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Abstract

We find the group of symmetry transformations generated by interacting fluids in spatially flat Friedmann–Robertson–Walker (FRW) s
which links cosmologies with the same scale factor (identity) or with scale factorsa anda−1 (duality). There exists a duality between contracti
and superaccelerated expanding scenarios associated with (phantom) cosmologies. We investigate the action of this symmetry group on
interacting minimally (conformally) coupled quintessence andk-essence cosmologies.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Symmetry transformations preserving the form of the s
tially flat FRW equations introduce an alternative conc
of equivalence between different physical problems[1]. This
means that a set of cosmological models are equivalent w
their dynamical equations are form invariant under the actio
that group. It suggests that any of this equivalent cosmolo
can be used to describe the present accelerated expansion
universe. Hence, it turns out to be interesting to investigate
consequences of this group.

Due to the additivity of the stress-energy tensor a cosmo
ical model with one fluid in flat FRW spacetime can be s
as a model of two interacting fluid components. For instan
a scalar field minimally coupled to gravity has been descri
as a stiff fluid interacting with vacuum energy[1]. The stress-
tensor of the tachyon field could be considered as the su
two components, one behaving like a pressureless dust
the other having a negative pressure[2]. In this Letter we in-
vestigate and extend these results splitting the source in
components in a manner compatible with two discrete sym
tries of the Einstein equations in flat FRW spacetimes. Th
symmetries are the structural invariance of the scale factor
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function of the cosmological time, i.e.,ā(t) = a(t) [3–6] and
the duality between expanding and contracting backgrou
ā = 1/a [3,5,7,8]. In addition, the dual transformation mappi
contracting into superaccelerated expanding backgrounds
vides the link between a standard and a phantom cosmo
[5,9]. A phantom source with sufficiently negative pressure
olates the weak energy condition but could describe adequ
current observations[10]. Other characteristics of phantom co
mologies have been investigated in[11].

In Section2 we develop the interacting framework and
lustrate it with simple examples, such as, self-interacting m
imally (conformally) coupled quintessence fieldφ(ψ) and k-
essence fieldϕ. In Section3 we present a linear transformatio
which preserve the form of the dynamical equations and
ply them to those scalar fields. In Section4 the conclusion are
stated.

2. Interacting framework

The Einstein equations in the flat FRW spacetime with s
factora and a perfect fluid read

(1)3H 2 = ρ,

(2)ρ̇ + 3H(ρ + p) = 0,

whereρ is the energy density,p the pressure andH = ȧ/a.
There are two independent Einstein equations for the t
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quantitiesa, p, andρ. Usually, the system of equations(1),
(2) is closed with an equation of statep = p(ρ).

We assume thatTik splits into two perfect fluid parts,Tik =
T 1

ik + T 2
ik , with T

1,2
ik = (ρ1,2 + p1,2)uiuk + p1,2gik , whereρ1,2

andp1,2 are the energy density and the equilibrium pressur
fluids 1 and 2 respectively,ui is the four-velocity. Therefore
Eqs.(1), (2)become

(3)3H 2 = ρ1 + ρ2,

(4)ρ̇1 + ρ̇2 + 3H(ρ1 + ρ2 + p1 + p2) = 0.

Eq. (4) shows the interaction between the fluid components
lowing the mutual exchange of energy and momentum. Co
quently, there will be no local energy–momentum conserva
for the fluids separately. To preserve the degree of freedo
the original system of equations(1), (2), we introduce an equa
tion of state for each fluid componentp1,2 = (γ1,2 − 1)ρ1,2,
where γ1,2 are the barotropic indexes of fluids 1 and 2,
spectively. As the energy–momentum tensor of the system
a whole is conserved, we assume an effective perfect
description with equation of statep = (γ − 1)ρ, whereγ =
(γ1ρ1 + γ2ρ2)/ρ is the effective barotropic index. For th
effective perfect fluid the dynamical equations are ident
to (1), (2).

The scalar fieldφ with energy density and pressure

(5)ρφ = 1

2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ),

can be represented in terms of two interacting fluids nam
ρ1 = φ̇2/2 andρ2 = V (φ), with equations of statep1 = ρ1
andp2 = −ρ2, meaning thatγ1 = 2 (stiff matter) andγ2 = 0
(vacuum energy). Due to the interactions between the two flu
components the energy–momentum tensor conservation o
system as a whole is equivalent to the Klein–Gordon equat

(6)φ̈ + 3Hφ̇ + dV

dφ
= 0,

while γ = 2ρ1/ρφ is the effective barotropic index.
The conformal scalar fieldψ driven by the potential

(7)V(ψ) = λψ4 + V0, V0 > 0,

is an interesting model, because this potential has rece
much attention in the literature in connection with the ea
inflationary epoch[12]. This simplified model leads to a fina
accelerated expansion phase retaining the essentials of
mally coupled approaches. The energy density and the pre
of the conformal scalar field

(8)ρψ = 1

2
(ψ̇ + Hψ)2 + λψ4 + V0,

(9)pψ = 1

6
(ψ̇ + Hψ)2 + λ

3
ψ4 − V0,

can be represented as the sum of two interacting fluids na
ρ1 = (ψ̇ +Hψ)2/2+λψ4 andρ2 = V0, with equations of state
p1 = ρ1/3 andp2 = −ρ2 representing (radiation) γ1 = 4/3 and
(vacuum energy) γ2 = 0, while γ = 4ρ1/3ρψ is the effective
barotropic index. The energy conservation of the effective fl
f
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is given by the Klein–Gordon equation

(10)ψ̈ + 3Hψ̇ + 1

6
Rψ + 4λψ3 = 0,

whose first integral is

(11)
1

2
(ψ̇ + Hψ)2 + λψ4 = b

a4
,

whereb is an integration constant. After combining Eqs.(1),
(8), (11)and integrating, we get the scale factors

(12)a±
c =

[
±

√
b

V0
sinh

√
4V0

3
t

]1/2

b > 0,

(13)ac =
[√

− b

V0
cosh

√
4V0

3
t

]1/2

b < 0.

Defining the conformal timeη = ∫
dt/a and the new field

χ = ψa, Eq.(10)becomesχ ′′ +4λχ3 = 0, where′ ≡ d/dη. Its
general solution can be expressed in terms of the Jacobi
tions. Forλ > 0, the qualitative aspects ofψ are obtained from
the first integral(11), which readsχ ′2/2+ λχ4 = b. Hence,χ
oscillates between−b1/4 � χ � b1/4 and ψ = χ/a becomes
a decreasing oscillating function with a vanishing final limit
the minimum of the potential. On the other hand, the bounc
solution(13)avoids the initial singularity.

For thek-essence fieldϕ with LagrangianL= −U(ϕ)F (x),
whereU(ϕ) is the potential,F(x) is a function of the kinetic
term x = gikϕiϕk andϕi = ∂ϕ/∂xi , we associate the energy
momentum tensor of a perfect fluid. The energy density
pressure of thek field are

(14)ρϕ = U(ϕ)[F − 2xFx], pϕ = −U(ϕ)F,

with Fx = dF/dx. They can be split as two interacting pe
fect fluids such thatρ1 = U(ϕ)F (x) and ρ2 = −2U(ϕ)xFx

with equations of statep1 = −ρ1 andp2 = 0. They play the
role of (vacuum energy) γ1 = 0 and (dust) γ2 = 1. The energy–
momentum tensor conservation of the effective fluid is thek-
field equation

(15)[Fx + 2xFxx]ϕ̈ + 3HFxϕ̇ + U ′

2U
[F − 2xFx] = 0,

while γ = ρ2/ρϕ is the effective barotropic index.

3. Form invariance symmetry

Here, we will find a symmetry transformation that preser
the form of the system of equations(3) and (4). To begin with,
we observe that the total energy density is form invariant un
the linear transformations

(16)

(
ρ̄1

ρ̄2

)
=

(
α 1− β

1− α β

)(
ρ1

ρ2

)
,

that is, ρ̄ = ρ̄1 + ρ̄2 = ρ1 + ρ2 = ρ for any α and β. These
form invariant transformations constitute a group and they
duce the transformations̄H = H or H̄ = −H in Eq. (3). The
former leads to theidentity ā = a and the latter to theduality
ā = 1/a. The duality between contracting and superacceler
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expanding (H > 0 andḢ > 0) phases gives rise to aphantom
transformation[5]. Assuming equations of state for the inte
acting fluids,p1,2 = (γ1,2 − 1)ρ1,2 in the initial configuration
and p̄1,2 = (γ̄1,2 − 1)ρ̄1,2 in the final configuration, then th
conservation equation(4) remains form invariant when

(17)αi = γ̄2 − γ1

γ̄2 − γ̄1
, βi = γ2 − γ̄1

γ̄2 − γ̄1
, H̄ = H,

(18)αd = γ̄2 + γ1

γ̄2 − γ̄1
, βd = −γ2 + γ̄1

γ̄2 − γ̄1
, H̄ = −H.

The dualityH → −H , acting on Eq.(2) induces the transfor
mationρ + p → −(ρ + p) and the associated matter violat
the weak energy condition. Such model could explain cur
observations and it is referred to as phantom cosmology[13].
When bothρ andp diverge the dual transformation trades a
nal big crunch by a final big rip. However, whenρ is finite but
p diverges[14], the dual transformation interchanges this fin
time singularity by other of the same kind. These sudden fu
singularities can occur even when the matter obeysρ > 0 and
ρ + 3p > 0.

Below, we show the action of the form invariance symme
group on the three fieldsφ, ψ and ϕ. The associated effec
tive perfect fluid description will be used splitting each fluid
two interacting ones with indexes(γ1, γ2), i.e.,Q(φ) ≡ (2,0),
C(ψ) ≡ (4/3,0) and k(ϕ) ≡ (0,1). Also, we allow real or
imaginary fields.

k → Q: Let us suppose that we are interested in see
the set ofk-essence models having the same scale factor
the quintessence ones. To this end we use Eqs.(5), (14), (16)
and (17). Then, we get

(19)
1

2
φ̇2 = ϕ̇2UFx, V = U [F − Fxx].

We are demanding that the last be an identity, i.e., it does
impose any relation between the fieldsφ, ϕ and their deriva-
tives. Under this requirement the second equation(19) trans-
lates into conditions

(20)V (φ) = U(ϕ), F − Fxx = 1.

The first equation indicates that both potentials are the s
when written as functions of cosmological time, but differe
when written as functions of the individual fields. Integrati
the second equation(20)we getF = 1+mx with m an arbitrary
integration constant. InsertingF into the first equation(19) we
find the following relationship between the fieldsφ andϕ [15]

(21)φ = √
2m

∫ √
U dϕ.

It shows the identity between quintessence andk-essence
models in flat FRW. For instance, the inverse square po
tial U ∝ ϕ−2 correspond to an exponential potentialV ∝
e−√

2φ/
√

mU0 [16] andU ∝ ϕ2n to V ∝ φ2n/(n+1).
For k → Q the dual transformation(16), (18)gives

(22)
1

2
φ̇2 = −ϕ̇2UFx, V = U [F − 3Fxx].
t

e

g
at

t

e

-

Requiring that these equations be identities, we haveV (φ) =
U(ϕ) andF = 1 − mx1/3. Then, the first equation(22) gives
the transformation rule for the kinetic terms

(23)φ̇2 = 2mU

3
ϕ̇2/3.

For constant potentialsV = U = V0 > 0, the first integrals o
Eqs. (6) and (15)can be written aṡφ2 = 2b̄/ā6 and ϕ̇2/3 =
2ba6 where the integration constantsb̄ andb transform as̄b =
2mV0b/3 (see Eq.(23)). After solving Eq.(1), we express the
duality as

(24)a =
[
±

√
2mb

3
sinh

√
3V0t

]−1/3

→ ā = 1

a
, b̄ > 0,

(25)a =
[√

−2mb

3
cosh

√
3V0t

]−1/3

→ ā = 1

a
, b̄ < 0.

The phantom sector of the duality comprises the(−) branch
of Eq. (24) for Q → k and the branch(25) for k → Q. The
former represents a cosmology with a future big rip singula
at t = 0 and a real (imaginary)ϕ according tom > 0 (m < 0).

The latter describes a non-singular cosmology with˙̄H > 0 and
an imaginaryφ.

C → Q: We are going to find the relationships betwe
a conformal scalar field model driven by the potential(7) and
a scalar field one under an identical transformation. Us
Eqs.(5), (8), (9), (16) and (17), we obtain

(26)
1

2
φ̇2 = 1

3
(ψ̇ + Hψ)2 + 2

3
λψ4,

(27)V (φ) = 1

6
(ψ̇ + Hψ)2 + 1

3
λψ4 + V0,

the potentialV (φ) = V0 + φ̇2/4 and the scale factors(12), (13).
Besides, the potentialV can be reconstructed as a function
φ and

(28)φ = ln tanh

√
V0

3
t, V = V0

[
cosh2 φ − 2

3
sinh2 φ

]
,

correspond to the solutions(12)and

(29)

φ = −2i arctane
√

4V0/3t , V = V0

[
cos2 iφ + 2

3
sin2 iφ

]
,

to the solutions(13).
ForC → Q the dual transformation(16), (18)gives

(30)
1

2
φ̇2 = −1

3
(ψ̇ + Hψ)2 − 2

3
λψ4,

(31)V (φ) = 5

6
(ψ̇ + Hψ)2 + 5

3
λψ4 + V0.

These equations lead to the potentialV (φ) = V0 − 5φ̇2/4, so
comparing the first integral of Eq.(6) with Eqs.(11) and (30),
we haveφ̇2 = 2b̄ā4 with b̄ = −2b/3. After solving Eq.(1), we
express the duality as

(32)a±
c → ā±

c = (
a±
c

)−1
, b̄ < 0,

(33)ac → āc = (ac)
−1, b̄ > 0.
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The phantom sector of the duality comprises the(−) branch of
Eq. (32) for C → Q and the branch(33) for Q → C. The for-
mer represents a cosmology with a future big rip singularit
t = 0, whereφ andV are obtained from(28), (29)making the
substitutionφ → iφ. The latter describes a non-singular c
mology withḢ > 0.

C → k: From Eqs.(8), (9), (14), and (16), (17), we have

(34)UF = −1

6
(ψ̇ + Hψ)2 − 1

3
λψ4 + V0,

(35)−2UxFx = 2

3
(ψ̇ + Hψ)2 + 4

3
λψ4.

These equations lead toU = V0 andF = 1+mx2, which along
with Eqs. (1) and (15)give the general solution(12), (13).
For m < 0, the singular solution(12) of this purely kinematics
k-essence model interpolates between radiation and de
phases. Form > 0 the non-singular solution(13) bounces a
t = 0.

ForC → k the dual transformations(16), (18)gives

(36)UF = 7

6
(ψ̇ + Hψ)2 + 7

3
λψ4 + V0,

(37)−2UxFx = −2

3
(ψ̇ + Hψ)2 − 4

3
λψ4,

with U = V0 andF = 1 + mx2/7. In this case the solution o
Eq.(1) becomes Eqs.(12), (13)and the duality is expressed b
Eqs.(32), (33).

C → C: We complete this section investigating the du
ity between conformally coupled quintessences. Duality am
Q → Q or k → k were studied in Refs.[3–15]. From, Eqs.(8),
(9), (16) and (18), we have

(38)
1

2
( ˙̄ψ + H̄ ψ̄)2 + λ̄ψ̄4 = −1

2
(ψ̇ + Hψ)2 − λψ4,

(39)V̄0 = V0 + (ψ̇ + Hψ)2 + 2λψ4.

Comparing Eqs.(11) and (38)we get b̄/ā4 = −b/a4 = b̄a4,
so b̄ = b = 0 and V̄0 = V0 by Eq. (38). Eq. (1) turns into
3H 2 = V0 and a = eH0t , with H0 = ±√

V0/3. Integrating
Eq.(39)we obtain the conformal fields

(40)ψ = H0√−2λ[1− eH0t ] , ψ̄ = − H0√
−2λ̄[1− e−H0t ]

,

along with their transformation rule

(41)ψ̄ =
√−2λ√

−2λ̄

[
ψ − H0√−2λ

]
.

So, the duality induces a linear transformation group acting
ψ and there is no phantom sector becauseḢ = 0.

4. Conclusions

We have found a symmetry group generated by the addit
of the stress-energy tensor and shown that the different fo
of summing two interacting fluid components induces two d
crete symmetries in the Einstein equations. They correspo
t

er

g

n

y
s

-
to

cosmologies withidentical geometry or to theduality between
expanding and contracting backgrounds. The duality betw
contracting and superaccelerated expanding scenarios con
standard andphantom cosmologies.

The identical transformation relates two different cosmo
gies, both with the same scale factor, so the choice of a
ticular model to describe the evolution of the universe is
unique because there are a variety of ways of combining
interacting fluids with the same geometry. We highlight tha
spatially flat FRW cosmologies, the dual transformation gi
rise to linear relations between the components of the Eins
tensor, which read̄G0

0 = G0
0, Ḡ1

1 = 2G0
0 − G1

1 and so on for the
remaining spatial components. Consequently, the conserv
laws preserve their form, i.e.,̄∇iḠ

i
k = ∇iG

i
k = 0. This analysis

reveals that no matter how accurately future experiments
come to determine the cosmological observables there wi
ways be a fundamental uncertainty about which of the poss
models leading to the observed set of values has been ch
by Nature. This uncertainty could be avoided by conside
other kind of frameworks as superstring field theory, M-the
or some specific interaction between the parts in which the
fluid was divided. For instance, in Ref.[17] it was shown tha
a particular interaction between both fluids reduces the lin
transformations(16) to the identity restricting the form invar
ance symmetry.

We have shown thatk-essence cosmologies generated b
linear kinetic function and quintessence ones share the s
scale factor.

The conformally coupled quintessence model we have s
ied is equivalent to a purely kinematicsk-essence model gen
erated by a quadratic kinetic term. It describes a universe
begins to evolve as if it wereradiation dominated at early time
and ends in a constantvacuum energy dominated phase.

For Q → k, C → Q andC → k, we have found a phantom
symmetry between contracting universes ending in a big cru
and expanding universes ending in a big rip. In these exam
the transformation rule for the scalar fields we have obtaine
different than Wick rotation. In the caseC → C, the dual trans-
formation is so restrictive allowing only the duality betwe
expanding and contracting de Sitter geometries and induc
linear relation among the conformal scalar fields.

Finally, the linear transformations we have found can
extended to the case of fluids with non-constant barotropic
dexes and we think this is an interesting subject to be inv
gated in the future.
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