. Proofs of technical lemmas

A.1. Proof of Lemma 3.4

To get the claimed result, the main probabilistic tool will be the use of general results for U-statistics. So, in order to
follow the traditional notation in this area, we write

r̂2(χ) =
(

n
2

)−1 n∑
i=1

∑
i<j

K(h−1d(Xj , Xi))

fh(χ)

and then we can see that r̂2(χ) is an U-statistic of order 2 with kernel Fχ ,h(Xj , Xi) := K(h−1d(Xj , Xi))/fh(χ).
Let us consider

θh = E[r̂2(χ)] = E

[
K(h−1d(X2, X1))

fh(χ)

]
= E[fh(X2)]

fh(χ)

and r∗(χ) = (2/n)
∑n

i=1(fh(Xi)/fh(χ) − θh).
Writing

r̂2(χ) − 1

f (χ)
= (r̂2(χ) − θh − r∗(χ)) + r∗(χ) + θh − 1

f (χ)
, (A1)

we obtain that Lemma 3.4 is a consequence of the following intermediate results:

r̂2(χ) − θh − r∗(χ) = Op

(
1

n
√

φ(h)

)
, (A2)

r∗(χ) = Op

(
1√
n

)
(A3)

and

θh − 1

f (χ)
= o(1). (A4)

The assertion in Equation (A2) can be deduced from

Var(r̂2(χ) − θh − r∗(χ)) = O

(
1

n2φ(h)

)
. (A5)

This is proved by writing

Var(r̂2(χ) − θh − r∗(χ)) = Var(r∗(χ) − (r̂2(χ) − θh))

= Var(r∗(χ)) − 2 Cov(r∗(χ), r̂2(χ)) + Var(r̂2(χ)). (A6)

Let σ 2
1 (χ , h) = Var(fh(X2)/fh(χ)) and σ 2

2 (χ , h) = Var(Fχ ,h(X2, X1)). Independence between observations guarantees
that

Var(r∗(χ)) = 22

n
σ 2

1 (χ , h). (A7)
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On the other hand, the well-known formula for the variance of U-statistics (Lee 1990, Theorem 3, sec. 1.3), implies that

Var(r̂2(χ)) = 22 n − 2

n(n − 1)
σ 2

1 (χ , h) + 2

n(n − 1)
σ 2

2 (χ , h). (A8)

Finally, since Cov(fh(Xi), fh(Xj)) = fh(χ)2σ 2
1 (χ , h)δij and for k �= l

Cov(fh(Xi), K(h−1d(Xh, Xl))) = Cov(fh(Xi), fh(Xk))δik + Cov(fh(Xi), fh(Xl))δil ,

where δmr is the Kronecker delta, we get

Cov(r∗(χ), r̂2(χ)) = 22

n
σ 2

1 (χ , h). (A9)

Substituting Equations (A7), (A8) and (A9) into Equation (A6), we obtain

Var(r̂2(χ) − θh − r∗(χ)) ≤ 2σ 2
2 (χ , h)

n(n − 1)
≤ 2

n(n − 1)

E[K2(h−1d(X2, X1))]
f 2
h (χ)

. (A10)

If K = 1[0,1], by (H1b) and (H2b), we have

E[K2(h−1d(X2, X1))]
f 2
h (χ)

= E[ϕX2 (h)]
ϕ2

χ (h)
= E[f (X2)] + o(1)

φ(h)[f (χ) + o(1)]2
= O

(
1

φ(h)

)
. (A11)

On the other hand, if K is a continuous kernel, following the proof of Lemma 1 in Ezzahrioui and Ould-Saïd (2008) and
using (H1b), it is easily seen that

sup
χ∈F

∣∣∣∣ 1

φ(h)
E[K(h−1d(χ , Xi))] − α1f (χ)

∣∣∣∣ = o(1), (A12)

where α1 is the same as the constant in Equation (10). Then, using Equation (A12) and (H2b), we get

E[K2(h−1d(X2, X1))]
f 2
h (χ)

≤
(

max
u∈[0,1] K(u)

)
α1E[f (X2)] + o(1)

φ(h)[α1f (χ) + o(1)]2
= O

(
1

φ(h)

)
. (A13)

From Equations (A10), (A11) and (A13), we deduce Equation (A5).
The proof of Equation (A3) follows from the fact that under (H1), (H2b) and (H3)

fh(Xi)

fh(χ)
≤ C′ϕXi (h)

Cϕχ (h)
≤ C′(f (Xi) + o(1))

C(f (χ) − o(1))
≤ C′(sup f + o(1))

C(f (χ) − o(1))
,

and so fh(Xi)/fh(χ) is a bounded random variable. It remains just to prove Equation (A4). For that, first consider K = 1[0,1];
by (H1b) and the fact that E[f (X2)] = 1, we have

θh = E[fh(X2)]
fh(χ)

= E[ϕX2 (h)]
ϕχ (h)

= E[f (X2)] + o(1)

f (χ) + o(1)
−→ 1

f (χ)
, (A14)

as n → ∞. On the other hand, if K is a continuous kernel that satisfies (H3), using Equation (A12) and E[f (X2)] = 1,
we get

θh = E[K(h−1d(X2, X1))]
fh(χ)

= α1E[f (X2)] + o(1)

α1f (χ) + o(1)
−→ 1

f (χ)
, (A15)

as n → ∞. Then, Equations (A14) and (A15) prove the desired result.

A.2. Proof of Lemma 3.7

Following the beginning of the proof of Lemma 3.4, we have again Equation (A1) and then we obtain that Lemma 3.7 is
a consequence of the intermediate results (A2), (A3) and

θh − 1

f (χ)
= O(un). (A16)

As in Lemma 3.4, to prove assertion (A2) is sufficient to show that

E[K2(h−1d(X2, X1))]
f 2
h (χ)

= O

(
1

φ(h)

)
. (A17)

If K = 1[0,1], by (H1b′) and (H2b), analysis similar to that in Equation (A11), implies Equation (A17). On the other hand,
if K is a continuous kernel, following the proof of Lemma 1 in Ezzahrioui and Ould-Saïd (2008) and using (H1b), it is
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easily seen that

sup
χ∈F

∣∣∣∣ 1

φ(h)
E[K(h−1d(χ , Xi))] − α1f (χ)

∣∣∣∣ = O(un), (A18)

where α1 is the same as the constant in Equation (12). Then, using Equation (A18) and (H2b), we get

E[K2(h−1d(X2, X1))]
f 2
h (χ)

≤
(

max
u∈[0,1] K(u)

)
α1E[f (X2)] + O(un)

φ(h)[α1f (χ) + O(un)]2
= O

(
1

φ(h)

)
.

The proof of Equation (A3) follows from the fact that under (H1a), (H1b′), (H2b) and (H3)

fh(Xi)

fh(χ)
≤ C

ϕXi (h)

ϕχ (h)
≤ C

f (Xi) + O(un)

f (χ) − O(un)
= O(1).

It remains just to prove Equation (A16). For that, first consider K = 1[0,1]; by (H1b′) and the fact that E[f (X2)] = 1, we
have

θh = E[fh(X2)]
fh(χ)

= E[ϕX2 (h)]
ϕχ (h)

= E[f (X2)] + O(un)

f (χ) + O(un)
= 1 + O(un)

f (χ) + O(un)
= 1

f (χ)
+ O(un). (A19)

On the other hand, if K is a continuous kernel that satisfies (H3), using Equation (A18) and E[f (X2)] = 1, we get

θh = E[K(h−1d(X2, X1))]
fh(χ)

= α1E[f (X2)] + O(un)

α1f (χ) + O(un)
= α1 + O(un)

α1f (χ) + O(un)
= 1

f (χ)
+ O(un). (A20)

Then, Equations (A19) and (A20) prove the desired result.

A.3. Sketch of proof Lemma 4.5

For all sequences βn ∈ (0, 1), (L2) and (L3) give

c−
n (βn) =

∑n
i=1 G(D−

n (βn), (χ ,Ai))

(1/(n − 1))
∑n

i=1
∑

j �=i G(D+
n (βn), (Aj ,Ai))

= cβn + Op(vn) (A21)

and

c+
n (βn) =

∑n
i=1 G(D+

n (βn), (χ ,Ai))

(1/(n − 1))
∑n

i=1
∑

j �=i G(D−
n (βn), (Aj ,Ai))

= c

βn
+ Op(vn). (A22)

Under (ii), we chose

βn = βn,m = 1 − vn

3cm
∀m > m0 = v1

3c
, (A23)

whereas, under (i), we take

βn = βn,m = 1 − l

3cm
∀m > m0 = l

3c
. (A24)

For all m > 0, we define Tn(m), S−
n (m, βn), S+

n (m, βn), Sn(βn), G−
n (m), G+

n (m) and Gn(m) as in the proof of Lemma 4.1
of Burba et al. (2009) by replacing ε by m. Then, using (L0) and Equations (A23) and (A24), we have that

∀m > m0, Tn(m)c ⊂ G−
n (m)c ∪ G+

n (m)c ∪ Gn(m)c

and hence

P(|cn(Dn) − c| > mvn) ≤ P
(
|c−

n (βn,m) − βn,mc| >
mvn

3

)
+ P

(∣∣∣∣c+
n (βn,m) − c

βn,m

∣∣∣∣ >
mvn

3

)

+ P(Dn ∈ [D−
n (βn,m), D+

n (βn,m)]).
By (L0) and Equations (A21) and (A22), we have limm limn→∞P(|cn(Dn) − c| > mvn) = 0, and the lemma follows.
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