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The effect of non-adiabatic transitions on the F(2P) + CHD3(ν1)→DF + CHD2 and F(2P) + CHD3(ν1)
→ HF + CD3 reactions is investigated. The dynamics of the nuclei was simulated using trajectory
surface hopping and a vibronically and spin-orbit coupled diabatic potential energy matrix. To facilitate
the calculations, the fewest switching algorithm of Tully was adapted to the use of a complex diabatic
potential energy matrix. For reactions of CHD3 with ground state fluorine atoms, F(2P3/2), the ratio
between the previously computed adiabatic cross sections and the non-adiabatic ones was found to
range from 1.4 to 2.1. The actual ratio depends on the translational energy and the initial vibrational
state of CHD3. The total reactivity of CHD3(ν1 = 1) was found to be always larger than that of
CHD3(ν1 = 0) mainly because of the increase in the cross sections for the HF + CD3 channel. Thus,
the inclusion of non-adiabatic transitions in the theoretical treatment cannot resolve the existing
disagreement between theory and experiment. Cross sections for the reaction of CHD3 with spin-
orbit excited fluorine atoms, F(2P1/2), were found to be significantly smaller than the ones for reaction
with F(2P3/2). Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984593]

I. INTRODUCTION

Reactions of methane with different atoms are bench-
mark examples of polyatomic reactive processes which have
been extensively studied (see, e.g., Refs. 1–18 for prominent
examples). Among the different reactions, the ones involving
methane or its isotopomers and fluorine serve as examples of
reactive processes with an early transition state and a very
low barrier. They have been thoroughly investigated in recent
years, both experimentally1–3,19–35 and theoretically.15,16,36–63

In particular, the F + CHD3 → DF + CHD2/HF + CD3 sys-
tem has attracted a lot of attention because of the counter-
intuitive findings of the cross-beam experiments of Liu and
co-workers.3 They noticed that the excitation of the C–H
stretching vibration, ν1, suppresses the total reactivity and
favors the DF + CHD2 channel over the HF + CD3 channel.
The effect is dramatic at low energies, 1.0 and 3.6 kcal/mol,
where the reactivity of CHD3(ν1 = 1) was reported to be 10
times smaller than that of CHD3(ν1 = 0). Later on Yang et al.
reported that the effect is moderate at 9.0 kcal/mol with just
26% of reduction in total reactivity for the DF + CHD2

channel33 and 33.4% for HF + CD3.34

Existing theoretical studies cannot explain the counter-
intuitive experimental results. Quasi-classical trajectory
(QCT) calculations47,48 based on a potential energy surface
(PES) developed by Czakó, Shepler, Braams, and Bowman
(CSBB-PES)15 found that excitation of the C–H stretching
vibration diminishes the yield of HF + CD3 in favor of DF
+ CHD2 at very low collisional energies. However, the total

a)Electronic mail: juliana@unq.edu.ar
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reactivity was observed to increase upon excitation. Further
QCT calculations60 and reduced dimensionality (RD) quan-
tum mechanical computations16 performed on a more accurate
PES, the Palma, Westermann, Eisfeld and Manthe (PWEM)-
PES,58–60 that explicitly accounted for spin-orbit (SO) and
vibronic coupling could not confirm the findings of Czakó et
al. Contradicting Liu’s experiments, these calculations found
that the excitation of the ν1 vibration increases the production
of HF + CD3 in comparison with the ground state reaction.
The consistency between the results obtained with Reduced
dimensionality-Quantum mechanics (RD-QM) and QCT cal-
culations strongly suggests that differences between these the-
oretical predictions and the experimental results of Liu and
co-workers are neither caused by using classical mechanics
nor by fixing some degrees of freedom of the reactive system.

Considering reactions of fluorine and chlorine atoms with
closed shell molecules, there are always six low-lying elec-
tronic states in the entrance channel. Four of these states
are degenerate asymptotically and correlate with the 2P3/2

level of the halogen atom. The other two electronic states
are degenerate to each other and asymptotically correlate to
the spin-orbit excited 2P1/2 level. The effect of vibronic and
SO coupling on reactivity was investigated in detail for the
reactions of halogens with hydrogen molecules.64–69 Non-
adiabatic transitions were found to play an important role
in F + H2 collisions.67,68 Moreover, Born-Oppenheimer for-
bidden processes were found to be dominating at very low
translational energies.69

In contrast to the detailed studies available for the tri-
atomic systems, the influence of non-adiabatic transitions on
reactions between halogen atoms and methane has not been
adequately investigated yet. To the best of our knowledge, the
only theoretical study on the subject was performed by Clary
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and co-workers, who employed a two dimensional quantum
mechanical model to investigate the Cl + CH4 system.70 The
present work studies the F + CHD3→ DF + CHD2/HF + CD3

reactions using a quasi-classical trajectory surface hopping
(SH) approach. The calculations employ a set of vibroni-
cally and spin-orbit coupled diabatic PESs58,59 to describe the
dynamics in the entrance channel of the reaction and switch
to a single adiabatic PES, the CSBB-PES, on the products
side.60 The surface hopping approach used in the calcula-
tions is based on the fewest switching algorithm proposed by
Tully,71 adjusted to take into account the fact that a complex
diabatic potential energy matrix is employed instead of the set
of adiabatic PESs.

The aim of the present work is twofold. First, the question
of how non-adiabatic transitions affect the reaction process in
general should be answered. The effect of non-adiabatic tran-
sitions on reactive cross sections is studied in detail and the
validity of the adiabatic approximation is tested. The reactivity
of fluorine atoms in the electronic ground state, 2P3/2 is com-
pared with the reactivity of spin-orbit excited fluorine atoms
in the 2P1/2 state. Second, we address the question whether the
disagreement between theory and experiment concerning the
mode selective chemistry in F + CHD3 → DF + CHD2/HF
+ CD3 may be caused by the neglect of non-adiabatic effects
in the previous theoretical studies.

The rest of the article is organized as follows. Section II
describes the procedure implemented to run quasi-classical
trajectories with surface hopping using a vibronically and SO
coupled diabatic potential energy matrix. Information about
the PESs employed in this work is presented in Sec. III.
Section IV provides the numerical details required to repro-
duce the QCT calculations. The results of the calculations are
presented and discussed in Sec. V. Section VI closes the article
by summarizing the main conclusions.

II. TRAJECTORY SURFACE HOPPING

The dynamical calculations presented here are based on a
Hamiltonian in a diabatic representation,

Ĥ = T̂R + Vd(R). (1)

Here R denotes the nuclear coordinates, T̂R the kinetic energy
operator of the nuclei, and Vd(R) the diabatic potential energy
matrix. The elements of Vd(R) are given by

Vd
nm(R) =

〈
ψd

n
��Ĥelec

��ψd
m

〉
, (2)

where the brackets indicate integration with respect to the
electronic coordinates, Ĥelec is the electronic Hamiltonian,
and the ψd

n are diabatic electronic wavefunctions. In con-
trast to the adiabatic electronic wavefunctions ψa

k , the diabatic
electronic wavefunctions only weakly depend on the nuclear
coordinates R.

Mixed quantum-classical calculations employing Tully’s
fewest switches algorithm71 require the simultaneous propa-
gation of a wavefunctionΨ describing the state of the electrons
and a classical trajectory describing the motion of the nuclei.
The electronic wavefunction can alternatively be represented
in a diabatic electronic basis,

Ψ =
∑

n

cd
nψ

d
n , (3)

or an adiabatic one

Ψ =
∑

k

ca
kψ

a
k . (4)

Diabatic and adiabatic representations are related by a unitary
transformation matrix U, with Unk = 〈ψ

d
n |ψ

a
k 〉, so that

ψa
k =

∑
n

Unkψ
d
n (5)

and
cd

n =
∑

k

Unkca
k , ca

k =
∑

n

U∗nkcd
n . (6)

If the Hamiltonian in diabatic representation is known, the
transformation matrix and the adiabatic potential energy sur-
faces Va

k (R) can easily be obtained by diagonalizing the
diabatic potential energy matrix Vd(R),

Vd
nm(R) =

∑
k

Unk(R)Va
k (R)U∗mk(R) . (7)

It should be noted that the transformation matrix depends on
the position of the nuclei.

In Tully’s fewest switches algorithm,71 the propagation of
the classical trajectories is governed by the adiabatic PES of
the currently populated adiabatic electronic state. Employing
a diabatic representation of the electronic wavefunction, the
time evolution of cd

n associated with a trajectory R(t) is given
by

i~ċd
n =

∑
m

Vd
nm(R(t)) cd

m(t). (8)

Furthermore, the algorithm requires evaluating the probabil-
ity of jumps from the current adiabatic state to the others.
The probability of a jump depends on the time-derivative of
the adiabatic populations |ca

k |
2. The adiabatic coefficients ca

k
can be obtained from the diabatic coefficients cd

n employing
Eq. (6). Adapting Tully’s original derivation to the present
case, the probability of a jump within a small time interval ∆t
is evaluated as follows. The change in the population of state
k, ∆|ca

k |
2, observed during a time interval ∆t is given by

∆|ca
k |

2 = 2Re(ca∗
k ċa

k )∆t. (9)

Using Eq. (6), the time derivative can be obtained as

ċa
k =

∑
j

U̇∗jkcd
j + U∗jk ċd

j . (10)

Expressing the time derivatives of the diabatic coefficients via
the time derivate of the adiabatic ones, one finds

ċa
k =

∑
j

U̇∗jkcd
j +

1
i~

∑
j,l

U∗jkVd
jl cd

l

=
∑
j,m

U̇∗jkUjmca
m +

1
i~

∑
j,l,m

U∗jkVd
jl Ulmca

m

=
∑
j,m

U̇∗jkUjmca
m +

1
i~

Va
k ca

k . (11)

The last step in the above rearrangement employed Eq. (7)
and the fact that the transformation matrix is unitary. Inserting
Eq. (11) into Eq. (9) and replacing ∆U∗jk = U̇∗jk∆t, we obtain

∆|ca
k |

2 =
∑

m

2Re *.
,
ca

mca∗
k

∑
j

∆U∗jkUjm
+/
-

. (12)
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Since for unitary U,

Re *.
,

∑
j

∆U∗jkUjm
+/
-
= −Re *.

,

∑
j

∆U∗jmUjk
+/
-

, (13)

the above equation can be cast into the form

∆|ca
k |

2 =
∑
m,k

bkm, (14)

where

bkm = 2Re *.
,
ca

mca∗
k

∑
j

∆U∗jkUjm
+/
-

(15)

and
bkm = −bmk . (16)

According to the definition of Eq. (15), bkm measures the
change observed in the population of the adiabatic state k in
the interval ∆t because of transitions from state m. A positive
value of bkm indicates net population transference from state
m to state k. It should be noted that bkm defined by Eq. (15) is
related but is not exactly the same as bkm of Eq. (14) of Ref. 71,
since the later measures a rate of population change instead of
the net change occurred in the interval ∆t.

The fewest switching algorithm proposes to minimize
the number of jumps between electronic states while main-
taining the correct statistical distribution of state populations
when a swarm of trajectories is considered. To achieve this,
each trajectory is propagated along a single adiabatic PES
until a sudden jump of electronic state occurs. To fulfill with
the requirement of a minimum amount of jumps, a transition
from current state m to an alternative state k during the inter-
val ∆t is not allowed for bkm < 0, while it is allowed with
probability

pkm = bkm/|c
a
m |

2, (17)

for bkm > 0.
Jumps between adiabatic PESs are associated with sud-

den changes of momentum in the trajectory. In the original
algorithm, only real electronic wavefunctions were consid-
ered and the momentum change ∆p induced by the tran-
sition was assumed to lie along the non-adiabatic coupling
vector

da
km = 〈ψ

a
k |∇Rψ

a
m〉 =

∑
n

U∗nk∇RUnm. (18)

In the present case, however, the adiabatic wave functions and
therefore also the coupling vectors are complex and further
considerations are required. The momentum jump approx-
imation can be analyzed in terms of the mixed quantum-
classical Liouville theory of Kapral and Ciccotti.72 Employing
the stochastic interpretation of Ref. 73, which propagates a
electronic density matrix ρ along with each trajectory, the
transitions between adiabatic electronic states are described as
two step processes: ρkk → ρkm (or ρmk)→ ρmm. Each of these
transitions causes a change in the classical momenta. In the
limit of small momentum changes, the resulting total momen-
tum change associated with the transition from the adiabatic
electronic state m to state k is given by

∆pkm = Skm + S∗km, (19)

where

Skm =
(Ek − Em)
2(da

km · v)
da

km (20)

and v = Ṙ is the velocity vector of the trajectory. Thus, the
momentum change is given by the real vector

∆pkm =
(Ek − Em)

|da
km · v|

2
Re

[(
da∗

km · v
)

da
km

]
. (21)

It has to be noted that Eq. (21) is accurate only in the limit of
|∆pkm | � |p|. Thus, ∆pkm given by Eq. (21) is only employed
to determine the direction of the momentum change.

The magnitude of the change is determined by requiring
that the energy of the trajectory before and after the jump
is the same. To this end, the momentum vector before the
jump, p, is decomposed into a vector parallel to the direction
of the momentum change, p‖ , and a vector perpendicular to
that direction, p⊥,

p = p‖ + p⊥. (22)

Upon electronic transition from state m to state k, p‖ is scaled
by a factor λ so that the new momentum reads

p(λ) = λ · p‖ + p⊥. (23)

The value of λ is chosen so that the change in the kinetic energy
of the nuclei, T (p(λ)) − T (p), compensates the change in the
potential energy due to the electronic jump,

T (p(λ)) − T (p) = −(Va
k (R) − Va

m(R)). (24)

The expansion of Eq. (24) produces a quadratic equation for
λ. If it has no real solutions, the transition is forbidden and the
propagation of the nuclei movements is continued on the orig-
inal surface. Otherwise the transition is allowed and the nuclei
movements are propagated on the new surface. In the later
case, p‖ is scaled with the value of λ closest to 1.0 since this is
in agreement with the small momentum change approximation
invoked to obtain ∆pkm [Eq. (19)].

III. POTENTIAL ENERGY SURFACES
AND COUPLINGS

In the entrance channel of the F(2P) + CHD3 reaction,
all six electronic states correlating to the 2P state of the flu-
orine atom are relevant for the system’s dynamics. The six
electronic states give rise to three vibronically and spin-orbit
coupled different PESs, called SO1, SO2, and SO3 in the fol-
lowing. The SO1 and SO2 PESs asymptotically correlate to
the 2P 3/ 2 level of fluorine, while the SO3 PES correlates to
the spin-orbit excited 2P1/ 2 level. When the system approaches
the transition state of the reaction, the energies of the SO2 and
SO3 PESs rise significantly compared to the lowest adiabatic
PES, SO1. Once the transition state is passed, only the low-
est adiabatic PES is relevant for the system’s dynamics. The
present work employs the vibronically and spin-orbit coupled
diabatic potential energy matrix V(diab)

entr introduced in Refs. 58
and 59 to describe to the entrance channel. The product chan-
nel is described using the CSBB-PES,15 VCSBB, developed by
Czakó et al.15

In Ref. 60, a procedure to smoothly switch between the
two domains was introduced. The procedure connects the low-
est adiabatic PES V (SO1)

entr obtained by diagonalizating V(diab)
PWEM
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with the VCSBB potential using a switching function S(r)
which depends on the value r of the smallest of the four H–F
distances,

VPWEM = (1 − S(r)) · VCSBB + S(r) · V (SO1)
entr . (25)

The switching occurs between rlow = 1.5 Å and rup = 1.7 Å and
uses the function

S(r) = 10.0 y(r)3 − 15.0 y(r)4 + 6.0 y(r)5,

y(r) =
r − rlow

rup − rlow
.

(26)

The procedure had to be extended in the present work
since a complete diabatic potential energy matrix and not only
the lowest adiabatic PES is required in the switching region.
To construct a diabatic potential energy matrix V(diab)

entr in the
switching region, first the diabatic-adiabatic transformation
matrix Uentr is calculated by diagonalizing V(diab)

entr ,

V(diab)
entr = U entrV

(adiab)
entr U†entr. (27)

Here V(adiab)
entr is a diagonal matrix with the three adiabatic

PESs V (SO1)
entr , V (SO2)

entr , and V (SO3)
entr as diagonal elements. A new

adiabatic potential energy matrix V(adiab)
PWEM, which shows a

lowest adiabatic PESs smoothly switching between VPWEM

and VCSBB, can be constructed by simply replacing V (SO1)
entr

by VPWEM in V(adiab)
entr . The corresponding diabatic potential

energy matrix V(diab)
PWEM is obtained by backtransforming from

the adiabatic to the diabatic representation using Uentr,

V(diab)
PWEM = U entrV

(adiab)
PWEMU†entr. (28)

Using the diabatic potential energy matrices V(diab)
entr and

V(diab)
PWEM, our trajectory calculations can include surface hop-

ping in the entrance channel and in the transition state region.
In the product channel, no surface hopping takes place and
the trajectories are propagated employing VCSBB. Since the
electronically excited SO2 and SO3 PESs show increasingly
large energies when passing the switching region from the
reactant side towards the product side, the trajectories hop to
the SO1 PES before reaching the end of the switching region
and entering the product channel. This assumption was con-
firmed by an analysis of the computed trajectories, as detailed
below.

IV. COMPUTATIONAL DETAILS

Trajectories were employed to simulate F(2P3/2)
+ CHD3(ν1 = 0, 1) and F(2P1/2) + CHD3(ν1 = 0, 1) collisions,
with either 1.0, 3.6, and 9.0 kcal/mol of collisional energy (EC).
To simulate F(2P3/2) + CHD3(ν1 = 0, 1), one of the adiabatic
coefficients ca

1 to ca
4 was initially set to 1.0 while the others

were set to 0.0. The number of trajectories starting with ca
1

= 1.0 or ca
2 = 1.0 was the same as the number starting from ca

3
= 1.0 or ca

4 = 1.0. Therefore, the populations of the SO1 and
SO2 adiabatic states were exactly the same at the beginning.
We run 70 000 trajectories for EC = 1.0 kcal/mol and 40 000
for EC = 3.6 or 9.0 kcal/mol, for each initial vibrational state of
CHD3. To simulate F(2P1/2) + CHD3(ν1 = 0, 1), either ca

5 or ca
6

was initially set to 1.0 while the other coefficients were set to

0.0. In this case, we run 40 000 trajectories for each collisional
energy and each vibrational state of CHD3.

The initial separation between the carbon and fluorine
atoms was set to 18.90a0. The impact parameter was cho-
sen at random from a uniform distribution function between
0 and 8.0a0. Therefore, trajectories were weighted according
to the selected value of the impact parameter.74 The initial
orientation of CHD3 was defined by randomly choosing the
Euler angles that determine the orientation of its body fixed
frame. Standard normal-mode sampling was employed to ini-
tialize the vibrational state of CHD3, either to the ground state
or to the ν1 = 1 excited state. The standard iterative velocity
adjustment was employed to set the initial angular momentum
of CHD3 to zero.74 Trajectories were ended when the col-
lisional fragments were moving away from each other and
the distance between them was larger than 15.0a0. At the
end of each trajectory, the distances between atoms were ana-
lyzed to determine if any of the D atoms or the H atom had
reacted.

The propagation employed the scheme presented in
Sec. II. The probability of jumps between adiabatic surfaces
was evaluated every 2.0 fs. Derivatives of the potential, as well
as derivatives of the elements of the U matrix, were numer-
ically computed. The equations of motion were integrated
employing a variable order, variable step Adams method. The
conservation of the total energy along the trajectories was
checked and typical errors were found to be smaller than
0.04%. However, we occasionally detected trajectories with
larger errors. Therefore, we set an upper limit of 0.6% for
the maximum acceptable error in the total energy. Any trajec-
tory with an energy error larger than that was discarded from
the subsequent computations. We checked that different upper
limits, in the range of 0.1%–0.9%, produced the same cross
sections within the statistical uncertainty. Also, we sometimes
found trajectories for which the integrator was unable to make
any further progress because the step size required by the algo-
rithm became too small. These trajectories were stopped and
discarded. This problem was never found in calculations per-
formed with a collisional energy of 1.0 kcal/mol and rarely
occurs for 3.6 kcal/mol. However, for 9.0 kcal/mol of colli-
sional energy about 1/600 trajectories presented the problem.
Finally, as stated in Sec. III, trajectories passing the switch-
ing region from the reactant side towards the product side are
expected to hop to the SO1 PES before reaching the end of
that region. This assumption was fulfilled by all the trajec-
tories with EC = 1.0 kcal/mol and 3.6 kcal/mol, as well as
for trajectories with EC = 9.0 kcal/mol initiated with CHD3

in the vibrational ground state. For F(2P3/2) + CHD3(ν1 = 1)
collisions with EC = 9.0 kcal/mol, we found four trajectories
moving into the products’ channel while still being in the SO2
or SO3 PESs. In the case of F(2P1/2) + CHD3(ν1 = 1) colli-
sions with EC = 9.0 kcal/mol, this number raises to twelve. All
these ill-behaved trajectories eventually go back to the reac-
tants channel. These trajectories were not considered in the
calculation of the cross sections.

During the incoming part of the trajectories, the carbon-
fluorine distance and the actual adiabatic state were recorded
every 2.0 fs. These data were used to estimate the electronic
populations as a function of such distance by applying the
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following computation. The range of putative values of the
C–F distance, 2.5a0 to 18.5a0, was divided into 16 bins. For
each trajectory, we determined the number of samples falling
within a given bin. For bins not visited by the trajectory, a occu-
pation probability of zero was assigned to all the electronic
states. For a bin visited N sample times, the occupation proba-
bility of electronic state SOα was computed as NSOα/Nsample,
where NSOα measures the number of times the trajectory was
found in the given bin in state SOα. The resulting occupa-
tion probabilities were finally averaged taking into account all
the trajectories, considering the trajectory weighting resulting
from the different impact parameters.

V. RESULTS AND DISCUSSION

Cross sections σH and σD, for which we considered non-
adiabatic transitions and were computed using the surface
hopping approach described in Sec. II, are presented in Table I.
HereσH andσD refer to the F(2P3/2) + CHD3(ν1 = 0, 1)→HF
+ CD3 and F(2P3/2) + CHD3(ν1 = 0, 1)→ DF + CHD2 reac-
tions, respectively. The valuesσad

H andσad
D previously obtained

in calculations that considered only the lowest adiabatic PES
and neglected non-adiabatic transitions are also shown in the
table to facilitate the comparison. In the following, the cross
sectionsσH andσD will be called non-adiabatic cross sections
while σad

H and σad
D will be called adiabatic cross sections. In

Table II, cross sections for the reaction of spin-orbit excited
fluorine atoms, F(2P1/2) + CHD3(ν1 = 0, 1)→ HF + CD3 and
F(2P1/2) + CHD3(ν1 = 0, 1)→ DF + CHD2, are given.

In Secs. V A–V C we analyze these results from different
points of view. First we discuss the effect of non-adiabatic
transitions on reaction probabilities. Then the present results
are related to the experimental results of Liu and co-workers.
Finally the problem of Zero Point Energy (ZPE) leakage in the
low energy range will be discussed.

A. Effect of non-adiabatic transitions

There are two adiabatic surfaces asymptotically correlat-
ing with F(2P3/2) but only one of them correlates with the

TABLE II. Cross sections in a2
0 for F(2P1/2) + CHD3(ν1 = 0, 1) → DF

+ CHD2 (σD) and F(2P1/2) + CHD3(ν1 = 0, 1)→ HF + CD3 (σH ).

EC = 1.0 kcal/mol

σD σH

CHD3(ν1 = 0) 0.029 ± 0.008 0.016 ± 0.006
CHD3(ν1 = 1) 0.025 ± 0.007 0.010 ± 0.005

EC = 3.6 kcal/mol

σD σH

CHD3(ν1 = 0) 0.826 ± 0.043 0.272 ± 0.024
CHD3(ν1 = 1) 0.746 ± 0.040 0.323 ± 0.026

EC = 9.0 kcal/mol

σD σH

CHD3(ν1 = 0) 3.393 ± 0.094 1.393 ± 0.060
CHD3(ν1 = 1) 3.593 ± 0.098 1.759 ± 0.071

products’ channel. If non-adiabatic transitions are completely
neglected, the non-adiabatic cross section σ, which considers
both PESs, would be half of the size of the adiabatic cross
section σad, which is computed on the reactive PES only.
This straightforward application of the adiabatic approxima-
tion would thus imply thatσad = 2 · σ. Alternatively, one could
assume that transitions between the two degenerate compo-
nents of the electronic state correlating to F(2P3/2) are fast
and that a complete transfer to the reactive adiabatic PES
occurs during the approach of the reactants. Employing this
assumption, adiabatic and non-adiabatic cross sections would
be equal, σad = σ.

The ratios σad
D /σD and σad

H /σH for ν1 = 0 and 1 are dis-
played in Fig. 1, as a function of the collisional energy. One
immediately finds that the assumption of a fast and complete
population transfer to the reactive PES is incorrect. Theσad/σ
ratios are always significantly larger than one. In most cases,
they are closer to two than to one. Thus, a straightforward
application of the adiabatic approximation which completely
ignores non-adiabatic transitions generally seems to be the

TABLE I. Cross sections in a2
0 for F(2P3/2) + CHD3(ν1 = 0, 1) → DF + CHD2 (σD) and F(2P3/2) + CHD3

(ν1 = 0, 1)→ HF + CD3 (σH ). Numbers within parentheses are the values previously obtained considering only
the lowest adiabatic PES.

EC = 1.0 kcal/mol

σD (σad
D ) σH (σad

H ) σD/σH (σad
D /σ

ad
H )

CHD3(ν1 = 0) 0.67 ± 0.03 (1.05 ± 0.06) 0.32 ± 0.02 (0.40 ± 0.04) 2.09 ± 0.22 (2.62 ± 0.41)
CHD3(ν1 = 1) 0.79 ± 0.04 (1.57 ± 0.07) 1.28 ± 0.05 (4.31 ± 0.15) 0.62 ± 0.06 (0.36 ± 0.03)

EC = 3.6 kcal/mol

σD (σad
D ) σH (σad

H ) σD/σH (σad
D /σ

ad
H )

CHD3(ν1 = 0) 7.74 ± 0.15 (14.88 ± 0.20) 3.09 ± 0.10 (5.04 ± 0.12) 2.50 ± 0.13 (2.95 ± 0.11)
CHD3(ν1 = 1) 7.56 ± 0.15 (15.88 ± 0.20) 5.12 ± 0.13 (10.73 ± 0.12) 1.48 ± 0.07 (1.48 ± 0.04)

EC = 9.0 kcal/mol

σD (σad
D ) σH (σad

H ) σD/σH (σad
D /σ

ad
H )

CHD3(ν1 = 0) 14.07 ± 0.20 (22.68 ± 0.34) 5.74 ± 0.13 (8.06 ± 0.21) 2.45 ± 0.09 (2.81 ± 0.12)
CHD3(ν1 = 1) 13.44 ± 0.21 (23.31 ± 0.33) 7.69 ± 0.17 (13.00 ± 0.26) 1.75 ± 0.07 (1.79 ± 0.06)
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FIG. 1. Ratio between cross sections
computed on the lowest adiabatic PES
(σad

H , σad
D ) and cross sections consider-

ing non-adiabatic transitions (σH , σD).

better of the two simple models discussed above. However,
even this model fails qualitatively for F(2P3/2) + CHD3(ν1 = 0)
→ HF + CD3.

While for the two larger collision energies, 3.6 and 9.0
kcal/mol, the ratios σad/σ always take physically reasonable
values, some unreasonable results are found at the lowest
collision energy, 1.0 kcal/mol. The most extreme result is
found for σad

H /σH , where the ratio shows a value between
3.0 and 3.5. As discussed below in more detail, we have found
that QCT trajectories, either adiabatic or non-adiabatic, have
problems with the ZPE leakage. In the low energy range,
the problem is severe and renders the results obtained at
EC = 1.0 kcal/mol unreliable. In the following discussion,
we concentrate on results at 3.6 and 9.0 kcal/mol which are
trustworthy.

Studying Fig. 1 in more detail, one finds that σad
D /σD

and σad
H /σH are both smaller for ν1 = 0 than for ν1 = 1.

This indicates that alternative vibrational states of CHD3

are influenced in a different way by the non-adiabatic tran-
sitions. The difference is larger for the F(2P3/2) + CHD3

→ HF + CD3 reaction than for F(2P3/2) + CHD3 → DF
+ CHD2. The second finding is that σad

D /σD as well as
σad

H /σH are larger for EC = 3.6 kcal/mol than for EC = 9.0
kcal/mol. A smaller ratio of σad/σ indicates an increased
importance of non-adiabatic transitions. We thus find that
non-adiabatic transitions are more relevant at higher collision
energies.

In principle, increased reactivity in comparison with the
expectations of a fully adiabatic process could be explained by
a net transfer of electronic population from the repulsive SO2
state to the reactive SO1 state. Figure 2 shows the averaged
populations of the electronic states for incoming trajectories
as a function of the C–F distance for both F(2P3/2) + CHD3(ν1

= 0) and F(2P3/2) + CHD3(ν1 = 1) collisions. Note that the
sum of the populations at a given distance d(C–F) equals the
probability that an incoming trajectory reaches d(C–F) before

FIG. 2. Populations of the SO adi-
abatic states for incoming F(2P3/2)
+ CHD3(ν1) trajectories as a function
of the C–F distance (see text for details).
Solid lines are for EC = 3.6 kcal/mol and
dashed lines for EC = 9.0 kcal/mol.
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being reflected towards reactants or products (for a detailed
definition see Sec. IV). As expected, in the asymptotic region,
the populations of SO1 and SO2 are the same. However, when
the collisional partners come close together, there is indeed a
net transfer from SO2 to SO1. This process occurs from ≈6
to 3.5 Å, where one can clearly see that what is lost in SO2
appears in SO1. After that, some trajectories are reflected and
some others cross towards the product side. This reduces the
populations of SO1 and SO2, since Fig. 2 only considers the
incoming trajectories. Also, in the strong interaction region,
there is a very small but noticeable transfer towards the upper
state SO3. The gain in the population of SO1, at the expense
of SO2, occurs for both F(2P3/2) + CHD3(ν1 = 0) and F(2P3/2)
+ CHD3(ν1 =1) collisions and is essentially independent of the
collision energy. Besides, the gain is slightly more significant
for collisions involving CHD3(ν1 = 1).

If the reaction probabilities were proportional to the prob-
ability of being on the reactive PES, the results presented in
Fig. 2 would imply that σad

D /σD and σad
H /σH should always

be smaller than 2.0. Moreover, σad/σ should be smaller for
ν1 = 1 than for ν1 = 0. However, from Fig. 1 one observes that
σad/σ is always larger for ν1 = 1 than for ν1 = 0. Thus, the
non-adiabatic transitions affect the reaction process in a com-
plex way. Their impact cannot be understood by only looking
at the probability of being on the reactive PES.

Reactive cross sections were also computed for F(2P1/2)
+ CHD3(ν1 = 0, 1) collisions and were found to be sig-
nificantly smaller than for F(2P3/2) + CHD3(ν1 = 0, 1) (see
Table II). An inspection of the electronic populations for this
process as a function of the C–F distance, similar to the one
presented in Fig. 2, reveals that trajectories initiated on the
SO3 state mostly remain on that surface. Only a small fraction
of them is transferred to the lower states when they reach the
strong interaction region. This leads to the observed reactiv-
ity. It is thus concluded that trajectories initiated at the SO3
state make a rather small contribution to the F(2P) + CHD3(ν1

= 0, 1) → DF + CHD2 and F(2P) + CHD3(ν1 = 0, 1) → HF
+ CD3 reactions.

B. Comparison to experiment

One motivation of the present work was to investigate
whether non-adiabatic transitions, which have been neglected
in all previous theoretical work, could explain the disagree-
ment between theoretical predictions and experimental find-
ings in the F(2P3/2) + CHD3(ν1) cross sections. The present
calculations indicate that non-adiabatic effects do not alter the
σD/σH branching ratio for F(2P3/2) + CHD3(ν1 = 1) and only
slightly decrease σD/σH for F(2P3/2) + CHD3(ν1 = 0) (see
Table I). Thus, regarding the DF + CHD2/HF + CD3 branch-
ing ratio, the present results roughly agree with the previous
QCT calculations which neglected non-adiabatic effects and
disagree with the experimental findings of Liu and co-workers.
In other words, including non-adiabatic transitions in QCT
trajectories does not remedy the disagreement between theo-
retical predictions and experimental findings. The reasons of
this discrepancy remain open.

Considering the comparison between experimental and
theoretical results, a second point has to be mentioned. The

present calculations clearly indicate that the reactive cross
sections calculated on the lowest adiabatic PES significantly
differs from the “true” cross sections which could be obtained
by a calculation properly including non-adiabatic effects. If
only data obtained within the adiabatic approximation are
available, ignoring non-adiabatic transitions and multiply-
ing σad by a correction factor that considers the number of
asymptotically degenerate (reactive and non-reactive) PESs
are found to be a better approximation than taking uncorrected
σad .

C. Effect of ZPE leakage in trajectories at 1.0 kcal/mol

In the course of this investigation we analyzed a huge
number of trajectories, in order to check that the behavior of
the non-adiabatic trajectories was reasonable. This analysis led
us to verify that, at EC = 1.0 kcal/mol, CHD3 loses a signif-
icant fraction of its initial vibrational energy. To perform this
analysis, we considered the non-reactive trajectories. At the
end of each of such trajectories, we first calculated the kinetic
energy of the atoms of CHD3, in a coordinate frame centered
on its center of mass. This accounts for the kinetic energy of
the vibrational and rotational motions, Kvr. Then, the rota-
tional energy of the fragment was computed as Kr = ω

T . I .ω,
where vector ω is the angular velocity of CHD3 in the center-
of-mass frame while I is the instantaneous inertia matrix. The
kinetic energy of the vibrational motion is then obtained as
Kv = Kvr− Kr. Finally the potential energy due to the inter-
nal distortions, V, is evaluated by taking the fluorine atom
far away from CHD3, rendering the vibrational energy of the
fragment as Ev = Kv + V. Since the elements of the inertia
matrix fluctuate with time, the energies of rotation and vibra-
tion do too, although Kvr remains constant. Therefore, in order
to obtain meaningful values, we averaged the instantaneous
Ev over 100 samples taken at intervals of 2.0 fs. Both, adia-
batic and non-adiabatic trajectories were analyzed in the same
way.

Figure 3 shows the probability density for the change in
the vibrational energy of CHD3,∆E(CHD3) = Ev,final−Ev,initial,
for trajectories corresponding to ν1 = 0, at 1.0 kcal/mol and
9.0 kcal/mol. The results for ν1 = 1 are qualitatively similar
to those of ν1 = 0. It is seen that the probability density of
∆E(CHD3) changes significantly with the collisional energy.
At 9.0 kcal/mol the curves are very thin and almost symmetric
around ∆E = 0.0, with the distribution corresponding to non-
adiabatic trajectories being somewhat wider than one of the
adiabatic trajectories. On the other hand, at 1.0 kcal/mol both
curves are rather asymmetric. This is reasonable because pos-
itive values of ∆E(CHD3) cannot be larger than 1.0 kcal/mol.
But the most significant feature is that the two curves present
very long tails at negative values that extend beyond �4.0
kcal/mol. The tail is more pronounced for the non-adiabatic
trajectories than for the adiabatic ones. The fact that the distri-
butions for 1.0 kcal/mol are wider than those of 9.0 kcal/mol
is not surprising. At the higher energy the collisions are direct,
so that the collisional partners hardly have time to interact. On
the other hand, at low collisional energies, they spend some
time in the strong interaction region. Typically, they can remain
between 270 fs and 370 fs in configurations with a C–F dis-
tance smaller than 3.6 Å. This allows the energy flow from the
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FIG. 3. Probability density for the
change in vibrational energy of
CHD3, ∆E(CHD3), upon F(2P3/2)
+ CHD3(ν1 = 0) collisions at 1.0
kcal/mol and 9.0 kcal/mol.

vibrations of CHD3 to the degrees of freedom that describe the
intermolecular motions.

The fact that the curves for the non-adiabatic trajecto-
ries are wider than those of the adiabatic trajectories can be
rationalized with the following argument. Non-adiabatic tran-
sitions to an upper surface are allowed when there is enough
kinetic energy along the transition vector. In collisions with ν1

= 0, there are initially 22.5 kcal/mol in the internal vibrations
of CHD3 while there is 1.0 or 9.0 kcal/mol in the transla-
tional motion. Therefore, transitions to an upper surface are
more likely to be accepted when they take the energy from
the vibrations of CHD3 than from the translational motion.
Clearly this effect is much more marked at 1.0 kcal/mol,
where only a small fraction of the total energy is in the rel-
ative motion. When the trajectory jumps back to the lowest
surface, part of the energy taken from CHD3 is channeled
into the relative motion thus contributing to the ZPE-energy
leakage.

In any case, the most important message from this section
is the following. Both adiabatic and non-adiabatic trajecto-
ries show a significant ZPE-energy leakage at low collisional
energies. In such cases, the vibrational energy lost by CHD3

can even exceed the energy initially put into the translational
motion. If the energy lost by CHD3 along the first half of the
reaction is similar or larger than the energy initially put into
the relative motion, the reactivity observed in QCT trajecto-
ries becomes meaningless. The problem is magnified by the
extremely low barrier to the reaction of the F + CHD3 system,
since small energy leaks can have huge effects on reactivity.
At higher collisional energies, QCT results are more reliable
because the collisions are direct and this leads to much smaller
energy leaks. Besides, the energy flow occurs in both directions
so that its potentially harmful effect is partially compensated.
The good agreement between the results obtained by reduced-
dimensional wave packet dynamics and QCT calculations at
3.6 and 9.0 kcal/mol16 reinforces the idea that quasi-classical
trajectories are trustworthy in the medium and high energy
ranges.

VI. CONCLUSIONS

We have presented the first theoretical evaluation on the
importance of non-adiabatic effects in the F + CHD3 reactive
system. The feasibility of the calculations rests on the existence
of a set coupled diabatic potentials developed in previous work.
The dynamical calculations were performed by incorporating
a surface hopping algorithm into our quasi-classical trajectory
code. Our surface hopping algorithm follows the guidelines of
the fewest switches method of Tully. However, further devel-
opments were required to adapt Tully’s method to the complex
diabatic potential energy matrix available for this work.

For F(2P3/2) + CHD3(ν1), with 3.6 or 9.0 kcal/mol of col-
lisional energy, we found that the adiabatic cross sections,σad,
are larger than the non-adiabatic ones,σ, by a factor that ranges
between 1.4 and about 2.1. The actual factor depends on the
collisional energy and the vibrational state of CHD3. As a gen-
eral rule, theσad/σ ratio is larger for F(2P3/2) + CHD3(ν1 = 1)
than for F(2P3/2) + CHD3(ν1 = 0). Moreover, for F(2P3/2)
+ CHD3(ν1 = 0) it is always smaller than 2.0. Also, as a
general rule, the σad/σ ratio decreases when increasing the
collisional energy. Furthermore we found that the reactivity of
electronically excited fluorine atoms, F(2P1/2), is very small
compared with that of atoms in the ground electronic state.

As a by-product of the calculations performed in this
work we determined that, at low collisional energies, CHD3

leaks a significant amount of its vibrational energy into the
inter-molecular degrees of freedom. Because of that, QCT cal-
culations performed around 1.0 kcal/mol or smaller energies
become meaningless.

Finally, when non-adiabatic cross sections for the ground
and vibrationally excited states of CHD3(ν1) are compared
to each other, it is found that total reactivity increases upon
excitation. This enhancement is mainly caused by the increase
of reactivity towards the HF + CD3 product channel. There-
fore, the results of the current theoretical study also disagree
with the experimental findings of Liu and co-workers. Includ-
ing non-adiabatic effects in the theoretical treatment does not
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resolve the existing discrepancies between theory and experi-
ment. While the reasons for this discrepancy remain unknown,
it is reassuring to note that the search for these reasons is driv-
ing new investigations on the system. This, in turn, has served
to reveal interesting characteristics of its reactivity and has
pushed new theoretical developments that can, eventually, be
used in other polyatomic systems.
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15G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys.

130, 084301 (2009).
16J. Qi, H. Song, M. Yang, J. Palma, U. Manthe, and H. Guo, J. Chem. Phys.

144, 171101 (2016).
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