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In this article we prove weighted norm inequalities and pointwise estimates between
the multilinear fractional integral operator and the multilinear fractional maximal. As a
consequence of these estimations we obtain weighted weak and strong inequalities for the
multilinear fractional maximal operator or function. In particular, we extend some results
given in Carro et al. (2005) [7] to the multilinear context. On the other hand we prove
weighted pointwise estimates between the multilinear fractional maximal operator Mα,B

associated to a Young function B and the multilinear maximal operators Mψ = M0,ψ ,
ψ(t) = B(t1−α/(nm))nm/(nm−α). As an application of these estimate we obtain a direct proof
of the Lp − Lq boundedness results of Mα,B for the case B(t) = t and Bk(t) = t(1+ log+ t)k

when 1/q = 1/p − α/n. We also give sufficient conditions on the weights involved in the
boundedness results of Mα,B that generalizes those given in Moen (2009) [22] for B(t) = t.
Finally, we prove some boundedness results in Banach function spaces for a generalized
version of the multilinear fractional maximal operator.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

An important problem in Analysis is to control certain integral type operators by means of adequate maximal operators.
This control is sometimes understood in the norm of the spaces where these operators act. For example, an interesting
result due to Coifman [4] establishes that, if T is a Calderón–Zygmund integral operator, M is the Hardy–Littlewood maximal
function and 0 < p < ∞, then the inequality∫

Rn

∣∣T ( f )(x)
∣∣p

dx � C

∫
Rn

∣∣M f (x)
∣∣p

dx

holds for some positive constant C . Thus, the maximal function M controls the singular integral in L p-norm and the
boundedness properties of M in L p-spaces give the boundedness properties of T . The weighted version for A∞ weights
of inequality above is also true (see [5]).

For the fractional integral operator Iα , 0 < α < n, w ∈ A∞ and 0 < p < ∞, Muckenhoupt and Wheeden [23] proved the
following control-type inequalities involving the fractional maximal operator Mα∫

Rn

∣∣Iα( f )(x)
∣∣p

w(x)dx � C

∫
Rn

∣∣Mα f (x)
∣∣p

w(x)dx,
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and

sup
λ>0

λq w
({Iα f > λ}) � C sup

λ>0
λq w

({Mα f > λ}),
where C depends on the A∞-constant of w . Then, by the weighted boundedness results of Mα , they obtained the corre-
sponding weighted boundedness results for Iα .

Similar problems for other operators such that commutators of singular and fractional integral operators, nonlinear com-
mutators, potential operators, multilinear Calderón–Zygmund operators and multilinear fractional integrals, were studied by
several authors (see, for example, [28–30,8,2,7,21,22,10]). Particularly, in [7], the authors obtain the boundedness of the frac-
tional integral operator in term of the fractional maximal operator in weighted weak L1-spaces, and then, by the weighted
weak boundedness of Mα , they obtain weighted weak estimates for Iα .

Related to the control of commutators of singular and fractional integral operators appear the iterations of the Hardy–
Littlewood maximal operator M and the composition of the fractional maximal operator with iterations of M . These types
of maximal operators were proved to be equivalent to certain maximal operators associated to a given Young function (see,
for example, [28,29,8,2]). Then, the study of the boundedness properties of these particular maximal operators seem to be
an important tool because they enclose information about the behavior of the commutators that they control.

In the multilinear context, there were an increasing interest in investigate how to control integral operators by maximal
functions. In [17] the authors proved that the multilinear Calderón–Zygmund operators are controlled in L p-norms by the
product of m Hardy–Littlewood maximal operators and they asked themselves if this product is optimal in some sense. This
problem is then solved in [21], where the authors give a strictly smaller maximal operator and develop a corresponding
weighted theory.

Later, in [22], a complete study of the weighted boundedness properties for the multilinear fractional integral operator
is given, and the author proved that this operator is bounded in norm by the corresponding version of the fractional
maximal operator which generalizes the maximal operator given in [21]. Again, the boundedness properties of the “maximal
controller” gives the boundedness properties of the “controlled operator.”

Pointwise estimates between operators are also of interest because they allow us to obtain boundedness properties of
a given operator by means of the properties of others. For example, related to the fractional maximal operator and the
Hardy–Littlewood maximal operator a pointwise estimate is given in [3]. Other known pointwise estimates between the
fractional integral operator and maximal operators are due to Welland and Hedberg (see [32] and [18]).

In this paper we give “control type results” for the multilinear fractional maximal and integral operators. These results
involved pointwise estimates and norm estimates between these operators, of the type described above. In particular, we
extend some results given in [7] to the multilinear context. On the other hand we introduce the multilinear fractional
maximal operator Mα,B associated to a Young function B and we prove weighted pointwise estimates between these
operators and the multilinear maximal operators Mψ = M0,ψ , where ψ is a given Young function that depends on B .
As an application of these estimates we obtain a direct proof of the L p–Lq boundedness results of Mα,B for the case
B(t) = t and Bk(t) = t(1 + log+ t)k when 1/q = 1/p − α/n. We also give sufficient conditions on the weights involved in
the boundedness results of Mα,B that generalizes those given in [22] for B(t) = t . The importance of a weighted theory for
this maximal function is due to the fact that this operators are in intimate relation with the commutators of multisublinear
fractional integral operators, as we shall see in a next paper.

On the other hand, we study boundedness results in Banach function spaces for a generalized version of the multilinear
fractional maximal operator involving certain essentially nondecreasing function ϕ .

The paper is organized as follows. In Section 2 we state the main results of this article. We also include some corollaries
and different proofs of results proved in [22]. The proof of the main results are in Section 4. In Section 3 we give some
auxiliary lemmas and finally, in Section 5 we define a generalized version of the multilinear fractional maximal operator
and we give some boundedness estimates in the setting of Banach function spaces.

Before stating the main results of this article, we give some standard notation. Throughout this paper Q will denote a
cube in R

n with sides parallel to the coordinate axes. With D we will denote the family of dyadic cubes in R
n .

By a weight we understand a nonnegative measurable function.
We say that a weight w satisfies a Reverse Hölder’s inequality with exponent s, RH(s), if there exists a positive constant

C such that(
1

|Q |
∫
Q

ws
)1/s

� w(Q )

|Q | .

By RH∞ we mean the class of weights w such that the inequality

sup
x∈Q

w(x) � C

|Q |
∫
Q

w,

holds for every Q ⊂ R
n and some positive constant C . It is easy to check that RH∞ ⊂ A∞ .

Now we summarize a few facts about Orlicz spaces. For more information see [19] or [31].
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We say that B : [0,∞) → [0,∞) is a Young function if there exists a nontrivial, nonnegative and increasing function b
such that B(t) = ∫ t

0 b(s)ds. Then B is continuous, convex, increasing and satisfies B(0) = 0 and limt→∞ B(t) = ∞. Moreover,
it follows that B(t)/t is increasing.

Let B : [0,∞) → [0,∞) be a Young function. The Orlicz space LB = LB(Rn) consists of all measurable functions f such
that for some λ > 0,∫

Rn

B
(| f |/λ)

< ∞.

The space LB is a Banach space endowed with the Luxemburg norm

‖ f ‖B = ‖ f ‖LB = inf

{
λ > 0:

∫
Rn

B
(| f |/λ)

< ∞
}
.

The B-average of a function f over a cube Q is defined by

‖ f ‖B,Q = inf

{
λ > 0:

1

|Q |
∫
Q

B
(| f |/λ)

� 1

}
.

When B(t) = t , ‖ f ‖B,Q = 1
|Q |

∫
Q | f |.

We shall say that B is doubling if there exists a positive constant C such that B(2t) � C B(t) for every t � 0. Each Young
function B has an associated complementary Young function B̃ satisfying

t � B−1(t)B̃−1(t) � 2t,

for all t > 0. There is a generalization of Hölder’s inequality

1

|Q |
∫
Q

| f g| � ‖ f ‖B,Q ‖g‖B̃,Q . (1.1)

A further generalization of Hölder’s inequality (see [24]) is the following: If A, B and C are Young functions such that

A−1(t)B−1(t) � C−1(t),

then

‖ f g‖C,Q � 2‖ f ‖A,Q ‖g‖B,Q .

Definition 1.2. Let 0 < α < nm and �f = ( f1, . . . , fm). We define the multilinear fractional maximal operator Mα,B associated
to a Young function B by

Mα,B �f (x) = sup
Q �x

|Q |α/n
m∏

i=1

‖ f i‖B,Q (1.3)

where the supremum is taken over all cubes Q containing x.

Even though Mα,B is sublinear in each entry, we shall refer to it as the multilinear fractional maximal operator.
For α = 0 we denote M0,B = M B . When B(t) = t , Mα = Mα,B is the multilinear fractional maximal operator defined

in [22] by

Mα
�f (x) = sup

Q �x
|Q |α/n

m∏
i=1

1

|Q |
∫
Q

| f i|. (1.4)

M0 = M is the multilinear maximal operator defined in [21]. When m = 1 we write M and Mα to denote the Hardy–
Littlewood and the fractional maximal operators defined, for a locally integrable function f and 0 < α < n, by

M f (x) = sup
Q ∈x

1

|Q |
∫
Q

∣∣ f (y)
∣∣dy (1.5)

and

Mα f (x) = sup
Q ∈x

1

|Q |1−α/n

∫
Q

∣∣ f (y)
∣∣dy (1.6)

respectively.
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If we take g ≡ 1 in inequality (1.1) it follows that for every Young function B , every α such that 0 � α < nm, the
inequality

Mα(�f )(x) � Mα,B(�f )(x)

holds for every x ∈ R
n .

The following class of weights was introduced in [21] and is a generalization of the Muckenhoupt A p classes, p > 1. We
use the notation �P = (p1, . . . , pm).

Definition 1.7. Let 1 � pi < ∞ for i = 1, . . . ,m, 1
p = ∑m

i=1
1
pi

. For each i = 1, . . . ,m let wi be a weight and �w = (w1, . . . , wm).
We say that �w satisfies the A �P condition if

sup
Q

(
1

|Q |
∫
Q

(
m∏

i=1

w p/pi
i

))1/p m∏
i=1

(
1

|Q |
∫
Q

w
1−p′

i
i

)1/p′
i

< ∞. (1.8)

When pi = 1, ( 1
|Q |

∫
Q w

1−p′
i

i )1/p′
i is understood as (infQ wi)

−1.

Condition (1.8) is called the multilinear A �P condition.

2. Statement of the main results

In this section we establish the main results of this article. For a sake of completeness we consider four subsections.

2.1. Pointwise estimates for Mα,B

For 0 < α < nm let B be a Young function such that t
α

nm B−1(t1− α
nm ) � B−1(t). Let ψ be the function defined by ψ(t) =

B(t1−α/(nm))nm/(nm−α) . From Lemma 3.1 below, ψ is a Young function. The following result gives a pointwise estimate
between the multilinear fractional maximal associated to the Young function B , Mα,B and the multilinear maximal operator
Mψ associated to the Young function ψ , and is an useful tool to obtain boundedness results for Mα,B .

Lemma 2.1. Let 0 < α < nm. Let B be a Young function such that

t
α

nm B−1(t1− α
nm

)
� B−1(t) (2.2)

and ψ(t) = B(t1−α/(nm))nm/(nm−α) .
For each i = 1, . . . ,m, let pi , qi and si be the real numbers defined, respectively, by 1 � pi < nm/α, 1

qi
= 1

pi
− α

nm and si =
(1 − α/(nm))qi and p, q and s be the real numbers given by 1

p = ∑m
i=1

1
pi

, 1
q = ∑m

i=1
1
qi

and 1
s = ∑m

i=1
1
si

. Let w1, . . . , wm be m

weights. If �f w = ( f1/w1, . . . , fm/wm) and �g = ( f p1/s1
1 w−q1/s1

1 , . . . , f pm/sm
m w−qm/sm

m ) then

Mα,B �f w(x) � Mψ �g(x)1−α/(nm)

(
m∏

i=1

‖ f i‖pi
L pi

) α
nm

. (2.3)

Remark 2.4. When B(t) = t we have that ψ(t) = t . Then, from inequality (2.3), we get the following pointwise estimate
between the multilinear fractional maximal operator Mα and the multilinear maximal operator M

Mα
�f w(x) � M�g(x)1−α/(nm)

(
m∏

i=1

‖ f i‖pi
L pi

) α
nm

. (2.5)

In the case m = 1 the result above was obtained in [14].

Remark 2.6. For 0 < α < nm and k ∈ N let Bk be the Young function defined by Bk(t) = t(1+ log+ t)k . Then Bk satisfies (2.2).
Let ψk(t) = Bk(t1−α/(nm))nm/(nm−α) ∼= t(1+ log+ t)knm/(nm−α) . From the lemma above we get the following pointwise estimate

Mα,L(log L)k �f w(x) � M
L(log L)

knm
nm−α

�g(x)1−α/(nm)

(
m∏

i=1

‖ f i‖pi
L pi

) α
nm

. (2.7)
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2.2. Weighted boundedness results for Mα,B

As an easy consequence of inequality (2.5) and the weighted boundedness results for the multilinear maximal operator
M proved in [21] we obtain a direct proof of the weighted weak and strong boundedness of the multilinear fractional
maximal operator Mα proved in [22], when p and q satisfy 1/q = 1/p − α/n and 1 < pi < nm/α, i = 1, . . . ,m. Actually,
in [22] the author proves that the conditions on the weights are also necessary (see Theorems 2.7 and 3.6 in [22] applied
to this case). These results are given in the following two theorems.

Theorem 2.8. Let 0 < α < nm and let pi and q be defined as in Lemma 2.1. Let �f = ( f1, . . . , fm). If (u, �w) satisfy

sup
Q

(
1

|Q |
∫
Q

u

)1/q m∏
i=1

(
1

|Q |
∫
Q

w
−p′

i
i

)1/p′
i

< ∞ (2.9)

then

‖Mα
�f ‖Lq,∞(u) � C

m∏
i=1

‖ f i wi‖L pi .

Theorem 2.10. Let 0 < α < nm and let 1 < pi < nm/α and qi , si , p, q, and s be defined as in Lemma 2.1. Let �wq = (wq1
1 , . . . , wqm

m ).

If �f = ( f1, . . . , fm), �S = (s1, . . . , sm) and �wq ∈ A�S , then∥∥∥∥∥Mα
�f
(

m∏
i=1

wi

)∥∥∥∥∥
Lq

� C
m∏

i=1

‖ f i wi‖L pi .

Remark 2.11. It is easy to check that �wq ∈ A�S if and only if �w = (w1, . . . , wm) belongs to the A �P ,q classes introduced in [22].
This equivalence is a generalization to the multilinear case of that proved by Muckenhoupt and Wheeden in the linear case,
which establishes that a weight w ∈ A p,q if and only if wq ∈ As with 1 � p < n/α, 1/q = 1/p − α/n and s = 1 + q/p′ . For
more details see [23].

The following corollary is a consequence of Theorem 2.8 applied to the weights u = ∏m
i=1 uq/qi

i and wi = M(ui)
1/qi ,

where M is the Hardy–Littlewood maximal operator.

Corollary 2.12. Let 0 < α < nm and let pi , qi , si , p, q, and s be defined as in Lemma 2.1. Let �f = ( f1, . . . , fm) and u = ∏m
i=1 uq/qi

i .
Then

‖Mα
�f ‖Lq,∞(u) � C

m∏
i=1

∥∥ f i M(ui)
1/qi

∥∥
L pi .

From the weak and strong characterizations obtained in [22, Theorems 2.7 and 2.8] applied to the case p = q, we obtain
the following result.

Theorem 2.13. Suppose that 0 < α < nm, 1 � p1, . . . , pm < mn/α and 1
p = ∑m

i=1
1
pi

. Let u = ∏m
i=1 up/pi

i and v = ∏m
i=1 v1/pi

i . Then

‖Mα
�f ‖L p,∞(u) � C

m∏
i=1

‖ f i‖L pi (Mαpi/m(ui))
,

and

‖Mα
�f v‖L p � C

m∏
i=1

∥∥ f i Mαpi/m(vi)
∥∥

L pi ,

where Mαpi/m denotes the fractional maximal operator defined in (1.6) with α replaced by αpi/m.

The proof of the first inequality above follows from the fact that the weights u and wi = Mαpi/m(ui) satisfy the condition
on the weights in [22, Theorem 2.7]. On the other hand, the weights v and wi = Mαpi/m(vi)

1/pi satisfy the hypotheses in
[22, Theorem 2.8] and thus we obtain the second inequality.

Before state the next result, we introduce the following class of Young functions related to the boundedness of the
sublinear maximal MB between Lebesgue spaces. For more information see [25].
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Definition 2.14. Let 1 < r < ∞. A Young function B is said to satisfy the Br condition if for some constant c > 0,
∞∫

c

B(t)

tr

dt

t
< ∞.

Theorem 2.15. Let 0 � α < nm, 1 < pi < ∞, i = 1, . . . ,m, 1
p = ∑m

i=1
1
pi

. Let q be a real number such that 1/m < p � q < ∞. Let B,

Ai , and Ci , i = 1, . . . ,m, be Young functions such that A−1
i (t)C−1

i (t) � B−1(t), t > 0 and Ci is doubling and satisfies the B pi condition
for every i = 1, . . . ,m. Let (ν, �w) be weights that satisfy

sup
Q

|Q |α/n+1/q−1/p
(

1

|Q |
∫
Q

νq
)1/q m∏

i=1

∥∥w−1
i

∥∥
Ai ,Q < ∞. (2.16)

Then

‖Mα,B �f ν‖Lq � C
m∏

i=1

‖ f i wi‖L pi

holds for every �f ∈ L p1(w p1
1 ) × · · · × L pm (w pm

m ).

Remark 2.17. The linear case of theorem above was proved in [8], and in [9] for the case α = 0 and p = q. For B(t) = t ,
Theorem 2.15 gives two weighted results proved in [22] for the multilinear fractional maximal operator Mα . The first one
[22, Theorem 2.8] is obtained by considering Ai = trp′

i and Ci = t(rp′
i)

′
for some r > 1 and the second [22, Theorem 2.10] is

obtained by taking Ai = t p′
i (1 + log+ t)p′

i−1+δ and Ci = t pi

(1+log+ t)1+δ(pi−1) for δ > 0.

As a consequence of Theorem 2.15 and the pointwise estimate given in (2.7), we obtain the following result about
the boundedness of Mα,Bk for multilinear weights in the A�S class defined above, where �S = (s1, . . . , sm) and Bk(t) =
t(1 + log+ t)k . In the proof, we also use the pointwise estimate given in (2.7).

Corollary 2.18. Let 0 � α < nm and let pi , p, qi , q, si and s be defined as in Lemma 2.1. For each k ∈ N let Bk(t) = t(1 + log+ t)k. Let
�wq = (wq1

1 , . . . , wqm
m ). If �f = ( f1, . . . , fm) and �S = (s1, . . . , sm) then the inequality∥∥∥∥∥Mα,Bk

�f
(

m∏
i=1

wi

)∥∥∥∥∥
Lq

� C
m∏

i=1

‖ f i wi‖L pi

holds for every �f if and only if �wq satisfies the A�S condition.

2.3. Weighted weak type inequalities for the multilinear fractional integral operator

In this section we obtain weighted estimates for the multilinear fractional maximal and integral operator.
The following definition of the multilinear fractional integral operator was considered by several authors (see, for exam-

ple, [15,20,16,22]).

Definition 2.19. Let 0 < α < nm and �f = ( f1, . . . , fm). The multilinear fractional integral is defined by

Iα
�f (x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

(|x − y1| + · · · + |x − ym|)mn−α
d�y,

where the integral in convergent if �f ∈ S × · · · × S .

Particularly, we study weighted weak type inequalities for the multilinear fractional maximal and integral operator. For
the first one we obtain the following result.

Theorem 2.20. Let 0 � α < nm, �w = (w1, . . . , wm) and u = ∏m
i=1 w1/m

i . Then

u
({

x ∈ R
n: Mα

�f (x) > λm})m � C
m∏

i=1

∫
Rn

| f i|
λ

Mα/m wi,

where Mα/m denotes the fractional maximal operator of order α/m defined in (1.6).
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The case α = 0 of the theorem above was proved in [21]. For m = 1 this is a well known result proved in [11].
In [7] the authors considered the problem of finding weights W such that

w
({

x ∈ R
n:

∣∣Iα f (x)
∣∣ > λ

})
� C

λ

∫
Rn

∣∣ f (x)
∣∣W (x)dx

for a given weight w , for every λ > 0 and for suitable functions f . Particularly, they obtain that the weight W =
Mα(ML(log L)δ w), δ > 0, works. Motivated from the linear case, we study an analogous problem in the multilinear context
and we obtain the following result.

Theorem 2.21. Let 0 < α < nm, δ > 0 and u = ∏m
i=1 w1/m

i . Then

‖Iα
�f ‖L1/m,∞(u) � C

m∏
i=1

∫
Rn

| f i|Mα/m ML(log L)δ (wi) (2.22)

and, in particular

‖Iα
�f ‖L1/m,∞(u) � C

m∏
i=1

∫
Rn

| f i|Mα/m M2(wi).

The result above is an immediate consequence of the next theorem.

Theorem 2.23. Let 0 < α < nm, δ > 0 and let u be a weight. Then

‖Iα
�f ‖L1/m,∞(u) � C‖Mα

�f ‖L1/m,∞(ML(log L)δ
(u)).

Then, the proof of (2.22) follows by observing that

ML(log L)δ (u) = ML(log L)δ

(
m∏

i=1

w1/m
i

)
�

m∏
i=1

ML(log L)δ (wi)
1/m,

which is a consequence of the generalized Hölder’s inequality in Orlicz spaces. Then, an application of Theorem 2.20 gives
the desired result.

Recall that a weight v satisfies the RH∞ condition if there exists a positive constant C such that the inequality

sup
x∈Q

v(x) � C

|Q |
∫
Q

v

holds for every Q ⊂ R
n .

Lemma 2.24. Let 0 < α < nm. Let v be a weight satisfying the RH∞ condition. Then, there exists a positive constant C such that, if
u = ∏m

i=1 w1/m
i and �f = ( f1, . . . , fm),∫

Rn

Iα
�f (x)u(x)v(x)dx � C

∫
Rn

Mα
�f (x)Mu(x)v(x)dx,

where M is the Hardy–Littlewood maximal function defined in (1.5).

The following theorem establish some kind of control of the multilinear fractional integral operator by the multilinear
fractional maximal in L p , 0 < p � 1.

Theorem 2.25. Let 0 < p � 1 and let u be a weight. Then∫
Rn

∣∣Iα
�f (x)

∣∣p
u(x)dx � C

∫
Rn

∣∣Mα
�f (x)

∣∣p
Mu(x)dx.

In the linear case, Lemma 2.24 and Theorem 2.25 were proved in [7].
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2.4. Pointwise estimates between Iα and Mα

A pointwise estimate relating both, the multilinear fractional and maximal operators is given in the next result.

Theorem 2.26 (Welland’s type inequality). Let 0 < α < nm and 0 < ε < min{α,nm − α}. Then, if �f = ( f1, . . . , fm) where fi ’s are
bounded functions with compact support, then∣∣Iα

�f (x)
∣∣ � C

(
Mα+ε

�f (x)Mα−ε
�f (x)

)1/2
,

where C depends only on n, m, α and ε .

The inequality in the theorem above was proved in [10] for multilinear fractional integral and maximal operators with
m homogeneous kernels in order to obtain weighted boundedness results for the first operator. For a sake of completeness
we include the proof in Section 4.

In [22], the author proves the following result.

Theorem 2.27. (See [22, Theorem 2.2].) Suppose that 0 < α < nm, 1 < p1, . . . , pm < ∞ and q is a number that satisfies 1/m < p �
q < ∞. Suppose that one of the two following conditions holds.

(i) q > 1 and (ν, �w) are weights that satisfy

sup
Q

|Q |α/n+1/q−1/p
(

1

|Q |
∫
Q

νqr
)1/(qr) m∏

i=1

(
1

|Q |
∫
Q

w
−p′

i r
i

)1/(p′
i r)

< ∞

for some r > 1.
(ii) q � 1 and (ν, �w) are weights that satisfy

sup
Q

|Q |α/n+1/q−1/p
(

1

|Q |
∫
Q

νq
)1/q m∏

i=1

(
1

|Q |
∫
Q

w
−p′

i r
i

)1/(p′
i r)

< ∞

for some r > 1.

Then the inequality

‖Iα
�f ν‖q � C

m∏
i=1

‖ f i wi‖pi

holds for every �f ∈ L p1(w p1
1 ) × · · · × L pm (w pm

m ).

A direct proof of theorem above for the case q > 1 can be given combining Theorem 2.26 with Theorem 2.15 applied to
the case Ai(t) = trp′

i , and proceeding as in the corresponding result in [12, Theorem 6.5].

3. Auxiliary results

In this section we give some technical lemmas used in the proof of the main results in this paper.

Lemma 3.1. Let B be a Young function and 0 < γ < 1. Then ψ(t) = B(tγ )1/γ is a Young function.

Proof. It is enough to prove that there exists a nontrivial, nonnegative and increasing function g such that ψ(t) = ∫ t
0 g(s)ds.

This function g is given by g(s) = b(sγ )(
B(sγ )

sγ )(1/γ )−1, where b is a nonnegative and increasing function such that B(t) =∫ t
0 b(s)ds. The function g has the desired properties. �

The next lemma establishes the relation between the dyadic a nondyadic multilinear fractional maximal operators. Let
Mk

α,B be defined as Mα,B but over cubes with side length less or equal than 2k , Q k = Q (0,2k+2), τt g(x) = g(x − t) and

�τt(�f ) = (τt f1, . . . , τt fm).

Lemma 3.2. For each k, �f and every x ∈ R
n and 0 < q < ∞, there exists a constant C , depending only on n, m, α and q such that

Mk
α,B(�f )(x)q � C

|Q k|
∫
Q k

(
τ−t ◦ Md

α,B ◦ �τt
)
(�f )(x)q dt. (3.3)
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For the linear case and α = 0 this result was proved by Fefferman and Stein in [11] and can be also found in [13]. In the
multilinear context and α = 0 the result above is given in [21], and for B(t) = t and α > 0, in [22]. The proof of Lemma 3.2
is an easy modification of any of the mentioned results and we omit it.

In order to prove Theorem 2.23 we need the following results. The first of them was proved in [22] for the multilinear
integral operator. For the linear case, a proof can be found in [26].

Lemma 3.4. (See [22].) Let g and fi , i = 1, . . . ,m, be positive functions with compact support and let u be a weight. Then there exists
a family of dyadic cubes {Q k, j} and a family of pairwise disjoint subsets {Ek, j}, Ek, j ⊂ Q k, j with

|Q k, j| � C |Ek, j|
for some positive constant C and for every k, j and such that∫

Rn

Iα
�f (x)u(x)g(x)dx � C

∑
k, j

|Q k, j|α/n
(

1

|Q k, j|
∫

Q k, j

u(x)g(x)dx

)(
m∏

i=1

1

|3Q k, j|
∫

3Q k, j

f i(yi)dyi

)
|Ek, j|. (3.5)

The following lemma was proved in [6] and gives examples of weights in the RH∞ class.

Lemma 3.6. Let g be any function such that Mg is finite a.e. Then (Mg)−α ∈ RH∞ , α > 0.

4. Proofs

Proof of Lemma 2.1. The proof is based in some ideas from Lemma 2.8 in [14]. Let gi be a function such that gsi
i wqi

i = f pi
i .

Then f i/wi = gsi/pi
i wqi/pi−1

i = gsi/pi+α/(nm)−1
i g1−α/(nm)

i w(qi/pi−1)

i . Let r = nm/(nm−α) and r′ = nm/α. If s and si are defined
as in the hypotheses of the theorem we get(

qi

pi
− 1

)
r′ =

(
qi

pi
− 1

)
nm

α
= qi (4.1)

and (
si

pi
+ α

nm
− 1

)
r′ =

(
si

pi
+ α

nm
− 1

)
nm

α

=
((

1 − α

nm

)
qi

pi
+ α

nm
− 1

)
nm

α

=
(

1 − α

nm

)(
qi

pi
− 1

)
nm

α

=
(

1 − α

nm

)
qi

= si . (4.2)

Let B and ψ be the functions in the hypotheses of the theorem. From Lemma 3.1 ψ is a Young function. Let φ(t) =
B(t)nm/(nm−α) . Then, by the properties of the function B we obtain

φ−1(t) tα/nm � C B−1(t).

By applying Hölder’s inequality, and using (4.1) and (4.2) we obtain that

‖ f i/wi‖B,Q = ∥∥gsi/pi
i wqi/pi−1

i

∥∥
B,Q

= ∥∥g1−α/nm
i gsi/pi+α/nm−1

i wqi/pi−1
i

∥∥
B,Q

�
∥∥g1−α/nm

i

∥∥
φ,Q

∥∥gsi/pi+α/nm−1
i wqi/pi−1

i

∥∥
nm/α,Q

= 1

|Q |α/nm
‖gi‖1−α/nm

ψ,Q ‖ f i‖αpi/nm
pi

,

where we have used the fact that ‖g1−α/nm
i ‖φ,Q = ‖gi‖1−α/nm

ψ,Q . Then

|Q |α/n
m∏

i=1

‖ f i/wi‖B,Q �
m∏

i=1

‖gi‖1−α/(nm)
ψ,Q

m∏
i=1

‖ f i‖αpi/(nm)
pi

� Mψ �g(x)1−α/(nm)

(
m∏

i=1

‖ f i‖pi
pi

)α/(nm)

,

and inequality (2.3) follows by taking supremum over the cubes Q in R
n . �
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Proof of Theorem 2.8. We use the same notation as in the proof of Lemma 2.1. Thus, it is enough to prove that

‖Mα
�f w‖Lq,∞(u) � C

m∏
i=1

‖ f i‖pi ,

and then replace f i by f i wi .
From the hypotheses on the weights and raising the quantity in (2.9) to the power 1 − α/(nm) we obtain that

sup
Q

(
1

|Q |
∫
Q

u

)1/s m∏
i=1

(
1

|Q |
∫
Q

w
−p′

i
i

)1/s′i
< ∞

or, equivalently

sup
Q

(
1

|Q |
∫
Q

u

)1/s m∏
i=1

(
1

|Q |
∫
Q

w
qi(1−s′i)
i

)1/s′i
< ∞. (4.3)

By inequality (2.5) and from (4.3) and the weighted weak boundedness result for M proved in [21] we obtain that

‖Mα
�f w‖Lq,∞(u) � C

(
m∏

i=1

‖ f i‖pi
pi

)α/nm

‖M g‖1−α/nm
Ls,∞(u)

� C

(
m∏

i=1

‖ f i‖pi
pi

)α/nm(
m∏

i=1

‖gi‖Lsi (w
qi
i )

)1−α/nm

= C

(
m∏

i=1

‖ f i‖pi
pi

)α/nm(
m∏

i=1

‖ f i‖pi/si
pi

)1−α/nm

= C
m∏

i=1

‖ f i‖pi , (4.4)

where we have used the fact that piα/(nm) + (pi/si)(1 − α/(nm)) = 1. Thus the proof is done. �
Proof of Theorem 2.10. Let ν = ∏m

i=1 wi . As in the proof above, it is enough to show that

‖Mα
�f wν‖q � C

m∏
i=1

‖ f i‖pi ,

but this inequality can be obtained in a similar way to that in (4.4) by replacing ‖M g‖Ls,∞(u) by ‖M g‖Ls(νq) and then using
the weighted strong boundedness result proved in [21]. �
Proof of Theorem 2.15. We first consider the dyadic version Md

α,B of Mα,B defined by

Md
α,B = sup

Q ∈D: x∈Q
|Q |α/n

m∏
i=1

‖ f i‖B,Q ,

where D denotes the set of dyadic cubes in R
n . Let a be a constant satisfying a > 2mn and for each k let

Ωk = {
x ∈ R

n: Md
α,B(�f )(x) > ak}.

It is easy to see that an analogue of the Calderón–Zygmund decomposition in Orlicz spaces holds for Md
α,B and, therefore

there is a family of maximal nonoverlapping dyadic cubes {Q j,k} such that Ωk = ⋃
j Q j,k and

ak < |Q j,k|α/n
m∏

i=1

‖ f i‖B,Q k, j � 2nmak.

Moreover, each Ωk+1 ⊂ Ωk and the sets Ek, j = Q k, j\(Q k, j ∩ Ωk+1) are disjoint and satisfy

|Q k, j| < β|Ek, j| (4.5)

for some β > 1. Then, by the generalized Hölder’s inequality and condition (2.16) we obtain
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∫
Rn

Md
α,B(�f )qνq =

∑
k

∫
Ωk\Ωk+1

Md
α,B(�f )qνq

� aq
∑

k

akqνq(Ωk)

� aq
∑
k, j

akqνq(Q k, j)

� C
∑
k, j

(
|Q k, j|α/n

m∏
i=1

‖ f i‖B,Q k, j

)q

νq(Q k, j)

� C
∑
k, j

(
|Q k, j|α/n

m∏
i=1

‖ f i wi‖Ci ,Q k, j

)q( m∏
i=1

‖w−1
i ‖q

Ai ,Q k, j

)
νq(Q k, j)

� C
∑
k, j

(
m∏

i=1

‖ f i wi‖Ci ,Q k, j

)q

|Q k, j|q/p .

Now, from the fact that p � q and using (4.5), the multilinear Hölder’s inequality and the hypotheses on Ci we obtain that

( ∫
Rn

Md
α,B(�f )q νq

)1/q

� C

(∑
k, j

(
m∏

i=1

‖ f i wi‖Ci ,Q k, j

)p

|Q k, j|
)1/p

� C

(∑
k, j

(
m∏

i=1

‖ f i wi‖Ci ,Q k, j

)p

|Ek, j|
)1/p

� C
m∏

i=1

(∑
k, j

‖ f i wi‖pi
Ci ,Q k, j

|Ek, j|
)1/pi

� C
m∏

i=1

( ∫
Rn

MCi ( f i wi)
pi

)1/pi

�
m∏

i=1

‖ f i wi‖L pi .

To prove the nondyadic case we use Lemma 3.2. Thus, from (3.3) it follows that∥∥Mα,B(�f )ν∥∥
q � sup

t

∥∥τ−t ◦ Md
α,B ◦ �τt(�f )ν

∥∥
q. (4.6)

If the weights (ν, �w) satisfy condition (2.16), then the weights (τt(ν), �τt �w) satisfy the same condition with constant
independent of t . Then, applying the dyadic case, we obtain∥∥(

τ−t ◦ Md
α,B ◦ �τt

)
(�f )ν∥∥

q = ∥∥(
Md

α,B ◦ �τt
)
(�f )τtν

∥∥
q

� C
m∏

i=1

‖τt f iτt wi‖pi

� C
m∏

i=1

‖ f i wi‖pi ,

with C independent of t . Then, from (4.6) we obtain that

∥∥Mα,B(�f )ν∥∥
q � C

m∏
i=1

‖ f i wi‖pi . �

Proof of Corollary 2.18. We begin by proving the case α = 0. If �w p ∈ A �P then we have that w
pi(1−p′

i)

i = w
−p′

i
i ∈ Amp′

i

(see [21]). Then, for each i = 1, . . . ,m there exist si > 1 such that w
−p′

i satisfies a reverse Hölder inequality with exponent si .
i
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Let Ai(t) = tsi p′
i and Ci,k(t) = (t(1 + log+ t)k)(si p′

i)
′
. Then we have that A−1

i (t)C−1
i,k (t) ∼= B−1

k (t) and Ci,k ∈ B pi . Thus, since
�w p ∈ A �P we obtain

(
1

|Q |
∫
Q

(
m∏

i=1

wi

)p)1/p m∏
i=1

∥∥w−1
i

∥∥
Ai ,Q �

(
1

|Q |
∫
Q

(
m∏

i=1

wi

)p)1/p m∏
i=1

(
1

|Q |
∫
Q

w
−si p′

i
i

)1/(si p′
i)

�
(

1

|Q |
∫
Q

(
m∏

i=1

wi

)p)1/p m∏
i=1

(
1

|Q |
∫
Q

w
−p′

i
i

)1/(p′
i)

� C .

Then by Theorem 2.15 applied to the case α = 0 and p = q we obtain that∥∥∥∥∥M Bk (
�f )

(
m∏

i=1

wi

)∥∥∥∥∥
L p

�
m∏

i=1

‖ f i wi‖L pi
.

The other implication is a consequence of the inequality M(�f ) � M Bk (
�f ) and the boundedness results proved in [21]

for the multilinear maximal operator M.
Now we prove the case α > 0. Let us first suppose that �wq ∈ A�S . It is enough to show that the following inequality∥∥∥∥∥Mα,Bk (

�f w)

(
m∏

i=1

wi

)∥∥∥∥∥
Lq

�
m∏

i=1

‖ f i‖L pi
(4.7)

holds for every �f = ( f1, . . . , fm).
In order to prove (4.7) we use inequality (2.7). Let ψk(t) = t(1 + log+ t)knm/(nm−α) . Then, from the case α = 0 we obtain

that ∥∥∥∥∥Mα,Bk (
�f w)

(
m∏

i=1

wi

)∥∥∥∥∥
Lq

� C

∥∥∥∥∥Mψk (�g)1− α
nm

(
m∏

i=1

wi

)∥∥∥∥∥
q

(
m∏

i=1

‖ f i‖
piα
nm

L pi

)

� C

∥∥∥∥∥M
L(log L)

knm
nm−α

(�g)

(
m∏

i=1

wq/s
i

)∥∥∥∥∥
s/q

Ls

(
m∏

i=1

‖ f i‖
piα
nm

L pi

)

� C

∥∥∥∥∥M
L(log L)

[ knm
nm−α ]+1(�g)

(
m∏

i=1

wq/s
i

)∥∥∥∥∥
s/q

Ls

(
m∏

i=1

‖ f i‖
piα
nm

L pi

)

= C

∥∥∥∥∥M B[ knm
nm−α ]+1

(�g)

(
m∏

i=1

wq/s
i

)∥∥∥∥∥
s/q

Ls

(
m∏

i=1

‖ f i‖
piα
nm

L pi

)

� C

(
m∏

i=1

∥∥gi wq/s
i

∥∥s/q
Lsi

)(
m∏

i=1

‖ f i‖
piα
nm

L pi

)
,

where in the last inequality we have used the fact that �wq ∈ A�S . We observe now that ‖gi wq/s
i ‖s/q

Lsi = ‖ f i‖pi/qi
pi

= ‖ f i‖1− αpi
nm

pi

and inequality (4.7) follows immediately.
The other implication is a consequence of the inequality Mα(�f ) � Mα,B(�f ) and the boundedness result proved

in [22]. �
Proof of Theorem 2.20. Let Ωλ = {x ∈ R

n: Mα
�f (x) > λm}. By homogeneity we may assume that λ = 1. Let K be a compact

set contained in Ωλ . Since K is a compact set and using Vitali’s covering lemma we obtain a finite family of disjoint cubes
{Q j} for which

1 < |Q j|α/n
m∏

i=1

1

|Q j|
∫
Q j

| f i|, (4.8)

and K ⊂ U j3Q j . Notice that, by Hölder’s inequality we have that u(Q )
|Q | �

∏m
i=1(

wi(Q )
|Q | )1/m . Then by (4.8) and Hölder’s in-

equality at discrete level we obtain that
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u(K )m � C

(∑
j

u(3Q j)

|3Q j| |Q j|
)m

� C

(∑
j

m∏
i=1

(
1

|3Q j|
∫

3Q j

wi

)1/m

|Q j|1/m
( |Q j|α/(nm)

|Q j|
∫
Q j

| f i|
)1/m

)m

� C

(∑
j

m∏
i=1

( |3Q j|α/(nm)

|3Q j|
∫

3Q j

wi

)1/m( ∫
Q j

| f i|
)1/m

)m

� C

(∑
j

m∏
i=1

( ∫
Q j

| f i| Mα/m wi

)1/m
)m

� C
m∏

i=1

∫
Rn

| f i| Mα/m wi,

and the proof concludes. �
Proof of Theorem 2.23. Let p > 1 to be chosen later. Thus, since L p,∞ and L p′,1 are associate spaces, we have that

‖Iα
�f ‖1/(pm)

L1/m,∞(u)
= ∥∥(Iα

�f )1/(pm)
∥∥

L p,∞(u)
= sup

‖g‖
L p′,1(u)

�1

∫
Rn

(Iα
�f )1/(pm)g u.

By Theorem 2.25 we obtain that∫
Rn

(Iα
�f )1/(pm)g u �

∫
Rn

(Mα
�f )1/(pm)M(gu) =

∫
Rn

(Mα
�f )1/(pm) M(gu)

ML(log L)δ (u)
ML(log L)δ (u),

for δ > 0.
By applying Hölder’s inequality in Lorentz spaces we obtain that∫

Rn

(Iα
�f )1/(pm)g u �

∥∥(Mα
�f )1/(pm)

∥∥
L p,∞(ML(log L)δ

(u))

∥∥∥∥ M(gu)

ML(log L)δ (u)

∥∥∥∥
L p′,1(ML(log L)δ

(u))

.

Now we proceed as in the linear case (see [7]) by taking p = 1 + δ − 2ε with 0 < 2ε < δ which allows us to obtain that∥∥∥∥ M(gu)

ML(log L)δ (u)

∥∥∥∥
L p′,1(M(log L)δ(u))

� C‖g‖L p′,1(u)

and taking supremum over ‖g‖Lp′,1(u)
� 1. �

Proof of Lemma 2.24. From inequality (3.5) with g replaced by v and the RH∞ condition on v we obtain that

∫
Rn

Iα
�f (x)u(x)v(x)dx � C

∑
k, j

|Q k, j|α/n
(

1

|Q k, j|
∫

Q k, j

uv

)(
m∏

i=1

(
1

|3Q k, j|
∫

3Q k, j

f i

))
|Ek, j|

� C
∑
k, j

|Q k, j|α/n
∫

Q k, j

u

(
m∏

i=1

(
1

|3Q k, j|
∫

3Q k, j

f i

))
sup
Q k, j

v

� C
∑
k, j

|Q k, j|α/n
(

1

|Q k, j|
∫

Q k, j

u

)(
m∏

i=1

(
1

|3Q k, j|
∫

3Q k, j

f i

))
v(Q k, j).

Since v ∈ A∞ and by the properties of the sets Ek, j we obtain that

∫
Rn

Iα
�f (x)u(x)v(x)dx � C

∑
k, j

|3Q k, j|α/n
(

1

|Q k, j|
∫

Q

u

)(
m∏

i=1

(
1

|3Q k, j|
∫

3Q

fi

))
v(Ek, j)
k, j k, j
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� C
∑
k, j

∫
Ek, j

Mα
�f (x)Mu(x) v(x)dx

� C

∫
Rn

Mα
�f (x)Mu(x)v(x)dx. �

Proof of Theorem 2.25. We proceed as in the linear case (see [7]). We use the duality for L p spaces for p < 1: if f � 0

‖ f ‖p = inf
{

f u−1:
∥∥u−1

∥∥
p′ = 1

} =
∫

f u−1

for some u � 0 such that ‖u−1‖p′ = 1, with p′ = p
p−1 < 0. This follows from the following reverse Hölder’s inequality, which

is a consequence of the Hölder’s inequality,∫
f g � ‖ f ‖p‖g‖p′ . (4.9)

We choose a nonnegative function g such that ‖g−1‖Lp′
(Mu)

= 1, and such that

‖Mα
�f ‖L p(Mu) =

∫
Mα

�f Mu

g
.

Let δ > 0. By Lebesgue differentiation theorem we get

‖Mα
�f ‖L p(Mu) �

∫
Mα

�f Mu

Mδ(g)
,

where Mδ(g) = M(gδ)1/δ . Then applying Lemmas 2.24 and 3.6 to the weight Mδ(g)−1 and the reverse Hölder’s inequal-
ity (4.9), we obtain that

‖Mα
�f ‖L p(Mu) �

∫
Iα

�f u

Mδ(g)
� ‖Iα

�f ‖L p(u)

∥∥Mδ(g)−1
∥∥

L p′
(u)

,

and everything is reduced to proving∥∥Mδ(g)−1
∥∥

L p′
(u)

�
∥∥g−1

∥∥
L p′

(Mu)
= 1.

Now, the proof follows as in the linear case (see [7]). Since p′ < 0, this is equivalent to prove that∫
Rn

Mδ(g)−p′
(x)u(x)dx � C

∫
g−p′

(x)Mu(x)dx.

By choosing δ such that 0 < δ <
p

1−p , we have that −p′/δ > 1 and the above inequality follows from the classical weighted
Fefferman–Stein norm inequality (see [11]). �
Proof of Theorem 2.26. Let s be a positive number. We split Iα as follows

∣∣Iα
�f (x)

∣∣ �
∫

∑m
i=1 |x−yi |<s

∏m
i=1 | f i(yi)|

(
∑m

i=1 |x − yi|)mn−α
d�y +

∫
∑m

i=1 |x−yi |�s

∏m
i=1 | f i(yi)|

(
∑m

i=1 |x − yi|)mn−α
d�y

= I1 + I2.

Let us first estimate I1. Thus, if Q k is a cube centered at x with side length 2−ks, k ∈ N ∪ {0}, we obtain

I1 =
∞∑

k=0

∫
2−k−1s<

∑m
i=1 |x−yi |�2−ks

∏m
i=1 | f i(yi)|

(
∑m

i=1 |x − yi |)mn−α
d�y

� C
∞∑

k=0

1

(2−ks)mn−α

∫
∑m

i=1 |x−yi |�2−ks

(
m∏

i=1

∣∣ f i(yi)
∣∣)d�y

� C
∞∑

k=0

1

(2−ks)−α

m∏
i=1

1

|Q k|
∫ ∣∣ f i(yi)

∣∣dyi
Q k



654 G. Pradolini / J. Math. Anal. Appl. 367 (2010) 640–656
� C
∞∑

k=0

1

(2−ks)−α

(2−ks)α−ε

(2−ks)α−ε

m∏
i=1

1

|Q k|
∫
Q k

∣∣ f i(yi)
∣∣dyi

� C sε Mα−ε
�f (x).

Now, we proceed to estimate I2. Let Pk be the cube centered at x with side length 2ks. Then we obtain

I2 =
∞∑

k=0

∫
2ks<

∑m
i=1 |x−yi |�2k+1s

∏m
i=1 | f i(yi)|

(
∑m

i=1 |x − yi|)mn−α
d�y

� C
∞∑

k=0

1

(2ks)mn−α

∫
∑m

i=1 |x−yi |�2k+1s

(
m∏

i=1

∣∣ f i(yi)
∣∣)d�y

� C
∞∑

k=0

1

(2ks)−α

m∏
i=1

1

|Pk+1|
∫

Pk+1

∣∣ f i(yi)
∣∣dyi

� C
∞∑

k=0

1

(2ks)−α

(2ks)α+ε

(2ks)α+ε

m∏
i=1

1

|Pk+1|
∫

Pk+1

∣∣ f i(yi)
∣∣dyi

� C
1

sε
Mα+ε

�f (x).

Collecting both estimates we obtain

Iα
�f (x) � C

(
sε Mα−ε

�f (x) + s−ε Mα+ε
�f (x)

)
,

for any s > 0. Then, to complete the proof, we just have to minimize the expression above in the variable s. �
5. Banach function spaces

We introduce now some basic facts about the theory of Banach function spaces. For more information about these spaces
we refer the reader to [1].

Let X be a Banach function space over R
n with respect to the Lebesgue measure. X has an associate Banach function

space X ′ for which the generalized Hölder inequality,∫
Rn

∣∣ f (x)g(x)
∣∣dx � ‖ f ‖X‖g‖X ′ ,

holds. Examples of Banach functions spaces are given by the Lebesgue L p spaces, Lorentz spaces and Orlicz spaces. The
Orlicz spaces are one of the most relevant Banach function spaces, and a brief description was given in Section 1.

Given any measurable function f ∈ X and a cube Q ⊂ R
n , we define the X average of f over Q to be

‖ f ‖X,Q = ∥∥δl(Q )( f χQ )
∥∥

X ,

where δa f (x) = f (ax) for a > 0 and χA denotes the characteristic function of the set A. In particular, when X = Lr , r � 1,
we have that

‖ f ‖X,Q =
(

1

|Q |
∫
Q

∣∣ f (y)
∣∣r

)1/r

,

and if X = LB , the Orlicz space associated to a Young function B , then

‖ f ‖X,Q = ‖ f ‖B,Q .

For a given Banach function space X , we associate the following maximal operator defined for each locally integrable
function f by

M X f (x) = sup
Q �x

‖ f ‖X,Q .

If Y1, . . . , Ym are Banach function spaces, the multilinear version of the maximal function above is given by

M �Y �f (x) = sup
Q �x

m∏
‖ f i‖Yi ,Q .
i=1
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Let 1 < p1, . . . , pm < ∞ and suppose that MYi : L pi → L pi . From the fact that M �Y �f (x) �
∏m

i=1 MY I fi(x) and applying
Hölder’s inequality we obtain that

M �Y : Lp1
(
R

n) × · · · × Lpm
(
R

n) → Lp(
R

n).
We define now the multilinear maximal operator associate to certain function ϕ that generalizes the multilinear frac-

tional maximal operator Mα . We shall assume that the function ϕ : (0,∞) → (0,∞) is essentially nondecreasing, that is,
there exists a positive constant ρ such that, if t � s then ϕ(t) � ρϕ(s). We shall also suppose that limt→∞ ϕ(t)

t = 0. The
linear case of the operator below was study in [27].

Definition 5.1. Let �f = ( f1, . . . , fm). The multilinear maximal operator Mϕ associated to the function ϕ is defined by

Mϕ
�f (x) = sup

Q �x
ϕ

(|Q |) m∏
i=1

1

|Q |
∫
Q

fi .

When m = 1 we simply write Mϕ = Mϕ .

The following result is a generalized version of Theorem 2.15 when B(t) = t . The case m = 1 was proved in [27].

Theorem 5.2. Let 1/m < p � q < ∞, 1 < pi < ∞, i = 1, . . . ,m, 1/p = ∑m
i=1 1/pi . Let ϕ be a function as in Definition 5.1. Let Yi ,

i = 1, . . . ,m, be m Banach function spaces such that MY ′ : L pi → L pi . Suppose that ν, w1, . . . , wm are weights such that, for some
positive constant C and for every cube Q

ϕ
(|Q |)|Q |1/q−1/p

(
1

|Q |
∫
Q

νq
)1/q m∏

i=1

∥∥w−1
i

∥∥
Yi ,Q � C . (5.3)

Then

‖Mϕ
�f ν‖q � C

m∏
i=1

‖ f i wi‖pi (5.4)

holds for every �f ∈ L p1(w p1
1 ) × · · · × L pm (w pm

m ).

When ϕ(t) = tα/n and Yi = L Ai , i = 1, . . . ,m, are the Orlicz spaces associated to the Young functions Ai , then we obtain
Theorem 2.15 for the case B(t) = t .

The proof of Theorem 5.2 follows similar arguments to those in the proof of Theorem 2.15. The main tools used are
an analogue of the Calderón–Zygmund decomposition for Md

ϕ adapted to the essentially nondecreasing function ϕ , the
generalized Hölder’s inequality and the boundedness of MY ′ in the right places.

Corollary 5.5. Let 1/m < p < ∞, 1 < pi < ∞, i = 1, . . . ,m, 1/p = ∑m
i=1 1/pi . Let ϕ be a function as in Definition 5.1. Then

(i) There exists a positive constant C such that, for every �f = ( f1, . . . , fm), and every positive functions ui( ∫
Rn

Mϕ
�f (y)p

(
m∏

i=1

ui(y)1/pi

)p

dy

)1/p

� C
m∏

i=1

( ∫
Rn

∣∣ f i(y)
∣∣pi Mϕp (ui)

)1/pi

.

(ii) If si > p′
i − 1, there exists a positive constant C such that, for every �f = ( f1, . . . , fm), and every positive functions ui( ∫
Rn

Mϕ
�f (y)p dy

(
∏m

i=1 Mϕpsi (usi
i )(y)1/(pi si))p

)1/p

� C
m∏

i=1

( ∫
Rn

∣∣ f i(y)
∣∣pi dy

ui(y)

)1/pi

.

The proof of (i) follows by applying Theorem 5.2 to the weights ν = ∏m
i=1 u1/pi

i , wi = Mϕp (ui)
1/pi and Yi = L p′

i r , 1 <

r < ∞.
To prove (ii) we apply Theorem 5.2 to the weights ν = ∏m

i=1 Mϕpsi (usi
i )(y)1/(pi si) , wi = u−1/pi

i and Yi = L p′
i ri , ri =

(pi − 1)si .
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