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Abstract. We use the algebro-geometric data given by a genus 2 Jacobian, a curve and a line bundle

on the Jacobian, and the action of a group of translates on the theta sections of this line bundle, to
reconstruct an integrable system: the geodesic motion on SO(4), metric II (so termed after Adler and

van Moerbeke).

1. Introduction

Since the early days of Mechanics, finite dimensional integrable systems have been related to
algebraic geometry. That is shown in examples like the rigid body cases or Jacobi’s geodesic motion on
the ellipsoid.

Most of the known examples are a particular class of integrable systems, whose solutions, express-
ible in terms of theta functions, are associated to abelian varieties (i.e. complex tori in projective space)
with divisors (codimension one subvarieties) on them, and the Hamiltonian flows are linear on these
abelian varieties. Roughly speaking, such systems are called algebraic completely integrable (a.c.i.).

Starting from an a.c.i. system we can produce algebro-geometric data like a divisor on an abelian
variety (the divisor at infinity), its polarization , the linear system associated with this divisor, and a
finite group of translations leaving invariant the divisor and the holomorphic vector fields.

We can ask whether it is possible to go in the backward direction and view the integrable system
as deformation of a suitable geometric data.

In this paper we show how to recover an algebraic completely integrable system from algebro-
geometric data. The regarded system is a geodesic motion on SO(4) (the metric II case studied by Adler
and van Moerbeke in [1],[2]). Here, the commuting complexified flows linearize on Jacobians Aα of genus
2 curves, upon adding to the complexified invariant manifolds, divisors Dα (curves called SO(4) divisors)
at infinity, with a precise pattern ( they consist of four translates of the theta divisor intersecting at
triple points, which are half-periods, like the figure below). One considers the action of the group of
translations leaving invariant Dα and the sections of the linear system of functions blowing up once at
Dα and vanishing at least twice at the triple points. Surprisingly, this gives the sections for the right
phase space. In the projective closure of the complexified phase space IC6 (i.e. IP6) the invariant manifolds
compactify to set theoretical complete intersections, into which the Jacobians map birationally, so that
a Jacobian minus its divisor at infinity is isomorphic to the respective (complexified) affine invariant
manifold.

The question arises whether it is possible to reconstruct such a system by providing its Jacobian
Aα, its configuration divisor at infinity Dα (for instance an SO(4) divisor as explained in Theorem 1) , a
group G = ZZ2×ZZ2 of symmetries (which essentially are translates by half periods in the Jacobi variety),
and a line bundle Lα → Aα, whose sections are projective coordinates of the ambient space IP6. We
provide such a construction by finding a convenient basis of theta functions for the above data, with the
property that the same theta functions (up to permissible change of basis) are sections of the line bundle
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Lα → Aα, and in which G has a “nice” representation for all Jacobians. We deduce quadratic equations
for the image of the Jacobians in IP(H0(Aα, Lα)∗) = IP6, in terms of certain parameters. Also, we find
the quadratic equations for the holomorphic vector fields in terms of this basis.

The quadratic equations that describe the image of Aα in IP6 contain natural parameters α which
serve as the moduli data. Now, one of the theta sections, say Θ, will cut out on each Aα the divisor at
infinity, and in the affine variables (Zi/Θ) in IC6 we obtain a smooth piece for each generic α (the affine
piece). The question is whether such a family of affine surfaces put together in IC6 has a Poisson structure
so that they are the complexified invariant manifolds for a Hamiltonian structure. Indeed, such a Poisson
structure, polynomial in the affine variables, is uniquely determined up to a Poisson transformation and
choice of Casimirs.

The above considerations lead us to the following theorem that will be shown along the paper.

Theorem 1. Consider the family {Aα} of genus 2 Jacobians and divisors {Dα = Θ0 + Θ1 + Θ2 + Θ3}
on them, such that Θi is a translate by a half period ei of the theta divisor, and the Θi’s intersect into
four triple points {e0, . . . , e3}. This family posses a group of translations G = ZZ2 × ZZ2 leaving invariant
each Dα and Aα\Dα. Let H0(Aα,Dα − 2e0 − 2e1 − 2e2 − 2e3) be the space of sections linearly equivalent
to Dα that vanish at least twice at the ei’s. Then, this space has dimension 7 and decomposes into odd
and even parts, with respect to the (−1)-involution, of dimensions 1 and 6 respectively; the odd section
vanishing at Dα.

One can find a basis {vi = Zi
Θ }, with Θ odd and the Zi’s even, such that G acts as in the following

table, for all generic Jacobians Aα:

Table I
v1 v2 v3 v4 v5 v6

σ −v2 −v1 −v3 −v4 −v6 −v5

τ −v1 −v2 v4 v3 v6 v5

The image of Aα in IP6 = IP(H0(Aα,Dα − 2e0 − 2e1 − 2e2 − 2e3)∗) is a set theoretical complete
intersection of four quadrics q1 = v1v2 = α1, q2 = v3v4 = α2, q3 = v5v6 = α3 and another quadric
q4 = α4. If the quadrics q2 and q3 are chosen as Casimirs for a polynomial Poisson structure in the
affine variables vi’s, then, there is an integrable system with nontrivial hamiltonians Xq1 , Xq4 , and linear
Poisson matrix. This system is, up to Poisson isomorphism, the metric II case of the geodesic motion
on SO(4) studied by Adler and Van Moerbeke [1], [9].
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We use the normalized action of G and the tangency condition X(qi) = 0 for any holomorphic
vector field X and equation qi to find all the equations of the image of the Jacobian in IP6. The moduli
parameters appear in the freedom we have to choose different basis of sections for Lα → Aα so that the
action of G on the equations of the variety and holomorphic vector fields are in a ”normal form” (i.e.
roughly speaking, this means nice expressions without parameters).

The theta functions that would do the trick are products of genus 2 half integer characteristic
theta functions belonging to H0(Aα,Dα−2e0−2e1−2e2−2e3) (i.e. the system of theta functions whose
zero locus is linearly equivalent to 4θ and vanish at least twice at the points e0, e1, e2, e3, which are half
periods and triple points of the configuration divisor at infinity Dα). Such linear system was suggested
in [3]. An explicit computation of the dimension of this space and higher powers of it did not come easily
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until a procedure by Bauer [4] was available. He considers the pull back of linear systems on A to the
surface AΩ (the blow up of the abelian surface A at the 16 half periods). The computation can be done
by using a bijection between symmetric curves on AΩ and curves on the K3 surface KΩ = AΩ/{1,−1}
and then Riemann-Roch formula and a theorem by Kodaira as explained in [10]. Some of the algebraic
geometric assertions were already done by Szemberg [12] in his thesis. However, the step to reconstruct
the integrable system is new and uses techniques already present in [9]. We are grateful to W. Barth,
Th. Bauer and T. Szemberg for showing us their approach to quadrics in IP6 and to Pol Vanhaecke for
useful discussions about this problem.

2. Preliminaries

Let p : Ã→ A be the blow up of the abelian surface A at the 16 half periods {e0, . . . , e15} , and
{Ei = p−1ei, i = 0, . . . , 15} the 16 (−1)-curves. Let us denote by (−1)A the reflexion with respect to the

origin in A. This reflexion induces an involution (−1)Ã in Ã. The quotient by the action of this involution

K̃A = Ã/ < (−1)Ã > is a smooth K3 surface and the projection π : Ã → K̃A has the disjoint union of
the 16 (-1)-curves Ei as ramification divisor, and the disjoint union of the 16 (-2)-curves Bi = π(Ei) as
branch locus.

Let D be a curve in A with multiplicities µi’s at the half periods ei’s and let νi’s be given
nonnegative integers for each i. We start from a symmetric divisor D (given by an even or odd section

in H0(A, [D]) ) and consider the line bundle Lν on Ã generated by p∗(D)−
∑
νiEi = D̂ +

∑
(µi − νi)Ei

( D̂ = strict transform of D). Then Lν is symmetric with respect to (−1)Ã (i.e. Lν ' (−1)∗
Ã
Lν ) if the

νi’s have the same parity (prop. 3.1 [10]). The space H0(Ã,Lν) is identified under p∗ with the sections
in H0(A, [D]) that vanish to order ≥ νi at the ei’s. Also, if D′ and ν′i’s are another divisor and positive
integers , one has the intersection formula (p∗(D)−

∑
νiEi).(p

∗(D′)−
∑
ν′iEi) = D.D′ −

∑
νiν
′
i.

Let us consider a Lν symmetric and let (−1)Lν be the involution of Lν over (−1)Ã induced by
the corresponding involution (−1)[D] of [D] over (−1)A. The action of (−1)[D] on the fibers over the half
periods ei’s is multiplication by si = +1 (in whose case the half period ei is called even) or by si = −1
( where ei is called odd).

There is an involution on sections ϕ : H0(Lν)→ H0(Lν) defined by ϕ(s) = (−1)Lνs(−1)Ã. This
involution splits H0(Lν) into (+1) and (−1) eigenspaces : H0(Lν)±. Moreover, π∗Lν =M+ ⊕M− is a

rank-2 bundle over K̃A which decomposes, with regard to s 7→ (−1)Lνs(−1)Ã, into (+1) and (−1) line

bundles M±, and there are isomorphisms H0(K̃A,M±) ' H0(Ã,Lν)± [4].

Let D̃ = D̂+
∑

(µi−νi)Ei be a symmetric effective curve in the linear system |Lν |, then , one can

associate a curve in K̃A as follows: C̃ = π(D̂)+
∑

[µi−νi2 ]Bi, where the square brackets is the integer part,

Bi = π∗Ei = π(Ei) and π(D̂) is the image of D̂. Starting from an odd or even curve D in the linear system

|D| on A, we construct the curve C̃ on K̃A by this way associated to the divisor p∗(D)−
∑
νiEi. Then,

by proposition 3.1 in [10] we have M+ = OK̃A(C̃) if ν and D have the same parity, and M− = OK̃A(C̃)
otherwise.

The Riemann-Roch formula for a K3 surface K̃A and an effective curve C on it goes as follows:

h0(C) =
C2

2
+ 2 + h1(C),(1)

where h1(C) = m−1 and m is the number of connected components of C (see [10]). This gives an effective
way of computing the dimensions of H0(L⊗nν ) since we have an isomorphism H0(Lν) ' H0(M+) ⊕
H0(M−). Also, by Bauer [4], we have the formulas

π∗M± = Lν ⊗ [Z∓]−1,(2)

where Z± =
∑
si=±1Ei and si the parity of the half period ei.

Example 1. Let D be the divisor of Figure I on a genus two Jacobian. This curve contains all 16 half
periods. The ones that are triple points are labeled {e0, e1, e2, e3}. D is an odd divisor in the linear system
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|4Θ| with respect to the (−1) involution that fixes the half periods (Lemma 7.7.1 [6]). Now, consider the

bundle Lν = [p∗(D)−
∑3
i=0 2Ei] on Ã. We want to compute the dimensions of H0(Ã,Lν)±.

(1) Let us find h0(Lν)−. We have that p∗(D) =
∑3
i=0Di +

∑3
i=0 3Ei +

∑15
i=4Ei, where the Di’s

represent the genus two curves. Then, the curve D− =
∑3
i=0Di +

∑15
i=0Ei belongs to |Lν |− ,

and the associated curve in K̃A is C− =
∑3
i=0 π(Di). One obtains π∗C− = p∗D − (

∑3
i=0 3Ei +∑15

i=4Ei). Therefore, by formula (1), h0(Lν)− = h0([C−]) = (π∗C−)2

4 +2+h1(C−) = −4+2+3 = 1.

(2) Let D+ ∈ |p ∗ D −
∑3
i=0 2Ei|+. First, one constructs the divisors Z± as above. Taking into

account that D is a totally symmetric divisor and that the parity of the origin is even, all periods
turn out to be even. So, we obtain Z+ =

∑15
i=0Ei and Z− = 0. Let us denote by B± the direct

image of Z± respectively. By applying π∗ at the level of curves in formulas (2) we get the linear

equivalence 2C+ + B− ∼ 2C∗ + B+ −
∑3
i=0 2Bi, where C+ and C∗ are the associated curves to

D+ and p∗D respectively. This leads to the equivalence 2C+ ∼ 2
∑3
i=0 π(Di) +

∑15
i=0Bi, or by

pulling back to Ã: π∗C+ ∼
∑3
i=0Di +

∑15
i=0Ei = p∗D −

∑3
i=0 2Ei. Therefore, we calculate

(C+)2 = (π∗C+)2

2 = 8. It follows that such a curve on a K3 surface has h1(C+) = 0 [11]. Then,

by (1) h0(Lν)+ = h0(C+) = 6.

(3) From 1 and 2 we conclude that the space H0(Ã,Lν) splits into a 1-dimensional odd piece and a
6-dimensional even part.

Example 2. Compute the dimensions of the spaces H0(L⊗2
ν )±. We write π∗L⊗2

ν = M+
2 ⊕ M

−
2 for

the decomposition into ±1 bundles of π∗L⊗2
ν . By 1. in the above example, we have that π∗M+ ' Lν .

Therefore, π∗(L⊗2
ν ) ' π∗(Lν⊗π∗M+) ' π∗(Lν)⊗M+ ' (M+⊕M−)⊗M+ ' (M+)⊗2⊕ (M−⊗M+).

It follows that M+
2 ' (M+)⊗2 = [2C+], and M−2 ' M− ⊗M+ = [C− + C+], because (M+)⊗2 and

M−⊗M+ are eigenspaces under the action of the involution. The selfintersection numbers of the divisors
representing M± are bigger than 8. So, in both cases h1(M±) = 0 [11]. Thus, by the Riemann-Roch

formula we get h0(M+
2 ) = 4 (C+)2

2 + 2 = 18, and h0(M−2 ) = (C+)2+(C−)2+2C+.C−
2 + 2 = 6. In this case, the

dimension of H0(Ã,L⊗2
ν ) turns out to be h0(M+

2 ) + h0(M−2 ) = 18 + 6 = 24.

3. Genus two theta functions.

Let τ be the 2× 2 Riemann matrix of a (generic and principally polarized) genus 2 Jacobian. A
pair of real vectors (m,m∗) is associated univocally with the point m∗ +mτ of IC2.

For the pair of row vectors (m,m∗) (called characteristics) we define the classical theta functions
[6, §8.5] as (1) below, where e(z) = exp(2πiz), z ∈ IC. They have the properties (2),(3),(3’),(4).

(1) ϑm,m∗(τ, ζ) =
∑
ψ∈ZZn e(

1
2 (ψ +m)τ t(ψ +m) + (ψ +m)t(ζ +m∗))

(2) ϑm,m∗(τ,−ζ) = ϑ−m,−m∗(τ, ζ)
(3) ϑm+ψ,m∗+ψ∗(τ, ζ) = e(mtψ∗)ϑm,m∗(τ, ζ), forψ,ψ∗ ∈ ZZn

(3’) ϑm,m∗(τ, ζ + uτ + u∗) = e(− 1
2uτ

tu− ut(ζ + u∗))e(−utm∗)ϑm+u,m∗+u∗(τ, ζ).

We also use the customary notation ϑm,m∗(τ, ζ) = ϑ

[
m
m∗

]
(τ, ζ), and agree to represent the

point m∗ +mτ either by

[
m
m∗

]
or

{
m
m∗

}
, when τ is fixed.

If

{
m
m∗

}
∈ 1

2ZZ
2g/ZZ2g is a half period, then we have the formula (Prop. 3.14 - Ch II. p. 167

[8]) .

(4) ϑm,m∗(τ,−ζ) = e(2mtm∗)ϑm,m∗(τ, ζ) = e∗(m
∗ +mτ)ϑm,m∗(τ, ζ)
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There are 22g half periods on an abelian variety of dimension g. We say that a half period of

characteristic

{
m
m∗

}
is odd (even) if the factor e∗

([
m
m∗

]
τ

)
is negative (positive).

For a genus 2 Jacobian the even half period characteristics are given by

e35 =

{
0 0
0 0

}
, e23 =

{
0 0
1/2 0

}
, e45 =

{
0 0
0 1/2

}
, e13 =

{
1/2 0
0 0

}
e12 =

{
0 1/2
0 0

}
, e25 =

{
1/2 1/2
0 0

}
, e14 =

{
1/2 0
0 1/2

}
, e15 =

{
0 1/2
1/2 0

}
e24 =

{
0 0
1/2 1/2

}
, e34 =

{
1/2 1/2
1/2 1/2

}
.

While the odd characteristics are the following

e0 =

{
1/2 1/2
1/2 0

}
, e1 =

{
1/2 1/2
0 1/2

}
, e2 =

{
0 1/2
1/2 1/2

}
, e3 =

{
1/2 0
1/2 1/2

}
e4 =

{
1/2 0
1/2 0

}
, e5 =

{
0 1/2
0 1/2

}
It follows that the theta functions ϑ[ei] are odd functions with respect to the involution, while

the ϑ[eij ]’s are even. One has the relations ei + ej = eij + e0 and
∑5
i=0 ei = 0 on the Jacobian.

The odd half periods are the Weierstrass points of the theta divisor {ζ : ϑ0,0(τ, ζ) = 0} = Γ and
Γ is also the genus 2 curve into its Jacobian.

4. The action of a group.

Any SO(4) divisor D can be constructed from one of the 16 symmetric curves {Γ + ei,Γ + eij}
by acting on it with a particular group of translates G = ZZ2 × ZZ2 = {1, t1, t2, t3 = t1 + t2}, in such a
way that G fixes the triple points. Actually, the four triple points define translates by half periods that
coincide with G, once one of the these points is chosen as origin. It is easy to see that the same divisor D
is obtained from a single symmetric curve, say Γ, by letting G act on it. Moreover, Γ contains three half
periods that together define an origin and G. Therefore, there are 80 =

(
6
3

)
.4 ways of giving an origin

and a group.
Let Γ be defined as in the previous section. Call Θ3 = t3(Γ), Θ2 = t2(Γ), Θ1 = t1(Γ), Θ0 = Γ,

and e0, e1, e2, e3 the triple points of D = Θ0 + Θ1 + Θ2 + Θ3. Then,

Proposition 2. [12]. A basis for H0(Ã, [p∗(D)−
∑3
i=0 2Ei]) is given by the odd section s0s1s2s3 and the

even sections s2
0s

2
1, s

2
0s

2
2, s

2
1s

2
2, s

2
1s

2
3, s

2
2s

2
3, where s0, s1, s2, s3 are theta functions vanishing on Θ0,Θ1,Θ2,Θ3

respectively.

We pick three points e0, e1, e2 in Γ = {ζ : ϑ(τ, ζ) = 0}, e0 as origin and consider the group G
generated by e1 − e0, e2 − e0. This has an extra element e12 − e0. We write

t1 = e1 − e0 =

{
0 0
−1/2 1/2

}
= e24 +

{
0 0
−1 0

}

t2 = e2 − e0 =

{
−1/2 0

0 1/2

}
= e14 +

{
−1 0
0 0

}

t3 = e12 − e0 =

{
−1/2 0
−1/2 0

}
= e4 +

{
−1 0
−1 0

}
and consider the translates of the ϑ-divisor Γ by these elements of ZZ2 × ZZ2. These translates are given
by the sections

so = ϑ[e35](τ, ζ) = ϑ(τ, ζ), s1 = ϑ[e24](τ, ζ), s2 = ϑ[e14](τ, ζ), and s3 = ϑ[e4](τ, ζ).
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Thus, the zero locus of Θ(τ, ζ) = ϑ[e35]ϑ[e24]ϑ[e14]ϑ[e4] gives a typical SO(4) divisor. As Θ is the product
of 3 even sections and one odd section, Θ is odd.

We will make a table with the action of tx defined by txϑ(ζ) = ϑ(ζ+x). This action is associated
with the Schrodinger representation of the Theta group (see [6] and [9] for those matters).

so = ϑ[e35](τ, ζ) s1 = ϑ[e24] s2 = ϑ[e14] s3 = ϑ[e4]

t1 ϑ[e35](τ, ζ + e1 − e0) = ϑ[e24] ϑ[e35] −ϑ[e4] ϑ[e14]

t2 ϑ[e35](τ, ζ + e2 − e0) = f(ζ)ϑ[e14] f(ζ)iϑ[e4] f(ζ)ϑ[e35] f(ζ)iϑ[e24]

t3 ϑ[e35](τ, ζ + e12 − e0) = −g(ζ)ϑ[e4] g(ζ)iϑ[e14] g(ζ)ϑ[e24] g(ζ)iϑ[e35]

(3)

Let uij = s2
i s

2
j , i < j, be the even sections of [p∗(D)−

∑3
i=0 2Ei] . Then G acts as follows,

u01 u02 u03 u12 u13 u23 Θ

t1 u01 u13 u12 u03 u02 u23 −Θ

t2 −f4u23 f4u02 −f4u12 −f4u03 f4u13 −f4u01 −f4Θ

t3 −g4u23 g4u13 −g4u03 −g4u12 g4u02 −g4u01 g4Θ

(4)

This action is similar to the one described in [12] for a different basis. We needed to go down to
the classical theta functions to make the action on Θ explicit. If we put v3 = u01

Θ , v4 = u23

Θ , v1 = u02

Θ , v2 =
u13

Θ , v5 = u03

Θ , v6 = u12

Θ , we obtain Table I of the theorem, with σ = t1 and τ = t2.
Since this action admits a separable rescaling, that is, a rescaling in each set of variables:

{v1, v2},{v3, v4}, and {v5, v6}. Then, by the very definition of the vi’s, we have relations v1v2 = c1,
v3v4 = c2, v5v6 = c3, where now, new vi’s are substituted in place of the old ones rescaled. These
equations are three independent integrals with three free parameters for the would be system.

5. The quadratic vector fields invariants under the group.

The above sections {u01, u02, u03, u12, u13, u23,Θ} of H0(p∗(D)− 2E0 − 2E1 − 2E2 − 2E3), yield

a rational map A → Ã → IP6 (which is not defined at e0, e1, e2 and e3). The degree of the image is
(p∗D −

∑
2Ei)

2 = D2 +
∑

4E2
i = 32− 4 · 4 = 16.

Now, let L be the line bundle associated to the divisor p∗Θ−
∑3
i=0 2Ei. As said before h0(L) = 7

and h0(L)+ = 6, h0(L)− = 1. The vector fields in the affine variables vi’s are given by Wronskians
of an even section with the odd section, and these define sections in H0(L⊗2)+. This follows from
properties of wronskians [9]: WY : H0(L)+ ⊗ H0(L)− → H0(L⊗2)+. Thus, the vector fields can be
written quadratically in terms of the even sections , which follows from the proposition:

Proposition 3. The map S2H0(L)+ → H0(L⊗2)+ is surjective, and H0(L)+ ⊗H0(L)− → H0(L⊗2)−

is an isomorphism.

Proof: We have canonical isomorphisms H0(Ã,L)± ∼= H0(K̃A,M±) and H0(Ã,L2)± ∼= H0(K̃A,M±2 )
and consider the conclusions of example 2.

The hypothesis of Theorem 1 by Saint-Donat [11] is checked out in [12]. Therefore we conclude

that there is a surjective morphism S2H0(K̃A,M+)→ H0(K̃A, (M+)⊗2) ∼= H0(K̃A,M+
2 ) ∼= H0(L⊗2)+

from which follows the first part of the proposition.
For the second part, notice that the sections uij⊗Θ, i < j, of H0(L⊗2)− are linearly independent

on A. 2
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Remark 1. The map S2H0(L) = S2(H0(L)+⊕H0(L)−) = S2H0(L)+⊕(H0(L)+⊗H0(L)−)⊕S2H0(L)−

→ H0(L⊗2)+ ⊕ H0(L⊗2)− is surjective, and this means there are 4 = s2h0(L) − h0(L⊗2) = 28 − 24

quadratic equations defining the image of Ã in IP6.

Since the nontrivial holomorphic vector fields on the Jacobians have to be tangent to the affine
variety defined by the quadrics q1 = v1v2 = c1, q2 = v3v4 = c2, q3 = v5v6 = c3, and invariant under the
translations σ, τ , we get

v̇1 = v1(α3(v3 + v4) + α5(v5 + v6)) = v1f1

v̇2 = −v2(α3(v3 + v4) + α5(v5 + v6)) = −v2f1

v̇3 = v3(β1(v1 − v2) + β5(v5 − v6)) = v3f2(5)

v̇4 = −v4(β1(v1 − v2) + β5(v5 − v6)) = −v4f2

v̇5 = v5(γ1(v1 + v2) + γ3(v3 − v4)) = v5f3

v̇6 = −v6(γ1(v1 + v2) + γ3(v3 − v4)) = −v6f3

which gives several two dimensional families of vector fields nonvanishing on each variable.

6. The extra quadratic invariant.

We want to find the remaining invariant under the group G which is killed by the quadratic vector
fields. Such an invariant must be of the form

q4 = α(v2
1 + v2

2) + β(v2
3 + v2

4) + γ(v2
5 + v2

6)

+δ(v1 + v2)(v3 − v4) + ε(v1 − v2)(v5 − v6) + η(v3 + v4)(v5 + v6).
(6)

This has to satisfy the equation q̇4 = 0 under all vector fields ,̇ which leads to the linear system
2α3α+ β1δ = 0 α3δ + 2β1β = 0
2α5α+ γ1ε = 0 α5δ + β1η + γ3ε = 0
α3ε+ β5δ + γ1η = 0 2β5β + γ3η = 0
α5ε+ 2γ1γ = 0 β5η + 2γ3γ = 0

with the following rank 5 matrix 

2α3 0 0 β1 0 0
2α5 0 0 0 γ1 0
0 0 0 β5 α3 γ1

0 0 2γ1 0 α5 0
0 2β1 0 α3 0 0
0 0 0 α5 γ3 β1

0 2β5 0 0 0 γ3

0 0 2γ3 0 0 β5


.(7)

Lemma 4. Besides the invariants v1v2, v3v4, v5v6, an extra quadratic invariant of the form (6) killed by
two independent quadratic vector fields exists, if it has one of the following coefficients (α, β, γ, δ, ε, η)

(a) (0,−a2 ,−
1
2a , 0, 0, 1)

(b) (−a2 ,−
1
2a , 0, 1, 0, 0)

(c) (− 1
2ab,−

1
2
a
b ,−

1
2
b
a ,±a, b, 1)

(d) (−a2 , 0,−
1
2a , 0, 1, 0)

Proof: The conditions for the existence of an extra quadratic invariant of the form (6) are those that
make matrix (7) to have rank 5. This is the vanishing of 28 6 × 6 minors. We do not write these
cumbersome expressions and leave it for the reader wanting to check computations.

Next, we write a table with the solution of these equations and a basis of the kernel of (7) (that is
the coefficients of (6)) under the condition that there must be two linearly independent vector fields which
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do not vanish on the variables vi’s. Also, this is left to the reader: first we assumed α5β1γ3 = α3β5γ1,
and then α5β1γ3 = −α3β5γ1. 2

Remark 2. Any of the quadrics (a), (b), (d) together with q1, q2, and q3 lead to a reducible affine variety.
This is not desirable since we want the images of irreducible jacobians. Therefore, we discard those cases.

Remark 3. Let us consider the set theoretical complete intersection CA in IP6 determined by the quadrics
qi = ci, i = 1, ..., 4. This surface contains the image of A in IP6, call it A. Moreover, the degree of CA
is 16 = 2.2.2.2, the same as the degree of A. Therefore, the rational map A → CA induced by A → IP6

is generically one to one, and this means CA coincide with A on an open set. The image of A − D in
A is smooth and one to one because it corresponds to lifting from K̃A to Ã, away from the branch locus,
the smooth embedding K̃A → IP5 given by the even sections. Also, A − D maps onto the affine piece
{v ∈ IC6 : qi(v) = ci, i = 1, ..., 4}, and since this piece is smooth by construction and contains the image
of A − D in IP6, it coincides with it. Thus, A − D is isomorphic to the affine piece determined by the
four quadrics.

7. The Poisson matrix.

Assume the vector fields we are looking at have the special following form with matrix J polyno-
mial in the affine variables

ẇj = XH(wj) = (J(w) · gradH(w))j =

6∑
j=1

Jjk(w) · ∂H
∂wk

.(8)

We want to find a Poisson structure of the form {f, g}(w) =< grad f(w), J(w) · grad g(w) > so that the
Hamiltonian vector fields correspond to the holomorphic vector fields already found.

Let Tx be a translation Tx : A −→ A on the abelian variety A, then, we have the equivariance
relation dTx ·XH = XH ◦Tx. The action of Tx ∈ G on generating functions is linear T ∗x (wi) =

∑6
j=1 λijwj .

Then XH(y) (T ∗x (wi)) =
∑
λij
∑
Jj(w) ∂H∂wk . But XH(y) (T ∗x (wi)) = d(wi ◦ Tx) ◦ X(y) = dwi dTxX =

dwi · X (Tx(y)) = X (Tx(y)) (wi) = T ∗x (X(y)(wi)) where X(y)(wi) is a polynomial in the variables
w1, . . . , w6.

Now, for a globally defined polynomial H invariant under G, we have T ∗xH(w1, . . . , w6) =
H(T ∗xw1, . . . , T

∗
xw6) = H(w1, . . . , w6) , and for the set of functions T ∗x (wi), the exchange of differen-

tials dT ∗x (wi) =
∑6
j=1 λij dwj occurs. This induces on derivations the transformation formula ∂

∂(T∗
xwi)

=∑6
j=1 µij

∂
∂wj

, where (µij) = ((λij)
t)−1. Moreover T ∗x

(
∂H
∂wi

)
= T ∗x

(
( ∂
∂wi

)(H)
)

=
(

( ∂
∂wi

) ◦ Tx
)

(H ◦Tx) =
∂

∂(T∗
xwi)

(T ∗xH) =
∑
µij

∂
∂wj

T ∗xH =
∑
µij

∂
∂wj

H.

Therefore, we obtain the relation∑
λijJjk(w)

∂H

∂wk
=
∑

T ∗xJik(w) · µkj
∂H

∂wj
.

So, for any integral invariant H

∑
k

∑
j

λijJjk(w)−
∑
l

T ∗xJil(w) · µlj

 ∂H

∂wk
= 0.(9)

This means that the functions εik(w) =
∑
j λijJjk(w)− Jij(T ∗xw) ·µjk are killed by the gradients

gradH, for H an (integral of the motion) invariant by G. Namely, the vectors εi(w) = (εi1(w), εi2(w), . . . ,
εi6(w)) belong to the tangent space of the affine variety {w : qi(w) = ci i = 1, . . . , 4}. Thus, there must
be a function H, linear combination of the nontrivial invariants H1, H2, such that εi(w) = J(w) · gradH.

Assuming that there are no nontrivial Hamiltonians which are linear in the affine coordinates, we
conclude that εi(w) = 0 if the matrix J has linear entries.
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Indeed, for a nontrivial HamiltonianH, the polynomials in w1,. . . ,w6,(J(w)·gradH), i = 1, . . . , 6,
have at least degree 2. So, it follows:

Lemma 5. If the matrix J has linear entries, then it is equivariant by the action of translations in G, and
skewequivariant by the action of (−1)-involution. Namely, if Λ(σ) is the matrix of the translate σ, J(σw) =
Λ(σ)J(w)Λ(σ)t, σ ∈ G, and if Λ(ι) is the matrix of the (−1)-involution ι, J(ιw) = −Λ(ι)J(w)Λ(ι)t.

Let us assume that the Poisson matrix of this would be system have linear entries. Being the
invariants quadratic, we deduce that the matrix J satisfies the relations described by the lemma 5.

Let us write a general linear 6× 6 matrix in 2× 2 blocks

J =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

(10)

Let I be the 2× 2 identity matrix and

D =

{
0 1
1 0

}
the 2 × 2 transposition. In matrix notation, the operators σ, τ, and the (-1)-involution ι are written as
follows:

σ =

 −D 0 0
0 −I 0
0 0 −D

 τ =

 −I 0 0
0 D 0
0 0 D

 ι =

 −I 0 0
0 −I 0
0 0 −I


The invariance property of J is described by the following two relations

σ · J =

 DA11D DA12 DA13D
A21D A22 A23D
DA31D DA32 DA33D



τ · J =

 A11 −A12D −A13D
−DA21 DA22D DA23D
−DA31 DA32D DA33D


We also use the fact that J is skew symmetric. Thus, it is enough to solve the following equations:{

σ ·A11 = DA11D
τ ·A11 = A11

{
σ ·A22 = A22

τ ·A22 = DA22D

{
σ ·A33 = DA33D
τ ·A33 = DA33D{

σ ·A12 = DA12

τ ·A12 = −A12D

{
σ ·A23 = A23

τ ·A23 = DA23D

{
σ ·A13 = DA13D
τ ·A13 = −A13D

(11)

The equations forA11 =

(
a b
c d

)
can be written as

[
σa σb
σc σd

]
=

[
d c
b a

]
, and

[
τa τb
τc τd

]
=[

a b
c d

]
. This means A11 =

[
a b
σa σb

]
, with a = τa, b = τb.

Analogously, for the remaining Aij we get A22 =

[
a b
τb τa

]
, with a = σa, b = σb. A33 =[

a b
σb σa

]
with τσb = b, τσa = a.

A13 =

[
a′ −τa′
−στa′ σa′

]
, A23 =

[
a′′ σa′′

τσa′′ τa′′

]
, A12 =

[
a −τa
σa −στa

]
(12)
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Since tAii = −Aii, we obtain

A11 =

[
0 b
σb 0

]
, with b = τb = −σb

A22 =

[
0 b′

τb′ 0

]
, with b′ = −τb′ = σb′

A33 =

[
0 b′′

σb′′ 0

]
, with b′′ = −σb′′ = τσb′′

(13)

Using table I, we finally get

A11 =

[
0 f1

−f1 0

]
, f1 = α3(v3 + v4) + α5(v5 + v6)

A22 =

[
0 f2

−f2 0

]
, f2 = β1(v1 − v2) + β5(v5 − v6)

A33 =

[
0 f3

−f3 0

]
, f3 = γ1(v1 + v2) + γ3(v3 − v4)

(14)

Proposition 6. There is a system with Poisson matrix (10) and entries (12) and (14) that has the
functions q2 = v3v4, q3 = v5v6 as Casimirs. Up to a change of basis, it is the SO(4) case of Adler and
Van Moerbeke.

Proof: Since J · grad q2 = 0, J · grad q3 = 0, namely J · [0, 0, v4, v3, 0, 0]t = 0, J · [0, 0, 0, 0, v6, v5]t = 0.
These impose conditions on A13, A23, A12, A22, and A33. Clearly f2 = 0 and f3 = 0. Also av4− τav3 = 0,
a′v6 − τa′v5 = 0, −στa′v6 + σa′v5 = 0, a′′v6 + τa′′v5 = 0, τσa′′v6 + τa′′v5 = 0, a′′v4 + τσa′′v3 = 0,
σa′′v4 + τa′′v3 = 0, av4− τav3 = 0⇒ a = α′3v3, a

′v6− τa′v5 = 0⇒ a′ = β′5v5, a′′v6 + σa′′v5 = 0⇒ a′′ =
γ′5v5.

Thus

A12 =

[
α′3v3 −α3v4

−α′3v3 α′3v4

]
, A13 =

[
β′5v5 −β′5v6

β′5v5 −β′5v6

]
, A23 =

[
γ′5v5 −γ′5v6

−γ′5v5 γ′5v6

]
(15)

but the equations imply A23 = 0.
The SO(4) system for the metric II is the system of differential equations [2],[9].

τ̇1 = τ2τ6 τ̇4 = τ3τ5

τ̇2 = 1
2τ3(τ1 + τ4) τ̇5 = τ3τ4

τ̇3 = 1
2τ3(τ1 + τ4) τ̇6 = τ1τ2.

One can pick a Poisson matrix for this system

JSO(4) =


0 τ3 τ2 0 0 (2τ2 − τ5)
−τ5 0 0 0 0 0
−τ2 0 0 0 0 0

0 0 0 0 0 τ5
0 0 0 0 0 τ4

−(τ4 − τ5) 0 0 −τ5 −τ4 0


with Poisson bracket {f, g} =

〈
∂f
∂τ , JSO(4) · ∂g∂τ

〉
.

By making the change of variables

v1 = τ1 + τ0, v2 = τ6 − τ1, v3 = τ2 + τ3, v4 = τ2 − τ3, v5 = τ4 + τ5, v6 = τ5 − τ4
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the Poisson matrix takes the form

JSO(4) =


0 v3 + v4 − 1/2(v5 + v6) v3 −v4 −v5 v6

−(v3 + v4) + 1/2(v5 + v6) 0 −v3 v4 −v5 v6

−v3 v3 0 0 0 0
v4 −v4 0 0 0 0
v5 v5 0 0 0 0
v6 −v6 0 0 0 0



=

 A B C
−tB 0 0
−tC 0 0


and the invariants are Q1 = v1v2, Q2 = v3v4, Q3 = v5v6; Q4 = 1

2 (v4 + v3 − v5 − v6)2 + 1
2 (v3 − v4 − v1 −

v2)2 − 1
4 (v1 − v2 − v5 + v6)2 with Q2 and Q3 as the Casimirs.
Another linear change of variables wi = fi(v1, . . . , v6) with matrix(

∂wi
∂vj

)
=

 B11 B12 B13

B21 B22 B23

B31 B32 B33


brings the JSO(4) to the desired matrix. Indeed,

JSO(4) =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 A B C
−tB 0 0
−tC 0 0

 tB11
tB21

tB31
tB12

tB22
tB32

tB13
tB23

tB33



=

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 ·

·

 AtB11 +BtB12 + CtB13 AtB21 +BtB22 + CtB23 AtB31 +BtB32 + CtB33

−tBtB11 −tBtB21 −tBtB31

−tCtB11 −tCtB21 −tCB31


pick B21 = B31 = 0, B11 = I, B22 = α′3I, B23 = 0, B32 = 0, B33 = −β′5I.

The upper-left corner of the product matrix is A′ = A+BtB12 − (BtB12)t + CtB13 − (CtB13)t,
and if

tB12 = a

[
1 1
−1 −1

]
tB13 = b

[
1 −1
−1 1

]
for convenient scalars a and b, we obtain A′ = A11 as in (14). The other entries are treated similarly.
2

8. conclusions

As seen in this paper, the procedure of assigning the algebro-geometric data ( Aα, Dα, Lα, G)
( Aα an abelian variety, Dα a divisor on it, Lα a line bundle on Aα and G a group (of translates) leaving
invariant Dα and Lα ) to an a.c.i. system, can be accomplished in some cases in a successful way. There
is a question of how unique a system is obtained from a given data. The question for the SO(4) case
would be settled if the 80 different configurations referred to in §4 would be shown to be isomorphic to
the SO(4) system. A more invariant way of looking at these problems is needed. If such a problem is
carried out successfully one can ask if it is possible to characterize such systems as the three body periodic
Toda Lattice, Kowalevski’s Top or other a.c.i. systems with two degrees of freedom. A more interesting
question is whether these procedures allow to find new ”mathematical” integrable systems. This would
be a nice outcome for these techniques.
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[9] Piovan, L. Algebraically completely integrable systems and Kummer varieties. Math. Ann. 290 (1991), no. 2, 349–403.
[10] L. Piovan, P. Vanhaecke Integrable systems and projective images of Kummer surfaces. Annali della Scuala Normale

Superiore de Pisa, XXIX (2000) 351–392. Preprint no. 131, Département de Mathématiques, Université de Poitiers.
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