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Abstract

We find the group of symmetry transformations generated by interacting fluids in spatially flat Friedmann—Robertson-Walker (FRW) spaceti
which links cosmologies with the same scale facidertity) or with scale factora anda—1 (duality). There exists a duality between contracting
and superaccelerated expanding scenarios associatedphéttitdm) cosmologies. We investigate the action of this symmetry group on self-
interacting minimally (conformally) coupled quintessence afassence cosmologies.
0 2005 Elsevier B.V. All rights reserved.

PACS 98.80.-k; 98.80.Jk

1. Introduction function of the cosmological time, i.ez(t) = a(t) [3—6] and
the duality between expanding and contracting backgrounds
a =1/a[3,5,7,8] In addition, the dual transformation mapping

Symmetry transformations preserving the form of the spa tracting int lerated dina back d
tially flat FRW equations introduce an alternative (:onceptCon racting into superaccelerated expanding backgrounads pro-

of equivalence between different physical problejtis This vides the link between a standard and a phantom cosmology

means that a set of cosmological models are equivalent whé ,9]. A phantom source with_§ufficiently negativg pressure vi-
their dynamical equations are form invariant under the action oplates the weak energy condition but could describe adequately

that group. It suggests that any of this equivalent COSmologie%urrentobservatlor[élO]. Other characteristics of phantom cos-

can be used to describe the present accelerated expansion of FH8'°9'95 have been investigated1d].

universe. Hence, it turns out to be interesting to investigate thF Itn tSe.(t:tlo.r:ﬁ we dlevelop thle mterahctmg frellfmet\/vorktgnd 'I._
consequences of this group. ustrate it with simple examples, such as, self-interacting min-

Due to the additivity of the stress-energy tensor a c:osmolog'—maIIy (conformally) coupled quintessence figkdy') and-

ical model with one fluid in flat FRW spacetime can be seerEssence fielgh. In Section3 we present a linear transformations

as a model of two interacting fluid components. For instance‘,’vhICh preserve the form .Of the dynarr_ucal equatlon_s and ap-
ly them to those scalar fields. In Sectidithe conclusion are

a scalar field minimally coupled to gravity has been described

as a stiff fluid interacting with vacuum enerffl]. The stress- ted.
tensor of the tachyon field could be considered as the sum OL.I
two components, one behaving like a pressureless dust and
the other having a negative press{2¢ In this Letter we in-

vestigate and extend these results splitting the source in twi%
components in a manner compatible with two discrete symme-
tries of the Einstein equations in flat FRW spacetimes. ThesgH? = p, (1)

I nteracting framework

The Einstein equations in the flat FRW spacetime with scale
ctora and a perfect fluid read

symmetries are the structural invariance of the scale factor as a
y p+3H(p+ p)=0, (2
where p is the energy densityy the pressure andl = d/a.
E-mail address: chimento@df.uba.gt..P. Chimento). There are two independent Einstein equations for the three
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quantitiesa, p, and p. Usually, the system of equatiorf$), is given by the Klein—Gordon equation
(2) is closed with an equation of stage= p(p). ) 1
We assume thef; splits into two perfect fluid partsliy = ¢ + 3H¢ + éRI// + 4y =0, (10)

TL + T2, with T,k = (o1.2 + p12)uiuk + p1.2gix, whereps 2 hoce fireti ¥
and py » are the energy density and the equilibrium pressure ofVhose firstintegralis

fluids 1 and 2 respectively;’ is the four-velocity. Therefore, 1 . Ho V2 oo b 1
Egs.(1), (2)become S+ HY) + 07 =3, (11)
3H2 = p1 + po 3) whereb is an integration constant. After combining E¢s),
. . ' (8), (11)and integrating, we get the scale factors
p1+ p2+3H (p1+ p2+ p1+ p2) =0. (4)

1/2
Eq. (4) shows the interaction between the fluid components alaci — [i /ﬁ sinh /%,] b>0, (12)
lowing the mutual exchange of energy and momentum. Conse- Vo 3
quently, there will be no local energy—momentum conservation b v Y2
for the fluids separately. To preserve the degree of freedom of. = [ | —— cosh,/ —Otj| b<0. (13)
the original system of equatiof$), (2), we introduce an equa- Vo 3

tion of state for each fluid componepi> = (y1.2 = 1)p12,  Defining the conformal time; = [ dt/a and the new field
where yy2 are the barotropic indexes of fluids 1 and 2, re-, _ y; Eq.(10)becomes(” + 4% x3 = 0, where = d/dy. Its
spectively. As the energy-momentum tensor of the system &general solution can be expressed in terms of the Jacobi func-
a whole is conserved, we assume an effective perfect fluiions. For > 0, the qualitative aspects gf are obtained from
description with equation of state = (y — 1)p, wherey = e first integra(11), which reads’2/2 + Ax* = b. Hence,x

(101 .—i— v2p2)/p 1S Fhe effective _barotroplc. index. Fpr th!s oscillates between-bY/4 < y < b¥4 and ¢ = x /a becomes
effective perfect fluid the dynamical equations are identicaly gecreasing oscillating function with a vanishing final limit at

to(1), (2 . _ the minimum of the potential. On the other hand, the bouncing
The scalar field with energy density and pressure solution(13) avoids the initial singularity.
1., 1., For thek-essence fielgh with LagrangianC = —U () F (x),
Py =5¢"+ Vo), Py =5¢" - Vi(e), (5)  whereU(g) is the potential F(x) is a function of the kinetic

rmx = g'*p;gr andg; = d¢/dx', we associate the energy—
omentum tensor of a perfect fluid. The energy density and
pressure of thé field are

can be represented in terms of two interacting fluids namel{zﬁ
p1 = $?/2 and p2 = V(¢), with equations of state; = p1
and p» = —p2, meaning that, = 2 (stiff matter) andy> =0
(vacuum energy). Due to the interactions between the two fluid p, = U(¢)[F — 2x Fy], Po=—-U(p)F, (14)

components the energy—momentum tensor conservation of the . . . .
system as a whole is equivalent to the Klein—Gordon equationWIth F"_ = dF/dx. They can be split as two interacting per-
fect fluids such thaj, = U(¢)F(x) and p2» = —2U (¢)x Fy

. . dv with equations of statg; = —p1 and po = 0. They play the
¢+3H¢+ do 0, (6) role of (vacuum energy) y1 = 0 and @ust) y» = 1. The energy—
momentum tensor conservation of the effective fluid iskhe

while y = 2p1/py is the effective barotropic index. field equation

The conformal scalar fiel¢h driven by the potential

/

. ) U
V) =ap*+ Vo, Vo>0, (1) [P+ 20Fulg+3HF g+ o [ F = 2¢Fy] =0, (15)

is an interesting model, because this potential has receiveshile y = p2/p, is the effective barotropic index.

much attention in the literature in connection with the early

inflationary epoct12]. This simplified model leads to a final 3. Form invariance symmetry

accelerated expansion phase retaining the essentials of mini-

mally coupled approaches. The energy density and the pressure Here, we will find a symmetry transformation that preserves

of the conformal scalar field the form of the system of equatio(3) and (4) To begin with,
1 . we observe that the total energy density is form invariant under
py = 5(1/, + HY)? + Ay + Vo, (8)  the linear transformations
1. s A4 (/51) ( o 1—/3)(01)
— H — — V s 9 _ = ) (16)
Py 6(1ﬂ+ V) +31ﬂ 0 9) 5 1—a B 0

can be represented as the sum of two interacting fluids namethat is, p = p1 + p2 = p1 + p2 = p for any « and 8. These
p1= (F + Hy)?%/2+ ry* andpa = Vo, with equations of state  form invariant transformations constitute a group and they in-
p1 = p1/3 andp, = —p, representingrédiation) y1 = 4/3and  duce the transformationrd = H or H = —H in Eq. (3). The
(vacuum energy) y2 = 0, while y = 4p1/3py is the effective  former leads to theédentity a = a and the latter to theluality
barotropic index. The energy conservation of the effective fluidz = 1/a. The duality between contracting and superaccelerated
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expanding f > 0 andH > 0) phases gives rise tophantom

11

Requiring that these equations be identities, we Haug) =

transformation[5]. Assuming equations of state for the inter- U(p) and F = 1 — mx?/3. Then, the first equatio(22) gives

acting fluids, p1.2 = (y1.2 — D p1.2 in the initial configuration
and p12 = (y1.2 — Dp12 in the final configuration, then the
conservation equatiof@) remains form invariant when

=N g 2m Ad=H, (17)
Y2—VY1 Yy2—n1

qq=R2FN g TR p_ (18)
V2—"1 Y2—nN

The dualityH — —H, acting on Eq(2) induces the transfor-

mationp + p — —(p + p) and the associated matter violates
the weak energy condition. Such model could explain current

observations and it is referred to as phantom cosmoj@8}

When bothp and p diverge the dual transformation trades a fi- a =

nal big crunch by a final big rip. However, whenis finite but

the transformation rule for the kinetic terms
32 = 2mU 52/

3
For constant potential§ = U = V > 0, the first integrals of
Egs. (6) and (15)can be written ag? = 2b/a® and ¢p%/3 =
2ba® where the integration constaritsaandb transform as$ =

2mVpb/3 (see Eq(23)). After solving Eq.(1), we express the
duality as

(23)

[2mb -173 1 -
a= |::l: =3 sinh 3V0t] —a=—-, b>0, (24)
a
2mb -1/3 1 _
[‘/_T cos 3V0z} —a=-, b<O. (25)
a

p divergeq14], the dual transformation interchanges this finite The phantom sector of the duality comprises the branch
time singularity by other of the same kind. These sudden futur@f Eq. (24) for 0 — k and the branctf25) for k — Q. The
singularities can occur even when the matter oheys0 and ~ former represents a cosmology with a future big rip singularity
p+3p>0. atr =0 and a real (imaginary) according tan > 0 (m < 0).
Below, we show the action of the form invariance symmetryThe latter describes a non-singular cosmology vtk 0 and
group on the three fieldg, ¢ and ¢. The associated effec- animaginaryp.
tive perfect fluid description will be used splitting each fluid as
two interacting ones with indexds1, y2), i.e., Q(¢) = (2, 0),
C(y¥) = (4/3,0) and k(¢) = (0,1). Also, we allow real or
imaginary fields.

C — Q: We are going to find the relationships between
a conformal scalar field model driven by the potenfigland
a scalar field one under an identical transformation. Using
Egs.(5), (8), (9), (16) and (17)we obtain

k — Q: Let us suppose that we are interested in seeking, 1 . 2
the set ofk-essence models having the same scale factor tha§¢>2 = :—%(d/ + H1/1)2 + §A1/f4, (26)
the quintessence ones. To this end we use £&)s(14), (16) 1. 1
and (17) Then, we get Vg) =5+ Hy)? + 5“/’4 +Vo, (27)

the potentialV (¢) = Vo + ¢?/4 and the scale facto(42), (13)
Besides, the potentidl can be reconstructed as a function of
We are demanding that the last be an identity, i.e., it does nat and

impose any relation between the fields¢ and their deriva-

tives. Under this requirement the second equa(li®) trans- 4 _ |ntanh /Et V= Vo[cosﬁcp — gsinhz 4 (28)
37 3 '

correspond to the solutior§$2) and

lates into conditions
4Vy/3t . 2 ..
o/3t V=V C0521¢+§S|n21¢ ,

1,
§¢2 =¢?UF,,  V=U[F — Fuxl. (19)

Vig)=Ul(g), F—Fx=1 (20)

The first equation indicates that both potentials are the samg= —2i arctare
when written as functions of cosmological time, but different

when written as functions of the individual fields. Integrating h lution<13 (29)
the second equatiq@0)we getF = 1+ mx with m an arbitrary to tFe SCO ut|oni(h é It f HofL6E). (18)ai
integration constant. Inserting into the first equatiorf19) we orC — 0 the dual transformatio(1.6), (18)gives
find the following relationship between the fieldsandy [15 1. 1. 2

=/2m / VU dg. 21 5 . 5
¢ v () V(@)= £+ H)? + 0t + Vo, (31)

It shows theidentity between quintessence aridessence . _ ‘o
models in flat FRW. For instance, the inverse square potenggriszreigu?ﬁgr;ﬁslfﬁ]c:etor:l]ifpgég]m)E_ :‘21_1)5;{14(’3%3
tial U o« ¢~2 correspond to an exponential potentitl o parng 9 as.

12 _opcd i b ;
¢~~Z5/Vm06 [16] andU o ¢ to V o g2/ +D). \év)?p?:g/sthe_dil;clzityvgtsh b= —2b/3. After solving Eq(1), we
Fork — Q the dual transformatio(i6), (18)gives

1, af > af=(a7)"", b<0, (32)
50°=—¢?UF.  V=UIF -3Fal. @), -l b0 (33)
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The phantom sector of the duality comprises thé branch of
Eq. (32) for C — Q and the brancki33) for 0 — C. The for-

cosmologies withidentical geometry or to theluality between
expanding and contracting backgrounds. The duality between

mer represents a cosmology with a future big rip singularity atontracting and superaccelerated expanding scenarios connects

t =0, wheregp andV are obtained fronf28), (29)making the

substitutiong — i¢. The latter describes a non-singular cos-

mology with H > 0.

C — k: From Eqs(8), (9), (14), and (16), (17we have
UF:—%(lﬁ—i—HW)z— %mp‘wvo, (34)
—2UxFy, = %(1/} + Hy)? + gw“. (35)

These equations lead @ = Vy andF = 1+ mx?2, which along
with Egs. (1) and (15)give the general solutiofl?), (13)
Form < 0, the singular solutioii12) of this purely kinematics

standard anghantom cosmologies.

The identical transformation relates two different cosmolo-
gies, both with the same scale factor, so the choice of a par-
ticular model to describe the evolution of the universe is not
unigue because there are a variety of ways of combining two
interacting fluids with the same geometry. We highlight that in
spatially flat FRW cosmologies, the dual transformation gives
rise to linear relations between the components of the Einstein
tensor, which read?d = G3, G1 = 2GJ — G1 and so on for the
remaining spatial components. Consequently, the conservation
laws preserve their form, i.eV; G, = V;G: = 0. This analysis
reveals that no matter how accurately future experiments may
come to determine the cosmological observables there will al-

k-essence model interpolates between radiation and de S'ttWays be a fundamental uncertainty about which of the possible

phases. Form > 0 the non-singular solutioil3) bounces at
t=0.
For C — k the dual transformationd6), (18)gives

UF = g(¢+Hw)2+ %w4+vo, (36)
rE =2+ HY) — g hy 37)

with U = Vp and F = 1 + mx?/7. In this case the solution of

Eq. (1) becomes Eqg12), (13)and the duality is expressed by

Egs.(32), (33)

C — C: We complete this section investigating the dual-

models leading to the observed set of values has been chosen
by Nature. This uncertainty could be avoided by considering
other kind of frameworks as superstring field theory, M-theory
or some specific interaction between the parts in which the total
fluid was divided. For instance, in Rd1L7] it was shown that

a particular interaction between both fluids reduces the linear
transformationg16) to the identity restricting the form invari-
ance symmetry.

We have shown thdt-essence cosmologies generated by a
linear kinetic function and quintessence ones share the same
scale factor.

The conformally coupled quintessence model we have stud-

ity between conformally coupled quintessences. Duality amonégd is equivalent to a purely kinematiésessence model gen-

0 — Q ork — k were studied in Ref§3—15]. From, Eqs(8),
(9), (16) and (18)we have

1 - - - - 1 .
SWHHY?+0y% =S + Hy)? =y, (38)
Vo=Vo+ (¥ + HY)? + 2ry*. (39)
Comparing Egs(11) and (38)we getb/a* = —b/a* = ba*,
sob=b =0 andVy = Vp by Eg. (38). Eqg. (1) turns into
3H? =V and a = e with Hy = +./Vo/3. Integrating
Eq. (39) we obtain the conformal fields
Y= J = Ho
V=21 eHor]’ Vo 2i[l— e Hory
along with their transformation rule
- =2
V= = [w -
v =2\

(40)

Hy
J——ZJ (41)

erated by a quadratic kinetic term. It describes a universe that
begins to evolve as if it weneadiation dominated at early times
and ends in a constamhcuum energy dominated phase.

For Q — k, C — Q andC — k, we have found a phantom
symmetry between contracting universes ending in a big crunch
and expanding universes ending in a big rip. In these examples,
the transformation rule for the scalar fields we have obtained is
different than Wick rotation. In the cage— C, the dual trans-
formation is so restrictive allowing only the duality between
expanding and contracting de Sitter geometries and inducing a
linear relation among the conformal scalar fields.

Finally, the linear transformations we have found can be
extended to the case of fluids with non-constant barotropic in-
dexes and we think this is an interesting subject to be investi-
gated in the future.
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