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Abstract

We explore what restrictions may impose the second law of thermodynamics on varying speed of light theories. We find that
the attractor scenario solving the flatness problem is consistent with the generalized second law at late time. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Recently proposals were advanced to solve the hori-
zon and flatness problems of the standard big-bang
cosmology — in a different way that inflationary pic-
ture does — as well as the cosmological constant prob-
lem by allowing the speed of light in vacuum and
the Newtonian gravitational constant to vary with time
[1–4]. These approaches are collectively called vary-
ing speed of light (VSL) theories. Possible variations
of the fundamental physical constants in the expanding
Universe are currently of particular interest because of
the implications of unified theories, such as string the-
ory and M-theory [5–7]. They predict that additional
compact dimensions of space exist. The “constants”
seen in our three-dimensional subspace of the theory
will vary according to any variation in the scale lengths
of the extra compact dimensions. While other sce-
narios with varying fundamental constants have been
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considered, like scalar–tensor theories of gravity (see,
e.g., [8]) prescribing thatG must be function of a
scalar field (the Brans–Dicke field) and the varying
fine structure constant theory of Bekenstein [9], they
do not touch the speed of light and respect Lorentz
invariance. By contrast, certain fundamental theories,
including strings, could admit spontaneous violation
of CPT and Lorentz invariance [10]. For instance,
within string theory, quantum aspects of the interac-
tions between particles and non-perturbative quantum
fluctuations break supersymmetry and Lorentz invari-
ance [11]. It became an interesting issue to investi-
gate the violation of Lorentz invariance in high energy
phenomena [12]. VSL theories also break Lorentz in-
variance rendering their approach non-covariant. They
provide simple effective models to describe these ef-
fects.

In this Letter we investigate what constraints the
second law of thermodynamics may bring on the
formulation of VSL theories, a point that to the best of
our knowledge have received no attention so far. As it
turns out these constraints are strong for homogeneous
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and isotropic spacetimes lacking of a particle horizon.
However, for spacetimes possessing a particle horizon
the restrictions are much less severe — at least at late
time.

2. Field equations and constant attractor solution

Let us consider a expanding Friedmann–Lemaître–
Robertson–Walker (FLRW) universe whose source of
the gravitational field is a perfect fluid and assume
that the speed of light in vacuum is not really a
constant but varies time in some unknown manner,
i.e.,c = c(t). The corresponding generalized “Einstein
field equations” for a homogeneous and isotropic
universe can be written as

(1)H 2 = 8πGρ

3
− kc2(t)

a2
,

(2)
ä

a
= −4πG

3

[
ρ + 3P

c2(t)

]
,

whereH ≡ ȧ/a is the Hubble factor, andk (= +1,
0,−1) denotes the curvature of the spatial sections.
Eq. (1) implies that the energy density is not conserved
as the universe expands

(3)ρ̇ + 3H

(
ρ + P

c2

)
= 3k

4πG

cċ

a2
.

It therefore looks like as though the Universe were
an “open system” in the thermodynamical sense. Here
we shall explore some of its consequences.

It is generally accepted that the present matter
density of the universe is below the critical value
[13] — though voices of dissent can be heard [14].
The density parameterΩ , defined as the ratio of
the energy density of the universe with the critical
density,Ω ≡ 8πGρ/(3H 2), is one of the best-studied
cosmological parameters and its low value is indicated
by a number of independent methods for the study
of clusters of galaxies. They include the mass-to-
light ratio, the baryon fraction, the cluster abundance
and the mass power spectrum. Thus, if the energy
density of our Universe were dominated by clustered
matter we would find the problem that a universe
with Ω0 �O(1) requires extreme fine tuning of initial
conditions. This is the flatness problem, and it can
find a solution within the VSL framework without
invoking inflationary fields. By using the aboveΩ

expression in (1), differentiating it with respect to time
and resorting to (3), the evolution equation

(4)Ω̇ = (Ω − 1)

[(
1+ 3P

ρc2

)
+ 2ċ

c

]
≡ f (Ω)

follows. For ċ �= 0 it has two constant solutions,
namelyΩ = 1, which is unstable, andΩ∗. The latter
arises when the square parenthesis in (4) vanishes.
Our interest focuses on it because it is stable since
∂[f (Ω)/∂Ω]Ω∗ < 0 — and is an attractor of the
system. ForΩ =Ω∗ the speed of light obeys the law

(5)c(a)= c1a
Ω∗ exp

[
−3Ω∗

2

∫
dt

(
1+ P

ρc2

)
H

]
.

We note that this expression leads to a decreasing
speed of light provided that the dominant energy
condition holds. Eq. (3) can be solved by using (5)

(6)

ρ(t)= ρ1

G
a2(Ω∗−1) exp

[
−3Ω∗

∫
dt

(
1+ P

ρc2

)
H

]
,

hence it follows thatρ = ρ1c
2/(Gc2

1a
2). By combin-

ing it with (1) a relationship between the density pa-
rameter and the integration constants can be obtained,
namely

(7)Ω∗ =
[
1− 3kc2

1

8πρ1

]−1

,

and by virtue of (1) the scale factor can be written in
terms of the speed of light

(8)a(t)=
√

k

Ω∗ − 1

∫
c(t) dt.

In the particular case of a linear barotropic equation
of stateP = (γ − 1)ρc2(t) with constant adiabatic
indexγ , it follows that

(9)c(a)= c1a
β,

(10)Ω∗ = 2β

2− 3γ
,

where use of (5) has been made.
For ordinary fluids the strong energy condition

(SEC) holds. This impliesγ > 2/3, therebyβ < 0 for
Ω∗ > 0. From (8) the scale factor is

(11)a(t)=
[
(1− β)c1

√
k

Ω∗ − 1
t

] 1
1−β

≡ a1t
1

1−β .
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3. Entropy considerations

Let us assume that the number of particles in
a comoving volume is conserved (i.e.,N ≡ na3 =
constant), then the particle number density obeys

(12)ṅ+ 3Hn= 0.

This combined with Gibbs equation

(13)nT ṡ = ρ̇ −
(
ρ + P

c2

)
ṅ

n
,

where s is the entropy per particle andT the fluid
temperature, leads to

(14)nT ṡ = ρ̇ + 3H

(
ρ + P

c2

)
.

From (3) and (14) it follows that

(15)nT ṡ = 3k

4πG

cċ

a2 .

Note that the entropy variation implied by last equa-
tion cannot be attributed either to dissipative processes
(since the fluid is perfect) or particles production (for
N is a constant). We are led to conclude that the varia-
tion of c entails that the entropy of the fluid must vary.
This may be justified — at least naively. An increase
in c means a widening of the past light cone of the
observers. Automatically they acquire more informa-
tion and the entropy decreases accordingly [15]. That
is to say,ċ < 0 �⇒ ṡ > 0 as well aṡc > 0 �⇒ ṡ < 0.
This together with (15) implies thatc cannot increase
in open universes (k = −1), and that flat and closed
universes do not admiṫc �= 0.

The consequences are rather restrictive for cosmo-
logical models with varying speed of light. The only
admissible FLRW model witḣc �= 0 is the open one.
Obviously, one may always introduce some traditional
source of entropy such a viscous dissipation (only that
in such a case the fluid is no longer perfect), or per-
haps particle production from the quantum vacuum;
but this complicates matters and we wish to keep the
discussion as simple as possible.

Note, by passing, that not every fluid is consistent
with ċ �= 0. Think, for instance, in a radiation fluid —
equation of stateP = ρc2/3. There one has [16]

s = ρ + (P/c2)

nT
= 4ρ

3nT
= 8

45

πkB

ζ(3)
,

and accordinglẏs = 0. Therefore, in view of (15) —
barring a flat FRW — a pure radiation fluid cannot act
as the gravitational source of a cosmology withċ �= 0.

As is well-known, particle horizons may occur
quite naturally in cosmological models and these
have associated an entropy by a formula formally
identical to that of event horizons (either black hole
or cosmological) [17]

(16)SH = kB

4

A

l2Pl

,

wherekB is the Boltzmann constant,lPl ≡ (Gh̄/c3)1/2

the Planck’s length, andA the area of the horizon. The
latter is given byA= 4πl2H , with

(17)lH = a(t)

t∫
0

c(t ′)
a(t ′)

dt ′.

Particle horizons exist provided the integral does not
diverge. The rationale behind attaching an entropy to
a particle horizon is that the area is a measure of the
lack of knowledge of the observer about the conditions
prevailing in the universe beyond the horizon.

If a FLRW universe filled with a perfect fluid has
a particle horizon, the generalized second law (GSL)
of thermodynamics (firstly devised for black holes in
causal contact with its environment and later extended
to cosmological settings) states that the entropy in the
fluid enclosed by the horizon plus the entropy of the
horizon cannot decrease in time [18]

(18)Ṡf + ṠH � 0.

Here Sf = (4π/3)l3H ns. It is natural to expect that
(18) restricts the temporal dependence ofc less se-
verely than the corresponding expression in the ab-
sence of horizons (i.e., whenSH = 0). Taking into ac-
count thatl̇H =HlH + c, and that(lH /a)˙= c/a, the
GSL takes the form

4πNc

(
lH

a

)3[
s

lH
+ kċa

4πNTG

]

(19)+ πkB

Gh̄
c2[(2cH + 3ċ)l2H + 2c2lH

]
� 0.

To draw specific consequences of last equation, we use
the constant attractor solutionΩ = Ω∗ given by (9)
and (11). As we are considering just classical fluids
and the horizon entropy is semiclassical in nature we
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may leave aside any consideration of an early quantum
phase. Hence to restrict ourselves to the classical era
we replace the lower index of the integral in (17)
by some initial timetcl (> 0) which corresponds to
the commencement of the the aforesaid era. As a
consequence

(20)lH = c1

a
−β
1

t1/(1−β) ln
t

tcl

remains finite and a horizon exists. One may held the
view that by introducing a lower cutoff we illegiti-
mately provide a horizon to an otherwise horizon-free
universe. In keeping with that view the very restrictive
consequences forc(t) spelled above should apply. By
contrast, the more liberal view that the cutoff is admis-
sible since any observer travelling backward in time
will eventually hit the quantum era (in which — pre-
sumably — the space–time ceases to be a continuum
and the observer should see a foam-like structure with
the light cones taking random orientations [19]), gives
a reasonable chance to relax those consequences.

To obtainṠf we must must know the temperature
evolution. The latter is governed by [20]

(21)
Ṫ

T
= −3H

(
∂p/∂T

∂ρ/∂T

)
n

+ nṡ

(∂ρ/∂T )n
,

therefore a positive specific entropy variation implies
that in an expanding universe the temperature will
decrease more slowly with a declining speed of light.
Here we will consider two limiting cases at late time:
monoatomic nonrelativistic mater, and radiation.

(i) In the first case,ρ = mn + (3/2)nT and
P/c2 = nT , Eq. (21) reduces to

(22)
Ṫ

T
= −2H

(
1− k(Ω∗ − 1)2

4πGn1T
a2ȧä

)
,

and its general solution is

(23)T (t)= T1t
−2/(1−β) + T2t

2(2β−1)/(1−β),

wheren1, T1 are positive constants andT2 depends
on the previously defined parameters. In the large
time limit the homogeneous part becomes dominant
(i.e., T ∝ a2 exactly like in a constant speed of light
cosmology), and combination with (15) leads to

(24)s(t)= s1t
(2β+3)/(1−β).

Then, for t → ∞, SH ∝ t5/(1−β) ln2 t , Sf ∝
t(2β+3)/(1−β) ln3 t andSH dominates overSf , so that
(18) is satisfied.

(ii) In the second case,ρ = c2T
4 andP = ρc2/3,

Eq. (21) becomes

(25)
Ṫ

T
= −

[
1− 3k(Ω∗ − 1)2

4c2GT 4

ȧ2ä

a

]
H,

with general solution

(26)T (t)= [
T1t

4/(1−β) + T2t
2(2β−1)/(1−β)]1/4

,

whereT1 is a positive constant andT2 depends on the
previously defined parameters. Fort → ∞ two cases
arise. When−1< β < −1/2, T ∝ 1/a as in standard
cosmology, and when−1/2 < β < 0, one hasT ∝
a(2β−1)/2. In the first caseSf ∝ t2(1+β)/(1−β) ln3 t ,
while in the secondSf ∝ t(2β+3)/2(1−β) ln3 t . Again
SH dominatesSf and the GSL is satisfied in both
instances.

4. Concluding remarks

We have seen that the second law of thermodynam-
ics implies rather severe restrictions onc(t) in FLRW
cosmologies free of particle horizons. Specifically, in
open universesc(t) cannot augment, and in flat and
closed universesc must stay constant. Nonetheless,
the presence of a particle horizon render the situation
less acute. In particular, for the constant atractor solu-
tion of Section 2, the GSL is fulfilled at late time both
for non-relativistic monoatomic fluids and extreme rel-
ativistic fluids. A similar study for other cosmological
solutions should be a worthy undertake.
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