CONSTRUCTING A COMPLETELY INTEGRABLE SYSTEM VIA ALGEBRO
GEOMETRIC DATA

LUIS A. PIOVAN

ABSTRACT. We use the algebro-geometric data given by a genus 2 Jacobian, a curve and a line bundle
on the Jacobian, and the action of a group of translates on the theta sections of this line bundle, to
reconstruct an integrable system: the geodesic motion on SO(4), metric II (so termed after Adler and
van Moerbeke).

1. INTRODUCTION

Since the early days of Mechanics, finite dimensional integrable systems have been related to
algebraic geometry. That is shown in examples like the rigid body cases or Jacobi’s geodesic motion on
the ellipsoid.

Most of the known examples are a particular class of integrable systems, whose solutions, express-
ible in terms of theta functions, are associated to abelian varieties (i.e. complex tori in projective space)
with divisors (codimension one subvarieties) on them, and the Hamiltonian flows are linear on these
abelian varieties. Roughly speaking, such systems are called algebraic completely integrable (a.c.i.).

Starting from an a.c.i. system we can produce algebro-geometric data like a divisor on an abelian
variety (the divisor at infinity), its polarization , the linear system associated with this divisor, and a
finite group of translations leaving invariant the divisor and the holomorphic vector fields.

We can ask whether it is possible to go in the backward direction and view the integrable system
as deformation of a suitable geometric data.

In this paper we show how to recover an algebraic completely integrable system from algebro-
geometric data. The regarded system is a geodesic motion on SO(4) (the metric II case studied by Adler
and van Moerbeke in [1],[2]). Here, the commuting complexified flows linearize on Jacobians A, of genus
2 curves, upon adding to the complexified invariant manifolds, divisors D, (curves called SO(4) divisors)
at infinity, with a precise pattern ( they consist of four translates of the theta divisor intersecting at
triple points, which are half-periods, like the figure below). One considers the action of the group of
translations leaving invariant D, and the sections of the linear system of functions blowing up once at
D, and vanishing at least twice at the triple points. Surprisingly, this gives the sections for the right
phase space. In the projective closure of the complexified phase space €° (i.e. ]PG) the invariant manifolds
compactify to set theoretical complete intersections, into which the Jacobians map birationally, so that
a Jacobian minus its divisor at infinity is isomorphic to the respective (complexified) affine invariant
manifold.

The question arises whether it is possible to reconstruct such a system by providing its Jacobian
A, its configuration divisor at infinity D, (for instance an SO(4) divisor as explained in Theorem 1) , a
group G = Zy x Z5 of symmetries (which essentially are translates by half periods in the Jacobi variety),
and a line bundle L, — A,, whose sections are projective coordinates of the ambient space IP®. We
provide such a construction by finding a convenient basis of theta functions for the above data, with the
property that the same theta functions (up to permissible change of basis) are sections of the line bundle
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Ly — Ag, and in which G has a “nice” representation for all Jacobians. We deduce quadratic equations
for the image of the Jacobians in P(H°(A,, L )*) = IP%, in terms of certain parameters. Also, we find
the quadratic equations for the holomorphic vector fields in terms of this basis.

The quadratic equations that describe the image of A, in IP® contain natural parameters o which
serve as the moduli data. Now, one of the theta sections, say ©, will cut out on each A, the divisor at
infinity, and in the affine variables (Z;/©) in €° we obtain a smooth piece for each generic a (the affine
piece). The question is whether such a family of affine surfaces put together in C° has a Poisson structure
so that they are the complexified invariant manifolds for a Hamiltonian structure. Indeed, such a Poisson
structure, polynomial in the affine variables, is uniquely determined up to a Poisson transformation and
choice of Casimirs.

The above considerations lead us to the following theorem that will be shown along the paper.

Theorem 1. Consider the family {As} of genus 2 Jacobians and divisors {D, = ©g + 01 + O2 + O3}
on them, such that ©; is a translate by a half period e; of the theta divisor, and the ©;’s intersect into
four triple points {eq,...,es}. This family posses a group of translations G = Zy X Zs leaving invariant
each Dy and Au\Dy. Let HO(Ay, Dy — 2e9 — 261 — 2e5 — 2e3) be the space of sections linearly equivalent
to D, that vanish at least twice at the e;’s. Then, this space has dimension 7 and decomposes into odd
and even parts, with respect to the (—1)-involution, of dimensions 1 and 6 respectively; the odd section
vanishing at D,,.

One can find a basis {v; = %}, with © odd and the Z;’s even, such that G acts as in the following
table, for all generic Jacobians Ay :

Table T

‘ U1 U2 U3 Vg Us U6

g | —Vy —V1 —V3 —Ug —Vg —7Us
T | —U1 —V2 (0 V3 Ve Vs

The image of Ay in IP® = P(H(Ay, Dy — 260 — 261 — 2e5 — 2e3)*) is a set theoretical complete
intersection of four quadrics g = viva = a1, @2 = V3V4 = Q2, (3 = VsV = a3 and another quadric
qs = ay. If the quadrics qo and qs3 are chosen as Casimirs for a polynomial Poisson structure in the
affine variables v;’s, then, there is an integrable system with nontrivial hamiltonians X4, , X4, , and linear

Poisson matrixz. This system is, up to Poisson isomorphism, the metric II case of the geodesic motion
on SO(4) studied by Adler and Van Moerbeke [1], [9].

Figure I

We use the normalized action of G and the tangency condition X (¢;) = 0 for any holomorphic
vector field X and equation ¢; to find all the equations of the image of the Jacobian in IP®. The moduli
parameters appear in the freedom we have to choose different basis of sections for L, — A, so that the
action of G' on the equations of the variety and holomorphic vector fields are in a "normal form” (i.e.
roughly speaking, this means nice expressions without parameters).

The theta functions that would do the trick are products of genus 2 half integer characteristic
theta functions belonging to HO(AQ, D, —2ep—2e1 —2eq — 2e3) (i.e. the system of theta functions whose
zero locus is linearly equivalent to 46 and vanish at least twice at the points eg, e1, ea, €3, which are half
periods and triple points of the configuration divisor at infinity D,,). Such linear system was suggested
in [3]. An explicit computation of the dimension of this space and higher powers of it did not come easily
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until a procedure by Bauer [4] was available. He considers the pull back of linear systems on A to the
surface Aq (the blow up of the abelian surface A at the 16 half periods). The computation can be done
by using a bijection between symmetric curves on Ag and curves on the K3 surface Kq = Aq/{1,—1}
and then Riemann-Roch formula and a theorem by Kodaira as explained in [10]. Some of the algebraic
geometric assertions were already done by Szemberg [12] in his thesis. However, the step to reconstruct
the integrable system is new and uses techniques already present in [9]. We are grateful to W. Barth,
Th. Bauer and T. Szemberg for showing us their approach to quadrics in IP® and to Pol Vanhaecke for
useful discussions about this problem.

2. PRELIMINARIES

Let p: A — Abe the blow up of the abelian surface A at the 16 half periods {eo,...,e15} , and
{E; =p~le;,i=0,...,15} the 16 (—1)-curves. Let us denote by (—1)4 the reflexion with respect to the
origin in A. This reﬂexion induces an involution (—1) ; in A. The quotient by the action of this involution
Ky=A) < (-1 )i > is a smooth K3 surface and the projection 7 : A — K4 has the disjoint union of
the 16 (-1)-curves E; as ramification divisor, and the disjoint union of the 16 (-2)-curves B; = 7(E;) as
branch locus.

Let D be a curve in A with multiplicities u;’s at the half periods e;’s and let v;’s be given
nonnegative integers for each i. We start from a symmetric divisor D (given by an even or odd section
in H°(A, [D]) ) and consider the line bundle £, on A generated by p*(D) = > uE; = D+ S(u; — vi)E;

( D = strict transform of D). Then £, is symmetric with respect to (=1) 5 (le. £, ~ (=1)%L, ) if the

v;’s have the same parity (prop. 3.1 [10]). The space Ho(zzl, L,) is identified under p, with the sections
in H%(A, [D]) that vanish to order > v; at the e;’s. Also, if D’ and v/’s are another divisor and positive
integers , one has the intersection formula (p*(D) — > v, E;).(p* (D) = Y viE;) =D.D' = > vv).

Let us consider a £, symmetric and let (—1)z, be the involution of £, over (—1); induced by
the corresponding involution (—1)pj of [D] over (—1) 4. The action of (—1)p) on the fibers over the half
periods e;’s is multiplication by s; = +1 (in whose case the half period e; is called even) or by s; = —1
( where e; is called odd).

There is an involution on sections ¢ : H°(L,) — H°(L,) defined by ¢(s) = ( 1)z, s(—1) 5. This
involution splits H°(£,) into (+1) and (—1) eigenspaces : H°(L,)*. Moreover, m,L, = M+ & M~ is a
rank-2 bundle over K4 which decomposes, with regard to s + (—1)z, s(—1) z, into (+1) and (—1) line
bundles M*, and there are isomorphisms HO(K 4, M*) ~ HO(A, £,)* [4].

Let D = D—i—z —v;)E; be a symmetric effective curve in the linear system |L£, |, then , one can
associate a curve in K 4 as follows C=n(D )—i—Z[‘“*l’l]Bh where the square brackets is the mteger part,
B; = m,E; = n(E;) and (D) is the i e image of D. Starting from an odd or even curve D in the linear system
ID| on A, we construct the curve C on K4 by this way associated to the divisor p*(D) — Z VZE Then,

by proposition 3.1 in [10] we have M* = O (C) if v and D have the same parity, and M~ : (C)
otherwise. )
The Riemann-Roch formula for a K3 surface K4 and an effective curve C on it goes as follows:
CQ
(1) h(C) = 7+2+h ©),

where h!(C) = m—1 and m is the number of connected components of C (see [10]). This gives an effective
way of computing the dimensions of H°(L%") since we have an isomorphism H°(L,) ~ H°(M™) @
H°(M™). Also, by Bauer [4], we have the formulas

(2) TME =L, 277!
where Z+ = > s,—+1 Bi and s; the parity of the half period e;.

Example 1. Let D be the divisor of Figure I on a genus two Jacobian. This curve contains all 16 half
periods. The ones that are triple points are labeled {eg, e1,e2,e3}. D is an odd divisor in the linear system
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|40 with respect to the (—1) involution that fizes the half periods (Lemma 7.7.1 [6]). Now, consider the
bundle L, = [p*(D) — Z?:o 2F;] on A. We want to compute the dimensions of HO(A, L,)*.

(1) Let us find h°(L,)~. We have that p*(D) = Z?:o D; + Z?:o 3E; + 2324 E;, where the D;’s
represent the genus two curves. Then, the curve D~ = Z?:o D; + Ezio E; belongs to |L,]™ ,
and the associated curve in K is C~ = Z?:o 7w(D;). One obtains 7*C~ = p*D — (Z?:o 3E; +
S0, Ei). Therefore, by formula (1), h%(L,)~ = h°([C7]) = @—1—2—&—111(0_) = —4+4+243=1.

(2) Let DT € |[pxD — Z?:o 2F;|*. First, one constructs the divisors Z* as above. Taking into
account that D is a totally symmetric divisor and that the parity of the origin is even, all periods
turn out to be even. So, we obtain ZT = Zio E; and Z— = 0. Let us denote by BT the direct
image of Z* respectively. By applying m. at the level of curves in formulas (2) we get the linear
equivalence 2Ct + B~ ~ 2C* + Bt — Z?:o 2B;, where CT and C* are the associated curves to
DT and p*D respectively. This leads to the equivalence 2CT ~ 22?:0 m(D;) + Eio B;, or by
pulling back to A: 7*Ct ~ Z?:o D; + Zio E, = p*D — Z?:o 2E;. Therefore, we calculate
(Ch)? = w = 8. It follows that such a curve on a K3 surface has h'(C*) = 0 [11]. Then,
by (1) h°(L,)T = h°(CT) = 6.

(3) From 1 and 2 we conclude that the space H(A, L,) splits into a 1-dimensional odd piece and a
6-dimensional even part.

Example 2. Compute the dimensions of the spaces HY(LE)E. We write m.L2%? = M$ © M5 for
the decomposition into £1 bundles of m.LZ2. By 1. in the above example, we have that m* Mt ~ L.
Therefore, T,(L%?) ~ 7, (L, @T*MT) = 1, (L) @M+ =~ (MTOM)QIMT =~ (MT)®2p(M~ M),
It follows that M$ ~ (M*)®? = [2C*], and M; ~ M~ @ M+ = [C~ + CT], because (M)®2 and
M~ QM are eigenspaces under the action of the involution. The selfintersection numbers of the divisors
representing M* are bigger than 8. So, in both cases h*(M*) = 0 [11]. Thus, by the Riemann-Roch
formula we get h°(M3F) = 4(C;r)2 +2 =18, and ®(M3) = (C+)2+(Ci2)2+26+'ci +2=6. In this case, the
dimension of HO(A, L2?) turns out to be h°(MF) + hO(Mz) = 18 + 6 = 24.

3. GENUS TWO THETA FUNCTIONS.

Let 7 be the 2 x 2 Riemann matrix of a (generic and principally polarized) genus 2 Jacobian. A
pair of real vectors (m,m*) is associated univocally with the point m* + mr of 2.
For the pair of row vectors (m, m*) (called characteristics) we define the classical theta functions
[6, §8.5] as (1) below, where e(z) = exp(2miz), z € C. They have the properties (2),(3),(3),(4).
) D (1,0) = 2 ez (5 (0 +m)T8 (@ +m) + (¢ +m)*({ +m*))
(2) 19m,m* (T, _C) = ﬁf'rmfm* (7-7 )
(3) ﬁm+w,m*+w* (T, C) = e(mtw*)ﬁm,m* (T, C)v fOW’ W ez"
) Omome (T, +ur +u*) = e(—%m’tu —ut (¢ + u*))e(—u'm*)mtu,me+u (T, C).

m

We also use the customary notation ¥, m=(7,¢) = 9 m* } (1,¢), and agree to represent the

m

point m* + mr either by [ 2* } or{ m* }, when 7 is fixed.

If { Z } € 17%9/7% is a half period, then we have the formula (Prop. 3.14 - Ch IL p. 167
8]) -
(4) I (1, —C) = e(2m'm* )y i (7, C) = ex(m* + mT) D= (7, C)
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There are 229 half periods on an abelian variety of dimension g. We say that a half period of
characteristic { m* } is odd (even) if the factor e, ([ m* }
m m* |

For a genus 2 Jacobian the even half period characteristics are given by

en={9 0 pen={ 1 0 Jen={0 Yo peo={3" 0}
co={0 o pen={ 0 7 fean= {0 a Jeo={1s &)
en={ % Oy feu= {2 12}
}763_

While the odd characteristics are the following
1/2 0
T 1/2 1/2
(12 0 [0 1/2
“4T112 0 (T L0 1)2

1/2 1/2 1/2 1/2 0 1/2
60:{ 1/2 0 }’61:{ 0 1/2 }’62:{ 1/2 1/2
It follows that the theta functions ¥[e;] are odd functions with respect to the involution, while
the ¥]e;;]’s are even. One has the relations € + €; = €;; + & and Z?:o e; = 0 on the Jacobian.
The odd half periods are the Weierstrass points of the theta divisor {¢ : Y ,0(7,{) =0} =T and
I is also the genus 2 curve into its Jacobian.

) is negative (positive).

4. THE ACTION OF A GROUP.

Any SO(4) divisor D can be constructed from one of the 16 symmetric curves {I' +&;,T" + &}
by acting on it with a particular group of translates G = Zy x Zs = {1,t1,t2,t5 = t1 + t2}, in such a
way that G fixes the triple points. Actually, the four triple points define translates by half periods that
coincide with G, once one of the these points is chosen as origin. It is easy to see that the same divisor D
is obtained from a single symmetric curve, say I', by letting G act on it. Moreover, I" contains three half
periods that together define an origin and G. Therefore, there are 80 = (2)4 ways of giving an origin
and a group.

Let T" be defined as in the previous section. Call ©3 = t3(I'), O3 = t2(T'), ©1 = t1(T"), O =T,
and €0, el, €2, e3 the triple points of D = ©y + O1 + O3 + O3. Then,

Proposition 2. [12]. A basis for H°(A, [p*(D) — Z?:o 2E;]) is given by the odd section sgs1s2s3 and the
even sections sis3, 5353, 5353, 5352, 5353, where sg, 51, 82, 83 are theta functions vanishing on ©g, O1, O, O3
respectively.

We pick three points eg,e1,es in I' = {(: ¥(7,{) = 0}, ep as origin and consider the group G
generated by e; — eg, ea — eg. This has an extra element e15 — eg. We write

0 0 0 0
tl:el_eO:{—l/z 1/2}262“{—1 0}
“1/2 0 10
t2:62—€0:{ 0/ 1/2}2614+{ 0 0}
B C(-12 0 10
t3_612_60_{1/2 0}_6”{1 0}

and consider the translates of the ¥-divisor I by these elements of Zy x Z5. These translates are given
by the sections

S0 = Oess](,¢) = (1, (), 51 = Ieas](7,C), s2 = V¥[e14](7, (), and s5 = Ieq](7, ().



6 PIOVAN, LUIS

Thus, the zero locus of O(7, ) = J[ess|V[ea4]V]e14]V[e4] gives a typical SO(4) divisor. As O is the product
of 3 even sections and one odd section, © is odd.

We will make a table with the action of ¢, defined by ¢,9(¢) = ¥(¢ +z). This action is associated
with the Schrodinger representation of the Theta group (see [6] and [9] for those matters).

50 = Vless] (7, () 51 = Veaq] | 52 = Vera] | s3 = Ved]
tr | Uless](7,¢ +e1 —eo) = V[ea] less) —e4] e

ta | Vless|(T, ¢+ e2 —eo) = f(O)Vera] | f(Qidlea] | f(C)Dess] | f(C)id[e2d]
ts | V]ess|(,¢ + er2 — eo) = —g(()Ved] | g(Q)idlera] | g(C)[e2a] | g(C)iv[ess]

Let u;; = s7s2, i < j, be the even sections of [p*(D) — Z?:o 2F;] . Then G acts as follows,

1 ]7
Uo1 Uo2 Uo3 U2 Uuis U23 (S
) 1 Uo1 U13 U2 Uo3 U2 U23 -0
4 4 4 4 4 4 4
ta —ffugs fruo2 —ffug —ffuo3 fruis —ffuo -f'e
4 4 4 4 4 4 4
t3 | —gTu2s g uiz  —g-ups  —g uiz g Up2 —g o1 g'o

This action is similar to the one described in [12] for a different basis. We needed to go down to
the classical theta functions to make the action on © explicit. If we put v3 = g4, v4 = g%, v1 = 8, v2 =
B vs = 8, vg = “§%, we obtain Table I of the theorem, with o = ¢, and 7 = t».

Since this action admits a separable rescaling, that is, a rescaling in each set of variables:
{v1,v2},{vs,vs}, and {vs,vs}. Then, by the very definition of the v;’s, we have relations vive = ¢1,
V34 = C9, UsUg = c3, where now, new wv;’s are substituted in place of the old ones rescaled. These

equations are three independent integrals with three free parameters for the would be system.

5. THE QUADRATIC VECTOR FIELDS INVARIANTS UNDER THE GROUP.

The above sections {ug1, Uo2, o3, Ui2, U13, Uzs, O} of HO(p* (D) — 2Ey — 2E; — 2E, — 2E3), yield
a rational map A — A — P® (which is not defined at €0,el,e2 and e3). The degree of the image is
(p*D— Y 2E;))> =D*+ > 4E? =32 —4-4=16.

Now, let £ be the line bundle associated to the divisor p*© — Z?:o 2E;. As said before h®(L£) =7
and h°(L)* = 6, h%(L)~ = 1. The vector fields in the affine variables v;’s are given by Wronskians
of an even section with the odd section, and these define sections in H?(L®2)*. This follows from
properties of wronskians [9]: Wy : H°(L)* ® H°(L)™ — H°(L®?)*. Thus, the vector fields can be
written quadratically in terms of the even sections , which follows from the proposition:

Proposition 3. The map S?H(L)"T — H°(L®?)T is surjective, and H°(L)T @ HO(L)™ — HO(L®?)~
is an isomorphism.

Proof: We have canonical isomorphisms H°(A, £)* = HO(K 4, M*) and HO(A, £?)* = HO(K 4, M7)
and consider the conclusions of example 2.

The hypothesis of Theorem 1 by Saint-Donat [11] is checked out in [12]. Therefore we conclude
that there is a surjective morphism S2HO(K 4, M) — HO(K 4, (M1)®2) = HO(K 4, M7) = HO(L®?)*
from which follows the first part of the proposition.

For the second part, notice that the sections u;; ®©,7 < j, of H 9(£%2)~ are linearly independent
on A. O
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Remark 1. The map S?H°(L) = S?(H(L)T®H (L)™) = S?H(L)Te(H(L)T@H(L)")®S?HO (L)~
— HO(L®?)T @ HO(L®2)~ is surjective, and this means there are 4 = s*h%(L) — hO(L®?) = 28 — 24
quadratic equations defining the image of A in IPS.

Since the nontrivial holomorphic vector fields on the Jacobians have to be tangent to the affine
variety defined by the quadrics ¢ = vive = ¢1, g2 = V3v4 = c2, q3 = V5V = c3, and invariant under the
translations o, 7, we get

v = vi(ag(vs +v4) +as(vs +ve)) = v1f1

Uy = —va(ag(vs+vs) + as(vs +v6)) = —v2fr
(5) v3 = v3(Bi(v1 —v2) + Bs(vs — v6)) = v3fa

vy = —v4(Bi(v1 —v2) + B5(vs — v6)) = —vafo

v5 = wvs(71(v1 +v2) +y3(v3 —va)) = vsf3

v = —ve(v1(v1+v2) +73(vs —v4)) = —v6f3

which gives several two dimensional families of vector fields nonvanishing on each variable.

6. THE EXTRA QUADRATIC INVARIANT.
We want to find the remaining invariant under the group G which is killed by the quadratic vector
fields. Such an invariant must be of the form
a1 = a(v? +v3)+ B(v3 +vi) + (03 +v3)
(6)
+d(v1 + v2)(v3 — vg) + €(v1 — v2)(vs — vg) + N(v3 + v4) (V5 + Vg).

This has to satisfy the equation ¢4 = 0 under all vector fields , which leads to the linear system

2@30& + 615 = 0 C¥3(5 -+ 2516 =
2a5a + 116 =0 asd + P+ v3e=0
aze+ P50+ =0 2558+y3m=0
ase+2y17 =0 Bsn + 2737 =0
with the following rank 5 matrix
[ 205 0 0 B1 0 0 ]
2a5 0 0 0 ~n 0
0 0 0 Bs az m
(7) 0 0 2’)/1 0 (6 %3 0
0 261 0 a3 0 0
0 0 0 a5 v B
0 255 0 0 0 Y3
| 0 0 2y 0 0 pB5 |

Lemma 4. Besides the invariants viva, v3v4, Vg, an extra quadratic invariant of the form (6) killed by
two independent quadratic vector fields exists, if it has one of the following coefficients (c, 8,7, 9, €,n)

(a) (0,-%, 2a,OOl)

(b) (—ﬂ,—%,o 1,0,0)
(c) (— ab f%%,fia,:ta b,1)
(d) (—%,0,—5-,0,1,0)

Proof: The conditions for the existence of an extra quadratic invariant of the form (6) are those that
make matrix (7) to have rank 5. This is the vanishing of 28 6 x 6 minors. We do not write these
cumbersome expressions and leave it for the reader wanting to check computations.

Next, we write a table with the solution of these equations and a basis of the kernel of (7) (that is
the coefficients of (6)) under the condition that there must be two linearly independent vector fields which
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do not vanish on the variables v;’s. Also, this is left to the reader: first we assumed a581v3 = a3f571,
and then a5f1v3 = —asfsy1. O

Remark 2. Any of the quadrics (a), (b), (d) together with g1, q2, and g3 lead to a reducible affine variety.
This is not desirable since we want the images of irreducible jacobians. Therefore, we discard those cases.

Remark 3. Let us consider the set theoretical complete intersection C A in IP® determined by the quadrics
¢ = ¢i,i = 1,...,4. This surface contains the image of A in PS, call it A. Moreover, the degree of C'A
is 16 = 2.2.2.2, the same as the degree of A. Therefore, the rational map A — C'A induced by A — P°
is generically one to one, and this means C' A coincide with A on an open set. The image of A —D in
A is smooth and one to one because it corresponds to lifting from Ka to A, away from the branch locus,
the smooth embedding K4 — P° given by the even sections. Also, A — D maps onto the affine piece
{fve €°: q) =c,i=1,..,4}, and since this piece is smooth by construction and contains the image
of A—D in PS, it coincides with it. Thus, A — D is isomorphic to the affine piece determined by the
four quadrics.

7. THE POISSON MATRIX.

Assume the vector fields we are looking at have the special following form with matrix J polyno-
mial in the affine variables

(8) Wy = Xp(w;) = (J(w) - grad H(w Z Jin(w 8wk
We want to find a Poisson structure of the form {f, g}(w) =< grad f(w), J(w) - grad g(w) > so that the
Hamiltonian vector fields correspond to the holomorphic vector fields already found.

Let T, be a translation T, : A — A on the abelian variety A, then, we have the equivariance
relation dT,,- Xy = Xy oT,. The action of T, € G on generating functions is linear T3 (w;) = Z?:1 AijW;.
Then Xpr(y) (T (w:) = - Ay X5 (w) 22 But Xpa(y) (T (wy) = dlw; o To) o X(y) = dw; dT, X —
dw; - X (Tx(y)) = X Te(y)) (w;) = T (X( )(w;)) where X (y)(w;) is a polynomial in the variables
w1, ... ,Ws.

Now, for a globally defined polynomial H invariant under G, we have T)H(w1,...,ws) =
H(T}wy,... ,Trwg) = H(wy,... ,ws) , and for the set of functions T (w;), the exchange of differen-
tials dT} (w;) = 2?21 Aij dw; occurs. This induces on derivations the transformation formula W =

25Mﬁwhere(m=<<Aij>t> MoreoverT*( 1) =13 ((2)(H) = ((52:) o o) (HoTy) =

a(T*w ) (T;H) =3 ﬂijaiij;H =X NijaT,jH
Therefore, we obtain the relation

OH ) OH
> Aiijk(w)aT]k =D TiJu(w)- Pj
J

So, for any integral invariant H

Z Z)\ZJij ZT le g 37,511; =0.

This means that the functions € (w) = 32 AijJji(w) — Jij(T;w) - pji ave killed by the gradients
grad H, for H an (integral of the motion) invariant by G. Namely, the vectors €;(w) = (€;1(w), €2(w), ...,
e;6(w)) belong to the tangent space of the affine variety {w: ¢;(w) =¢; i=1,...,4}. Thus, there must
be a function H, linear combination of the nontrivial invariants Hy, Hz, such that ¢;(w) = J(w) - grad H.

Assuming that there are no nontrivial Hamiltonians which are linear in the affine coordinates, we
conclude that €;(w) = 0 if the matrix J has linear entries.

—~
Ne)
~—
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Indeed, for a nontrivial Hamiltonian H, the polynomials in wy,. .. ,wg,(J(w)-gradH), i = 1,... , 6,
have at least degree 2. So, it follows:

Lemma 5. If the matriz J has linear entries, then it is equivariant by the action of translations in G, and
skewequivariant by the action of (—1)-involution. Namely, if A(c) is the matriz of the translate o, J(ocw) =
A(o)J(w)A(o)t, o € G, and if A1) is the matriz of the (—1)-involution ¢, J(tw) = —A(e)J (w)A(L)t.

Let us assume that the Poisson matrix of this would be system have linear entries. Being the
invariants quadratic, we deduce that the matrix J satisfies the relations described by the lemma 5.
Let us write a general linear 6 x 6 matrix in 2 x 2 blocks

A A Asg
(10) J = A21 A22 A23
Asgy Ay Ass

Let I be the 2 x 2 identity matrix and

e 0)

the 2 x 2 transposition. In matrix notation, the operators o, 7, and the (-1)-involution ¢ are written as
follows:

-D 0 0 -I 0 0 -I 0 O
o= 0 -1 0 T = 0 D 0 L= 0 —-I O
0 0 -D 0 0 D 0o o0 -I

The invariance property of J is described by the following two relations

DA{1D DAy DA3D
o-J = AnnD Az AgD
DAs1D DAz DAssD

Ay —AwD —Ai3D
T-J = —DA21 DAQQD DAggD
—DA31 DA32D DA33D

We also use the fact that J is skew symmetric. Thus, it is enough to solve the following equations:

g - All == DA11D g - A22 == A22 g - A33 = DA33D
{ T'A11 = All { T 'A22 = DAQQD { T - A33 = DA33D
(11)
o-Aiz = DAy o-Ayz = A3 o-Aiz = DA;D
{ T'A12 = —AlzD { T - A23 = DA23D { T - A13 = —A13D
The equations for A1, = ( Z Zl ) can be written as Zz ZZ ] = [ ;)l Z ],and [ :Z Z_Z } =

[a b
d

a b

ca ob

] . This means A1 = [ } , with a = 7a,b = 7b.

a

b

Analogously, for the remaining A;; we get Azy =

a b
_Ub

o " " _
(12) A13|: “ I TC/L:|a A23|: a// Ja//:|a AIQ{G Ta:|

} with 70b = b, 70a = a.
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Since 'A;; = —A;;, we obtain
A = (fb 8}7 with b = 7b = —ob
(13) A= O V] Gith =t = ot
LTy 07
— [ 0 b/l 3 /o "o /!
Asz = o 0 ] , with b/ = —ob” = 70b
Using table I, we finally get
o )
Ay = _f ];1 ;1= az(vs +va) 4+ as(vs + ve)
C 0 g
(14) Agp = 0 | fo = B1(v1 —v2) + Bs(vs — vg)
o )
Azz = _f ]:)3 o fa=m(v1 +v2) +73(v3 — va)

Proposition 6. There is a system with Poisson matriz (10) and entries (12) and (14) that has the
functions g2 = v3vy4,q3 = vsvg as Casimirs. Up to a change of basis, it is the SO(4) case of Adler and
Van Moerbeke.

Proof: Since J - grad q; = 0, J - grad g3 = 0, namely J - [0,0,v4,v3,0,0]* = 0,J - [0,0,0,0,v,vs5]* = 0.
These impose conditions on Ai3, Aoz, A12, Aso, and Asz. Clearly fo =0 and f3 = 0. Also avy — Tavs = 0,
a'vg — td'vs = 0, —oTa'vg + oa’vs = 0, a”’vg + Ta"’vs = 0, To0a v + Ta'vs = 0, a’’vy + Toa vz = 0,
oa' vy +T1a"v3 =0, avy — Tavs = 0 = a = ajus, a’vg — Ta'vs = 0 = o/ = PLus, a’'vg +oa’vs =0=d" =
Y55

Thus
! ! ! ! /
Ao, — | @8Vs —Qsvs Ape — Bsvs  —Bive Ao — | V5U5 7506
(15) 12 — / / ) 13 — / / ) 23 — / /
—Q3U3 Q34 Bgvs  —PBgue —V5Us  V5Us

but the equations imply Aoz = 0.
The SO(4) system for the metric IT is the system of differential equations [2],[9].

7—'1:7—27—6 7'.427'37'5
-1 L
Ty = 573(T1 +T4) T =T3Ta

Ts = 373(TL +T4) T = TiT2.

One can pick a Poisson matrix for this system

0 T3 T2 0 0 (27'2 — Ts)
—T5 0 0 0 0 0
7 _ —Ty 0 0 0 0 0
s0@) = 0 00 0 0 Ts
0 0 0 0 0 T4
—(ra—71) 0 0 —75 -7 0

with Poisson bracket {f, g} = <%, Jso() - %> )
By making the change of variables

V1 =T1+7To, V2 =T —T1, V3 =T2+ T3, V4 =T2 — T3, Us =T4+ T5, Vg =T5 — T4
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the Poisson matrix takes the form

0 U3 + Vg4 — 1/2(U5 + 'UG) U3 —V4 —Us Vg
—(vs 4+ v4) + 1/2(v5 + vg) 0 —v3 vy —Us g
JSO _ —V3 V3 0 0 0 0
@ vy —vy 0 0 0 0
Vs Vs 0 0 0 0
L (Y —Vg 0 0 0 0
[ A B C
= —-tB 0 0
L —tC 0 0

and the invariants are Q1 = vivs, Q2 = v3v4, Q3 = v5v6; Q4 = %(114 + w3 —vs —vg)% + %(’1}3 — V4 — V] —

v9)? — %(vl — vg — v5 + v6)? with Q2 and Q3 as the Casimirs.

Another linear change of variables w; = f;(v1,...,vg) with matrix
B B B
ow; 11 B2 Bis
<8v-> = | Ba1 DB DBas
J B3y Bsz Bss
brings the Jso(4) to the desired matrix. Indeed,
[ Biy Bz Bis | A B C ‘Bi1 'Ba1 'Bs
Jsowy = Bo1 Bia  Bas -‘B 0 0 ‘Bz "By 'Bsp
| Bsy B3 Bss || —'C 0 0 'Bis 'Bas 'Bss
[ Biy Bz Bis |
= Ba1 Bas B
| Bs1 Bs2 Bsz |
[ A'Bi1 + B'Bis + C'B1g A'Boy + B'Boy + C'Byy  A'Bgy + B'Bsy + C'Bgg
_tB'B, _tB!'B,, _tB!'By,
*tCtBll *tCth *tCBLSl

pick Boy = Bg; =0, By = I, Bay = a1, Bz =0, B3y = 0, B3 = —f51.
The upper-left corner of the product matrix is A’ = A + B*Byy — (Bt B12)t + Ct*B13 — (C'B13)t,

and if
1 1 1 -1
¢ _ t _
Blz_a[ -1 —1} 313_[{ -1 1 ]
for convenient scalars a and b, we obtain A’ = Aj; as in (14). The other entries are treated similarly.
O

8. CONCLUSIONS

As seen in this paper, the procedure of assigning the algebro-geometric data ( Ao, Do, Lo, G)
( A, an abelian variety, D, a divisor on it, £, a line bundle on A, and G a group (of translates) leaving
invariant D, and £, ) to an a.c.i. system, can be accomplished in some cases in a successful way. There
is a question of how unique a system is obtained from a given data. The question for the SO(4) case
would be settled if the 80 different configurations referred to in §4 would be shown to be isomorphic to
the SO(4) system. A more invariant way of looking at these problems is needed. If such a problem is
carried out successfully one can ask if it is possible to characterize such systems as the three body periodic
Toda Lattice, Kowalevski’s Top or other a.c.i. systems with two degrees of freedom. A more interesting
question is whether these procedures allow to find new ”mathematical” integrable systems. This would
be a nice outcome for these techniques.
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